用户名: 密码: 验证码:
南美白对虾五种同工酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南美白对虾(Litopenaeus vannamei)是世界产量最高的三大虾种之一,引入国内后正逐步走向淡水化养殖,随着该养殖业的迅速发展,越来越多的对虾疾病给养虾业造成了严重的经济损失,其中病毒是对虾暴发性流行病发生的主要病原因子。目前国内外学者对南美白对虾主要进行免疫学方面的研究,探讨提高机体抗病力的各种免疫学途径,并力图找到便于监测其免疫机能状态的生化指标。因此,一些与免疫相关的同工酶如ACP、AKP、SOD、POD以及PPO等越来越受到重视。综合研究与南美白对虾免疫作用相关的多种同工酶,对于了解对虾病毒性疾病的防治与诊断有重要的理论参考价值。
     1南美白对虾体内五种同工酶酶谱的研究
     本文利用聚丙烯酰胺凝胶垂直平板电泳技术以及同工酶染色技术,重点对南美白对虾成体的复眼、肝脏、心脏、鳃和肌肉等五种组织中与免疫相关的ACP、AKP、SOD、POD和PPO等五种同工酶进行研究。比较健康对虾与患病毒性疾病的对虾各同工酶酶谱表型变化,结果显示五种同工酶在南美白对虾体内均有分布,且同一种同工酶在不同组织中表达的条带数量以及酶活性均存在组织特异性:除SOD在心脏中的表达最强外,其余四种同工酶均在肝脏中的表达最强;而复眼中的ACP、AKP、SOD以及肌肉中POD和PPO表达最弱。感染病毒后,病虾体内的生理代谢发生明显紊乱,这五种同工酶的酶谱发生了明显变化。ACP、AKP、POD和PPO这四种同工酶在肝脏和鳃中出现一些特异性酶带的缺失或酶活性减弱的现象。如病虾的ACP酶谱在肝脏缺失了2条特异性酶带ACP-5、9,在健康对虾肝脏中染色较深的ACP-2、3在染病后其酶活性显著降低,鳃中缺失1条特异性酶带ACP-8,且2条原先染色较深带较宽的条带ACP-1、6的酶活明显减弱;病虾的AKP同工酶酶谱在原先健康体的鳃组织中所特有的3条酶带AKP-4、9、12全部缺失,且染色较深的AKP-1酶活性减弱,肝脏中原先有表达的6条特异性酶带中有1条AKP-8缺失,酶活性明显减弱的条带有AKP-1、2;病虾的POD同工酶酶谱在原先健康对虾的肝脏中有表达的4条特异性酶带POD-1、2、3、8全部缺失,鳃中原先1条染色较深酶带较宽的条带POD-4缺失;病虾的PPO同工酶酶谱在原先健康对虾肝脏组织中有表达的2条特异性酶带中缺失一条PPO-1,它也是PPO同工酶中染色最深带最宽的条带,鳃中原先染色较深的PPO-2缺失。而病虾的SOD同工酶酶谱则在心脏和鳃中呈现下降趋势,表现为心脏中缺失1条特异性酶带SOD-5;鳃中缺失1条染色较深的酶带SOD-3。此外ACP、AKP、POD和PPO这四种同工酶在心脏中则出现酶带增加或酶活性增强的现象。如ACP、POD和PPO在心脏中各新增了1条酶带;AKP在心脏中新增3条。而SOD则在肝脏组织中呈现酶活性增强的趋势,虽然未出现新增带,但是其原先表达的3条酶带中的2条染色明显加深条带也加宽。总之这五种同工酶的表型在健康虾和病虾之间存在明显的差异,尤其是在肝脏和心脏中的变化最为明显,说明这二个组织中五种同工酶的特异性变化可以作为研究南美白对虾病毒病的一种辅助生理生化指标。
     2南美白对虾体内五种同工酶的酶细胞化学定位的研究
     运用电镜酶细胞化学技术对南美白对虾体内肝脏、肌肉、心脏、复眼和鳃等五种组织的ACP、AKP、SOD、POD和PPO的酶细胞化学定位进行了研究,并与感染病毒的南美白对虾体内五种组织中ACP、AKP、SOD、POD和PPO的细胞化学定位进行比较。结果显示健康虾体内ACP多定位于细胞核、内质网和溶酶体等不同细胞器中,肝脏中的ACP分布较广泛,还定位于肝脏细胞内的微绒毛、脂滴周围、线粒体以及细胞内膜;AKP常见于细胞核、细胞核膜、内质网、细胞膜、次级溶酶体,还定位在肝细胞中的脂滴、微绒毛、细胞内膜、线粒体以及鳃细胞中的线粒体膜上;SOD酶只定位于各组织细胞的线粒体膜、细胞质中,以及肝细胞的脂滴周围;POD酶主要定位于心脏、鳃和肝脏组织细胞的过氧化物酶体内,肝细胞中脂滴周围也有POD的定位,而在复眼和肌肉中的过氧化物酶体很少有POD的分布;PPO主要以酚氧化酶原形式分布于肝脏细胞的细胞质中,心脏、肌肉细胞中的PPO阳性颗粒较少。