用户名: 密码: 验证码:
无氟环保乳浊玻璃的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳浊玻璃在建筑、瓶罐、器皿、艺术和装饰等方面已得到广泛的应用,常用的乳浊剂为氟化物,如萤石、氟硅酸钠、冰晶石、氟化铝、氟化钾等。但是在原料处理、玻璃熔制和成型过程中,氟化物的挥发会造成人类急性和慢性中毒,同时对周围环境产生严重污染;另外,氟化物在玻璃熔制过程中会与耐火材料发生反应从而很大程度上降低玻璃窑炉的使用寿命,使生产成本增加,因此无氟乳浊玻璃的开发已成为解决问题的关键。
     本文以含磷硅酸盐系统玻璃为研究对象,系统地研究了玻璃组成和热处理制度对玻璃试样的影响。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)和其自带的能量色散谱分析(EDS)、差示扫描量热分析(DSC)等测试方法研究了玻璃试样微观结构和乳浊机理,并且测试了试样的白度、密度、三点抗弯强度、热膨胀系数、化学稳定性、硬度等理化性能,以判断其是否达到实用的要求。
     实验结果表明:通过调整SiO2和P_2O_5两种网络形成体的组成,同时引入碱金属或碱土金属氧化物,可以获得乳浊效果显著的乳白玻璃。玻璃系统中用质量分数为3%的B_2O_3取代Al_2O_3的结果表明:取代前后玻璃试样都会因亚稳分相的不稳分解造成玻璃失透,玻璃试样的白度均达到80%以上;玻璃中出现少量的晶体,并且第二相的颗粒尺寸变得不均匀;玻璃的密度、三点抗弯强度减小,化学稳定性降低,热膨胀系数增加;玻璃的性能改变的原因是B在玻璃中以[BO3]三角体和[BO_4]四面体两种配位方式共存。
     网络修饰体对玻璃微观结构和性能的影响研究表明:玻璃网络中只含有CaO和Na_2O时,玻璃仍然保持透明,玻璃中析出了NaCaPO_4晶体;MgO和Li_2O的引入不会改变析出晶体的种类,但是会促进玻璃的分相和析晶,改变玻璃的微观形貌,这是造成玻璃失透的主要原因;600℃或700℃热处理20h都会使晶体长大到10-30μm,玻璃乳浊程度明显增加;热处理(600℃,20h)后,玻璃的三点抗弯强度、硬度、韧性均有一定程度的增加。
     P_2O_5的含量对玻璃粘度影响的研究表明:质量分数为2%的P_2O_5取代SiO_2后,玻璃的粘度会因网络中形成大的阴离子基团(PO_4~(3-))增加了原子移动所需的粘滞活化能而增加;Vogel-Fulcher- Tamman(VFT)、Adam & Gibbs(AG)、Avramov (AV)公式拟合粘度数据的方差都小于3.03×10~(-6),拟合质量的顺序为VFT>AG>AV;取代后玻璃化转变温度(Tg)减小,Tg时的构型熵(Sc(Tg))增加,脆性指数(CAV)减小。
Opal glass receives a wide range of applications in many fields such as construction, bottles, wares, art, decoration, and so on. Common emulsion agents are fluorides such as fluorite, sodium fluoride and cryolite, aluminum fluoride, potassium fluoride, and so on. However, during glass making such as raw materials processing, glass melting and molding process, the volatilization of fluorides will cause human’s acute and chronic poisoning as well as environmental pollution. In addition, fluorides can react with firebrick and shorten the lifetime of kiln, which increases the cost of glass making. Such the investigation of fluorine-free opal glass is the key factor to solve above problem.
     In this work, influence of compositions and heat treatment of Phosphorus- containing silicate opal glass on structure and properties was systematically investigated. Microstructure and opaque mechanism was studied by using XRD, SEM, EDS and DSC method. Furthermore, to judge whether it can be applied practically or not, the physical and chemical properties such as whiteness, density, bending strength, thermal expansion behavior, chemical stability and micro hardness were measured.
     The results show that the excellent opaque glasses can be obtained by adjusting the ratio of SiO_2 and P_2O_5, and by introducing proper content of alkali or/and alkaline oxides. Although the substitution of 3wt% B_2O_3 for Al_2O_3 has little effect on appearance, i.e. heavy opaque glass can be obtained in both composition due to unstable phase separation and the whiteness of both glasses is larger than 80%. However, the substitution produces great change in following aspects: first, small amounts of crystal are precipitated during cooling and the particle size becomes more inhomogeneous, second, the destiny and bending strength decrease and chemical stability also reduces, thermal expansion coefficient increases, which could attribute to coexistence of [BO_3] tetragonal and [BO_4] tetrahedral coordination.
     The type and content of network modifiers has great influence on the microstructure and properties of opal glasses. The glass remain transparent when only Na_2O and CaO are introduced and NaCaPO_4 crystals were observed, whereas the glasses become opalescent when MgO and/or Li_2O are used, which implies addition of MgO and/or Li_2O enhance the phase-separation and crystalization. In addition, the heat treatment also has effect on morphology and properties. The size of hexagonal NaCaPO_4 increases to10-30μm after heat treatment at 600 oC/700 oC for 20h, leading to that all samples appear heavy opalescent, at the same time, bending strength, micro hardness, toughness increase obviously.