当病毒感染后,各组织细胞内出现了明显的病理性结构变化:内质网(肌质网)、线粒体肿胀扩张,呈空泡状;细胞质混浊,其中出现大量的髓样小体;肌纤维排列疏松、散乱,有明显的断裂;脂滴呈小颗粒状分散在细胞质中,微绒毛稀少;细胞核形状不规则,偶尔能见到核溶解、核固缩现象等等。同时各类同工酶的酶细胞化学定位也发生了变化,表现为:ACP定位只集中于髓样小体、线粒体外膜、次级溶酶体、小颗粒状脂滴周围以及细胞质;AKP集中在一些膜性结构上,如内质网、髓样小体、线粒体膜,且阳性反应减弱,除此之外胞质中也能发现AKP阳性颗粒;原先在胞质中均有定位的SOD同工酶,现只存在于肝细胞中,另外还发现线粒体越是受损严重的部位,SOD阳性反应也越强,尤其是在心脏以及鳃中,不仅在线粒体外膜有SOD阳性反应,而且其致密化的基质内也发现SOD的定位;POD仍出现在胞质中的过氧化物酶体中,数量减少,且部分过氧化物酶体解体;肝脏组织中几乎未见PPO阳性,而心脏中除了定位到酚氧化酶原之外,在基质致密化的线粒体内部也定位到PPO酶活性,其余三种组织中,PPO均定位在酚氧化酶原以及细胞质中大量出现的髓样小体上。结果表明ACP、AKP、PPO均有定位的溶酶体在南美白对虾免疫防御过程中起着破坏并且消化衰退的膜性结构的作用,SOD、POD在清除机体内过量O_2~-方面起着重要的作用。从感染病毒后南美白对虾体内各组织中的ACP、AKP、SOD、POD和PPO酶细胞化学定位的规律性变化,可以认为其ACP、AKP、SOD、POD和PPO在对虾的生长和免疫反应中发挥着积极的作用。
Litopenaeus vannamei is one of the most important farmed products in the world.The introduction of L. vannamei in shrimp farming is step by step from seawater tofreshwater. With rapid growth of shrimp farming, more and more diseased problems ofshrimps cause a major loss in shrimp aquaculture. The virus is a main pathogenic factorin explosive epidemic shrimp disease. Presently, experts research on immunology of L.vannamei in order to finding several ways to improve the immunity against disease.And they try to find a biochemical marker of immunological mechanism. Therefore,theimmune-related enzymes such as phosphatase (ACP), alkaline phosphatase (AKP),superoxide dismutase (SOD), peroxidase (POD), polyphenoloxidase (PPO) and so onhave been paid more attention. Research on these enzymes in L. vannamei is importantreference value in theory to understand the technology of pathogens diagnosis, thetreatment of disease problems and especially the prevention studies on shrimp.
     1 Study on Electrophoretograms of Five Isozymes of Litopenaeusvannamei
     Vertical polyacrylamide gel electrophoresis (PAGE) and biochemical staining wereused to analyze five isozymes including ACP, AKP, SOD, POD and PPO in the eye,liver, heart, gill and muscle of L. vannamei. The electrophoretic patterns of theisozymes showed differences between the healthy shrimps and the diseased shrimpsinfected with virus. The results showed that the five isozymes were all expressed infive kinds of tissues of L. vannamei, and activities of the five isozymes were tissuespecific. Except SOD was the highest in heart of L. vannamei. The activities of theother isozymes were all the highest in liver. After shrimps were infected with virus,physiological metabolism in diseased shrimps was apparently beginning to fail. Thephenotypes of five isozymes had some obviously changes, and some characteristicbands of ACP, AKP, POD and PPO decreased or got weaker in liver and gill. ACPdecreased 2 characteristic bands in liver in diseased shrimps. Furthermore, ACPdecreased 1 characteristic band in gill, and 2 bands got weaker. AKP decreased 1 and 3characteristic bands in liver and gill respectively. POD decreased 4 characteristic bands in liver, and decreased 1 band which was deeper and thicker band in gill of healthyshrimps. PPO decreased 1 characteristic band which was the deepest and thickest bandin healthy shrimps in liver, and in gill also decreased 1 band. But on the downtrend ofSOD activity was in heart and gill. SOD decreased 1 band in heart and gill respectivelyin diseased shrimps. Furthermore, higher activities of ACP, AKP, POD and PPO weredetected in heart of diseased shrimps. ACP, POD and PPO presented 1 new bandrespectively, and AKP presented 3 new ones in heart. Higher activity of SOD wasdetected in liver. Although there was no new band of SOD in heart, 2 bands whichwere detected in healthy shrimps got deeper and thicker. Due to theelectrophoretogram of fiver isozymes changed most obviously in liver and heart ofdiseased shrimps with virus, the shrimp isozymes in liver and heart can be used asbiochemical marker for diagnosis of L.vannamei with virus.
     2 Study on Cytochemical Location of Five Isozymes of Litopenaeusvannamei
     The activities and location of ACP, AKP, SOD, POD and PPO in the liver, muscle,heart, gill and eye of L. vannamei were studied with enzyme cytochemical techniqueof electronic microscope, compared it with the infected shrimp. The results showedthat the ACP activities were mainly deposited in nucellar cell, endoplasmic reticulumand lysosome, and in liver ACP were detected in microvilli, around lipid droplet,mitochondrium and cellular endomembrane. AKP activities were mainly deposited innucellar cell, nuclear membrane, endoplasmic reticulum, cellular membrane andsecondary lysosome. And in liver AKP were detected in microvilli, around lipiddroplet, mitochondrium and cellular endomembrane, and mitochondrial membrane ingill of the healthy shrimps. The SOD activity was site in mitochondrium, cytoplasm incells and around lipid droplet. And the POD and PPO activities were site in specificorganelle respectively: peroxisome and prophenoloxidase. In infected shrimp withvirus, the pathological changes were obviously in tissues and cells. These changeswere showed as follows: The dilatation of endoplasmic reticulum (sarcoplasmicreticulum) and mitochondrium became small vacuoles. Cytoplasm was concentrationand turbidity. More myelin figures appeared in cytoplasm of cells. Muscle fiberbecame loose, very relaxed and obviously ruptured. Lipid droplet was isolated smallgranule in the cytoplasm. Microvilli were fewer. And Nucellar cell became abnormal.At the same time, the activities site of five enzymes had changes in cells. ACP positivereaction granules were only observed in myelin figure, mitochondrial membrane, secondary lysosome, around small lipid droplet and cytoplasm. AKP positive reactiongranules were site in endoplasmic reticulum, myelin figure, mitochondrial membraneand cytoplasm. SOD positive reaction was found in mitochondrial membrane whichwas damaged seriously and densification of mitochondrial matrix. But there were fewSOD positive granules in the cytoplasm. POD positive reaction was still found inperoxisome which decreased in the number. And part of peroxisome was disaggregated.The activity site of PPO was not only in prophenoloxidase, but also in myelin figureand densification of mitochondrial matrix. But PPO positive activity wasn’t observedin liver. The results were indicated that lysosomes in which ACP, AKP and PPOactivities were located destroyed and digested membrane structure in immunologicaldefense of L. vannamei. SOD and POD played an important role in eliminatingexcessive superoxide anion in shrimps. From the regularity changes of cytochemicallocation of ACP, AKP, SOD, POD and PPO of L. vannamei, we think that the fiveisozymes have positive effects on the growth and immunoreaction of L. vannamei.
引文
[1] 凌振山,靳红. 南美白对虾淡水养殖技术[J]. 河北渔业,2007,(9): 33-33.
    [2] 杨先乐. 南美白对虾的病害及其控制[J]. 渔业现代化,2002,(3): 6-9.
    [3] 雷质文,黄倢,梁成珠,等. 白斑综合症病毒的生物学特性[J]. 海洋科学,2002,26(3): 26-31.
    [4] 湛嘉,杨先乐,赵秀灵. 南美白对虾桃拉综合症诊断与防治[J]. 内陆水产,2004,29(12): 22-24.
    [5] 刘荭译. 黄头病近期研究进展[J]. 鱼类病害研究,1994,16(4): 33-34.
    [6] 谢芝勋. 对虾白斑综合征研究进展[J]. 广西畜牧兽医,2003,19(3): 139-142.
    [7] 修文琼,何爱华,何家鑫,等. 两种对虾杆状病毒的超微结构比较及其超微细胞病理的观察[J]. 电子显微学报,1999,18(4): 401-409.
    [8] 黄灿华,张建红,高玮,等. 应用光镜和电镜对病虾组织细胞病理变化的观察与分析[J]. 中国病毒学,1997,12(4): 364-370.
    [9] 黄灿华,陈棣华. 中国对虾病虾体内同工酶表型变化的初步研究[J]. 中国水产科学,1999,6(1): 45-49.
    [10] 孙静秋,许燕,李晓英. 感染桃拉综合症病毒的凡纳滨对虾体内 4 种同工酶酶谱的变化[J]. 中国水产科学,2008,15(1): 122-128.
    [11] 施海涛,蔚明燕. 南美白对虾弧菌病防治方法[J]. 齐鲁渔业,2005,22(3): 36-36.
    [12] 张仕刚,林作新. 纤毛虫对南美白对虾的危害及防治[J]. 内陆水产,2002,27(12): 34-34.
    [13] 张奇亚. 国内外对虾病毒病研究综述[J]. 现代渔业信息,1995,10(10): 1-6.
    [14] 樊廷俊. 对虾非特异性免疫与对虾疾病监控的研究进展[J]. 海洋科学,2002,26(4): 26-31.
    [15] Aono H,Ochara I,Mori K. Cell type-specific roles in the hemocyte clotting system of the spiny lobster, Panulirus japonicus[J]. Comp Biochem Physiol,1993,105(A): 11-15.
    [16] Smith V J,Ratcliffe N A. Cellular defense reactions of the shore crab, Carcinus maenas: in vivo hemocytic and histopathological responses to injected bacteria[J]. J Invertebr Pathol,1980,35: 65-74.
    [17] Johansson M W,Soderhall K. Isolation and purification of a cell adhesion factor from crayfish blood cells[J]. J Cell Biol,1988,106: 1795-1803.
    [18] 邓欢,陈俅,刘卫东,等. 中国对虾血细胞包掩作用和超微结构的组织化学观察[J]. 应用与环境生物学报,1999,5(3): 296-299.
    [19] Fontaine C T,Lightner D V. Observations on the process of wound repair in penaeid shrimp[J]. J Invertevr Pathol,1973,22: 23-33.
    [20] Johansson P T. A review of fixed phagocytic and pinocytotic cells of decapod crustaceans, with remarks on hemocytes[J]. Dev Comp Immunol,1987,(11): 679-704.
    [21] Oka M. Structure of the newly found lymphoid organ[J]. Bull Japan Sci Soc Fish,1969,35(2): 245-250.
    [22] Kondo M,Itmai T,Takahashi T,et al. Structure and function of the lymphoid organ in the kuruma prawn[J]. Dev Comp Immunol,1994,18(supplement): 109-112.
    [23] 高键. 甲壳类的体液免疫因子及其环境[J]. 水产养殖,1992,(6): 21-23.
    [24] 牟海津,江晓路,刘树青,等. 日本对虾溶血素的活性测定及性能研究[J]. 海洋与湖沼,1999,30(4): 362-367.
    [25] Hall J L,Rowlands D T. Heterogeneity of lobster agglutinins: Ⅰ Purification and physiochemical characterization[J]. Biochemistry,1974,13(4): 821-827.
    [26] Hall L,Soderhall K. Purification and properties of a protease inhibitor from crayfish hemolymph[J]. J Invertebr Pathol,1982,39: 29-37.
    [27] Quigley J P,Armstrong P B. A homologue of α2-macroglobulin purified from the hemolymph of the horseshoe crab Limunus polyphemus[J]. J Biol Chem,1985,260(23): 12715-12719.
    [28] Ashida M,Soderhall K. The prophenolocidase activating system in crayfish[J]. Comp Biochem Physiol,1984,77B(1): 21-26.
    [29] 徐海圣,徐步进. 甲壳动物细胞及体液免疫机理的研究进展[J]. 大连水产学院学报,2001,16(1): 49-56.
    [30] Soderhall K,Smith V J,Johansson M W. Exocytosis and uptake of bacteria by isolated haemocyte populations of two crustaceans: evidence for cellular cooperation in the defence reactions of arthropods[J]. Cell Tissue Res,1986,245: 43-49.
    [31] Sung H H,Kou G H,Song Y L. Vibriosis resistance induced by glucan treatment in tihger shrimp (Penaeus monodon)[J]. Fish Path,1994,29(1): 11-17.
    [32] 刘树青,江晓路,牟海净,等. 免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J]. 海洋与湖沼,1999,30(3): 278-283.
    [33] 刘志鸿,牟海津,王清印. 软体动物免疫相关酶研究进展[J]. 海洋水产科学,2003,24(3): 86-90.
    [34] 孙虎山,李光友. 大肠杆菌感染后栉孔扇贝血淋巴中 7 种酶活力的变化[J]. 海洋科学,1999,(5): 40-44.
    [35] 徐立红,张甬元,陈宜瑜. 分子生态毒理学研究进展及其在水环境保护中的意义[J]. 水生生物学报,1995,19(2): 171-185.
    [36] 蔡完其. 罗氏沼虾莫格球拟酵母病的病理研究[J]. 水产学报,1996,20(1): 13-17.
    [37] 王宏伟. 同工酶在水产动物研究中的应用[J]. 河北大学学报(自然科学版),2003,23(4): 445-449.
    [38] 李政,王国良,金珊. 同工酶技术在水产动物生理及疾病研究中的应用[J]. 水利渔业,2005,25(4): 88-89.
    [39] 母昌考,王春琳. 甲壳类同工酶研究进展[J]. 水产科学,2003,22(41): 42-44.
    [40] 陈惠黎,李文杰. 分子酶学[M]. 北京: 人民卫生出版社,1993.
    [41] 方丁,记世荣. 同工酶在医学上的应用[M]. 北京: 人民卫生出版社,1982.
    [42] 胡能书,万贤国. 同工酶技术及其应用[M]. 长沙:湖南科学技术出版社,1985: 73-130.
    [43] 凌诒萍,俞彰. 细胞超微结构与电镜技术[M]. 上海:复旦大学出版社,2004.
    [44] 孙虎山,王宜艳,孙修勤,等. 栉孔扇贝外套膜酸性和碱性磷酸酶电镜细胞化学研究[J]. 高技术通讯,2002,(5): 99-102.
    [45] 刘晓云,张志峰,包振民,等. 中国对虾组织细胞中的过氧化物酶体[J]. 海洋科学,2003,27(11): 43-46.
    [46] 王春琳,母昌考,丁爱侠,等. 口虾蛄同工酶的组织特异性及生化遗传分析[J]. 海洋与湖沼,2004,35(3): 258-263.
    [47] 潘伟槐,祝尧荣,黄文光,等. 日本沼虾成体组织三种同工酶的研究[J]. 绍兴文理学院学报,2001,21(4): 43-46.
    [48] 赵金良,李思发. 中国大陆沿海六水系绒螯蟹(中华绒螯蟹和日本绒螯蟹)群体亲缘关系:生化遗传差异分析[J]. 水产学报,1999,23(4): 331-336.
    [49] 张子平,王艺磊. 中国对虾两个种群的 F-1 的 LDH 和 MDH 同工酶初步分析[J]. 热带海洋,1994,13(1): 87-90.
    [50] 程家骅,王云龙,许加武,等. 苏北南部沿海几种蟹类蛋白和同工酶的比较研究[J]. 中国水产科学,1998,5(1): 10-17.
    [51] 李纯厚,田丽霞. 同工酶电泳法鉴定对虾幼体种类的研究[J]. 中山大学学报(自然科学版),1998,37(6): 79-83.
    [52] 许加武,李思发. 长江口中华绒螯蟹与其它几种同科蟹的同工酶比较[J]. 水产科技情报,1996,23(4): 159-162.
    [53] 李广丽,朱春华. 罗氏沼虾个体发育早期的同工酶研究[J]. 水生生物学报,2001,25(4): 338-343.
    [54] 王桂忠,李少菁. 锯缘青蟹个体发育过程中的同工酶谱的比较研究[J]. 海洋学报,1991,13(30): 412-416.
    [55] 饶小珍,陈寅山,林岗,等. 日本对虾成体发育阶段的肌肉同工酶研究[J]. 福建师范大学学报(自然科学版),2001,17(4): 97-100.
    [56] 张志峰,马英杰,廖承义,等. 中国对虾幼体发育阶段的同工酶研究[J]. 海洋学报,1997,19(4): 63-71.
    [57] 卢建平,姜乃澄. 罗氏沼虾胚胎发育过程中同工酶的研究[J]. 东海海洋,2000,18(3): 34-39.
    [58] 程惠贞,林惠贤,程舸,等. 诱变剂对 NaN3河蚌肝两种同工酶的影响[J].广州师范学院(自然科学版),1996,(1): 39-43.
    [59] 魏炜,刘克武,赵欣平,等. 水体中 Cu2+和 Cd2+污染对育珠蚌肝脏中 3 种酶的影响[J].应用与环境生物学报,2004,10(2): 170-173.
    [60] Moraga D,Mdelgi L E,Romdhane M S,et al. Genetic responses to metal contamination in two clams: Ruditapes decussates and Ruditapes philippinarum[J].Marin Environmental Research,2002,54: 521-525.
    [61] 吴惠仙,薛俊增. 日本沼虾黑鳃病几种同工酶的变化与病理分析[J]. 海洋湖沼通报,2002,(1): 32-37.
    [62] 王金星,赵小凡,张红卫,等. 对虾组织蛋白质和同工酶表型及其在病虾中的变化[J]. 海洋科学,1995,(3): 46-51.
    [63] 邵健忠,项黎新,华志华,等. 三角帆蚌十六种同工酶系统的表型及其在瘟病病蚌中的病理变化[J].水产学报,1993,17(3): 199-208.
    [64] 王宜艳,孙虎山,孙修勤,等. 栉孔扇贝鳃和唇瓣过氧化物酶活性[J]. 中国水产科学,2004,11(6): 514-516.
    [65] 刘晓云,张志峰,姜明,等. 中国对虾淋巴器的酚氧化酶[J]. 水产学报,2002,26(3): 285-288.
    [66] 邱兰萍,李光芝,朱天义. 心肌细胞内 SOD 定位的电镜观察[J]. 电子显微学报,1998,17(3): 291-294.
    [67] 王吉桥. 南美白对虾健康养殖技术[J]. 水产科学,2002,21(5): 43-46.
    [68] 陈宪春. 世界性虾病蔓延及我国虾病防治进展[J]. 中国饲料,1995,(11): 10-11.
    [69] 郭尧君. 蛋白质电泳实验技术[M]. 北京:科学出版社,2001.
    [70] 庞秋香,张士璀,王长法,等. 雌雄文昌鱼同工酶的表型差异[J]. 动物学报,2004,50(1): 62-67.
    [71] 袁艺. 侧耳(平菇)的酯酶、多酚氧化酶及过氧化物酶同工酶的电泳分析[J]. 安徽农业大学学报,1997,24(1): 88-92.
    [72] 张海琪,何中央,徐晓林,等. 罗氏沼虾肌肉 8 种同工酶的研究[J]. 海洋湖沼通报,2004,(1): 32-36.
    [73] 蒋雪薇,吴学玲. 超氧化物歧化酶及其在生命科学中的作用[J]. 怀化师专学报,2000,19(2): 63-65.
    [74] 谢巧雄,朱心玲,卢全章. 亚硒酸钠对四氯化碳损伤草鱼肝原代细胞与肝细胞的保护作用[J]. 水生生物学报,1996,20(3): 229-235.
    [75] 刘岩,江晓路. 聚甘露糖醛酸对中国对虾免疫相关酶活性和溶菌溶血活性的影响[J]. 水产学报,2000,24(6): 549-553.
    [76] 何南海. 对虾免疫功能指标的建立及其应用[J]. 厦门大学学报(自然科学版),2004,43(3): 385-388.
    [77] 丁秀云,李光友. 皱纹盘鲍经诱导后血淋巴中一些因子变化的研究[J]. 海洋与湖沼,1996,27(4): 362-367.
    [78] Yokota Y,Nakano E, et al. Comparative studies on particulate acid phosphatases in sea urchin eggs[J]. Comp. Biochem. Biophysiol,1982,71(4): 563-567.
    [79] 张辉,张海莲. 碱性磷酸酶在水产动物中的作用[J]. 河北渔业,2003,(5): 12-13.
    [80] 曹淑华,查向东. 超氧化物歧化酶研究综述[J]. 安徽农业科学,2003,31(4): 599-601.
    [81] 贾守菊,应雪萍,陈艳乐等. 中华绒螯蟹不同发育阶段腹肢粘液腺同工酶的比较[J]. 海洋湖沼通报,2004,(4): 52-60.
    [82] 张淑红,高宝嘉,温秀军. 枣疯病过氧化物酶及苯丙氨酸解氨酶的研究[J]. 植物保护,2004,30(5): 59-62.
    [83] 陈建中,盛炳成,刘克钧. 苹果感染轮纹病菌后过氧化物酶和多酚氧化酶活性的变化[J]. 江苏农业学报,1997,13(1): 63-64.
    [84] 刘娟,王智炘,汪宜萱,等. 小麦在叶锈菌侵染过程中过氧化物酶及多酚氧化酶活性的变化[J]. 河北农业大学学报,1989,12(3): 41-46.
    [85] 张海保,朱西儒,刘鸿先. 感染束顶病后香蕉过氧化物酶和多酚氧化酶活性变化[J]. 植物生理学通讯,1997,33(2): 117-119.
    [86] 冷月强,侯喜林. 不结球白菜接种霜霉病菌后防御酶活性的变化[J]. 江苏农业学报,2006,22(3): 305-307.
    [87] 母昌考,王春琳,孙伟. 口虾蛄超氧化物歧化酶同工酶的组织特异性研究[J]. 海洋湖沼通报,2003,(3): 50-53.
    [88] 吴红梅,萧慧,刘刚,等. 多酚氧化酶的研究进展[J]. 茶业通报,2004,26(2): 62-64.
    [89] 苗则彦,赵奎华,刘长远,等. 葡萄抗感白腐病品种 PAL 酶、PPO 酶和 SOD 酶活性比较[J]. 沈阳农业大学学报,2003,34(3): 177-180.
    [90] 李天道,于佳,俞开康. 中国对虾血清中酚氧化酶活力研究[J]. 海洋湖沼通报,1998, (1): 51-56.
    [91] 王雷,李光友,毛远兴. 中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究[J]. 海洋与湖沼,1995,26(2): 179-185.
    [92] 袁庆华,桂枝,张文淑. 苜蓿抗感褐斑病品种内超氧化物歧化酶、过氧化物酶和多酚氧化酶活性的比较[J]. 草业学报,2002,11(2): 100-104.
    [93] 周博如,刘太国,杨微,等. 不同抗性的大豆品种感染细菌性疫病后 POD、PPO 变化的研究[J]. 大豆科学,2002,21(3): 183-186.
    [94] 刘晓云,张志峰,马洪明. 中国对虾血细胞酶细胞化学定位的初步研究[J]. 青岛海洋大学学报,2002,32(2): 259-265.
    [95] 刘晓云,张志峰,于利,等. 中国对虾组织细胞中酚氧化酶活力的研究[J]. 高技术通讯,2002,(8): 89-92.
    [96] 刘晓云,张志峰,廖承义. 中国对虾中肠的超微结构与细胞化学研究[J]. 水生生物学报,2004,28(1): 58-62.
    [97] 王文,陈建秀,杜开和. 中华绒螯蟹蟹鳃上皮细胞病毒侵染的超微结构观察[J]. 电子显微学报,2004,23(4): 347-347.
    [98] 李球芬,包振民,胡景杰,等. 中国对虾 1 种球形病毒及肝胰腺病变的电镜观察[J]. 中国水产科学,1999,6(1): 5-8.
    [99] 钟慈声. 酶组织细胞化学技术[M]. 上海: 上海医科大学出版社,1987.
    [100] Coles J A,Pipe R K. Phenoloxidase activity in the haemolymph and haemocytes of the marine mussel Mytilus edulis[J]. Fish Shellfish Immunology,1994,4: 337-352.
    [101] 王春梅,黄晓峰,杨家骥. 细胞超微结构与超微机构病理基础[M]. 西安: 第四军医大学出版社,2004.
    [102] 孙虎山,李光友. 栉孔扇贝血淋巴中 ACP 和 AKP 活性及其电镜细胞化学研究[J]. 中国水产科学,1999,6(4): 6-9.
    [103] Crtner P G,Nagl W. Acid phosphatase activity in plastids (Plastolysomes) of senescing embryo-suspensor cells[J]. Planta,1989,149: 341-349.
    [104] Joshi P A,Stewart J M,Graham E T. Localization of β-glycerophosphatase activity in cotton fiber during differentiation[J]. Protoplasma,1985,125: 75-85.
    [105] 郑易之,李晶,高扬,等. 大豆子叶内酸性磷酸酶活性的超微结构定位[J]. 植物学报,1996,38(12): 925-929.
    [106] 蔡完其,陆宏达. 患爆发性病毒病的中国对虾肝胰脏病理变化[J]. 上海水产大学学报,1994,3(1): 27-33.
    [107] 杨福愉. 生物膜[M]. 北京: 科学出版社,2005.
    [108] 李金亭,王俊丽,傅山岗,等. 大鼠肝再生过程中碱性磷酸酶活性变化及其超微细胞化学研究[J]. 解剖学报,2004,35(4): 392-395.
    [109] Tengjaroenkul B,Smith B J,Caceci T,et a1. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L[J]. Aquaculture,2000,182: 317-327.
    [110] 柯世省,王克满. 刺梨汁 SOD 及其同工酶的活力测定与定位染色[J]. 浙江农业学报,2001,13(3): 176-178.
    [111] 肖湘,黄智璇,张尔贤,等. 益蛏超氧化物歧化酶的纯化和性质研究[J]. 台湾海峡,2002,(5): 172-177.
    [112] Briggs R T,Drath D B,Karnovsky M J. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method[J]. Cell Biol,1975,67: 566-586.
    [113] 杨民和,郑重,Jan E.Lench. 水稻受稻瘟病菌侵染后过氧化物酶定位的超微观察[J]. 中国水稻科学,2002,16(1): 57-62.
    [114] 常缨,戴建军,马凤鸣. 温光诱导甜菜当年抽薹过程中过氧化物酶的研究[J]. 中国甜菜糖业,2002,(2): 3-5.
    [115] 钟慈声. 细胞和组织的超微结构[M]. 北京: 人民卫生出版社,1984: 23-24.
    [116] Vogt G , Storch V , Quinitio E. Midgut gland as monitor organ for the nutritionalvalue of diets in penaeus monodon[J]. Aquacul,1985,48: 1-12.
    [117] 陈康. 动物细胞中过氧化物酶体的功能[J]. 生物学通报,1995,30(10): 18-19.
    [118] 梁建光,王宜艳,孙虎山. 栉孔扇贝外套膜过氧化物酶和酚氧化酶的电镜细胞化学研究[J]. 鲁东大学学报(自然科学版),2007,23(1): 80-83.
    [119] 李国荣,张士璀,姜明,等. 文昌鱼表皮中酚氧化酶的超微结构定位[J]. 电子显微学报,2001,20(1): 52-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700