     Viscosity measurement results show that viscosity increases with substituting P_2O_5 for SiO_2, and this is due to formation of biger anion groups (PO_43-)which enhances the activation enthalpy of viscous flow. A good quality of fitting of Vogel-Fulcher- Tamman (VFT), Adam & Gibbs(AG) and Avramov(AV) equations to the measured viscosity has been achieved, which is reflected by the less standard deviations than 3.03×10-6, and the order is VFT>AG>AV. In addition, the glass transition temperature(Tg) and fragility index decrease, and the configurational entropy increase with the addition of P_2O_5.
引文
[1]王承遇,陶瑛,等.玻璃成分设计与调整[M].北京:化学工业出版社,2006:407-413.
    [2]王承遇,陶瑛.乳浊玻璃[J].玻璃与搪瓷,1998,26(2): 57-63.
    [3] Shigeki M. Phase separation and crystallization in the system SiO2-Al2O3- P2O5-B2O3-Na2O glasses[J]. Journal of Non-Crystalline Solids, 2006, 352: 756-760.
    [4] O’Donnell, M. D., Watts S. J., Law R. V., et al. Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties-Part I: NMR[J]. Journal of Non-Crystalline Solids, 2008, 354: 3554-3560.
    [5] O’Donnell, M. D., Watts S. J., Law R. V., et al. Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties-Part II: Physical properties[J]. Journal of Non-Crystalline Solids, 2008, 354: 3561-3566.
    [6] Arbab M., Marghussian V.K., Sarpoolaky H. et al. The effect of RO oxides on microstructure and chemical durability of borosilicate glasses opacified by P2O5[J]. Ceramics International. 2007, 33: 943-950.
    [7]刘世权,陶文宏,卢燕,等. CaO-Al2O3-P2O5玻璃的结构与相变[J].山东建材学院学报, 2001, 15(1): 17-19.
    [8]田清波,岳雪涛,王修慧,等. CaO-MgO-Al2O3-SiO2-P2O5-(F)微晶玻璃的析晶及特称[J].人工晶体学报,2007,36(3): 692-695.
    [9]李彬,文丽华,黄志求,等. CaO-SiO2系玻璃的析晶动力学研究[J].中国陶瓷, 2006, 42(1): 22-24.
    [10]张文丽,金建国,张晓丽. Na2O-B2O3-SiO2-SnO2系统的分相和析晶[J].无机材料学报, 2005,20(1): 205-209.
    [11]刘世权,杨中喜,付兴华,等.钙磷酸盐玻璃析晶与分相的研究[J].山东建材学院学报, 2000, 14(1): 7-8.
    [12]赵明星,魏宇宏,李彬,等.含Ag2O的CaO-SiO2析晶动力学的研究[J].中国陶瓷工业,2007,14(2): 6-8.
    [13]刘平,陈显求,许淑惠.玻璃的分相与结晶[J].玻璃与搪瓷. 1994,05: 45-70.
    [14]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006: 64-65.
    [15]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006: 65-66.
    [16]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006: 68-69.
    [17]李伟东.B2O3对R2O-RO-B2O3-SiO2-Al2O3系统快速烧成乳浊釉分相过程的影响[J].玻璃与搪瓷,2001, 29(2):48-52.
    [18]滕元成.磷乳浊釉乳浊机理的研究[J].武汉理工大学学报, 2002, 24(1): 4-5.
    [19]姜伟辉,廖奇丽. R2O-RO-B2O3-SiO2-Al2O3-P2O5-CaF2系统分相-析晶乳浊釉的形成机理[J].硅酸盐学报,2006, 34(11): 1357-1361.
    [20]李红,冉均国,苟立. CaO-MgO-Al2O3-SiO2-F系可切削微晶玻璃的晶化机理[J].科学科学与工程. 2002, 20(1): 28-30.
    [21]俞冰,梁开明,顾守仁. Ca-P-Si-F系统生物活性微晶玻璃的显微组织及性能分析[J].硅酸盐通报,2002,6:68-71.
    [22]俞冰,梁开明,顾守仁. CaO-P2O5-MgO-SiO2-F系可切削生物微晶玻璃的制备[J].硅酸盐学报. 2002,30(1):77-80.
    [23] H?land W., Rheinberger V., Frank M. Mechanisms of nucleation and controlled crystallization of needle-like apatite in glass-ceramics of the SiO2-Al2O3-K2O- CaO-P2O5 system[J]. Journal of Non-Crystalline Solids, 1999, 253: 170-179.
    [24] Apel E., Hoen C. V., Rheinberger V., et al. Influence of ZrO2 on the crystallization and properties of lithium disilicate glass-ceramics derived from a multi-component system. Journal of the European Ceramic Society, 2007, 27: 1571-1577.
    [25] Park J., Ozturk A. Tribological properties of MgO–CaO–SiO2–P2O5–F- based glass-ceramic for dental applications[J]. Materials Letters, 2007, 61: 1961-1921.
    [26] Mirsaneh M. Ian M. Reaney I. M., Hatton P. V., Effect of P2O5 on the early stage crystallization of K-fluorrichterite glass–ceramics. Journal of non-Crystalline Solids, 2008, 354: 3362-3368.
    [27] Salman S. M., Salama S.N., Darwish H., et al. The role of MgO on the structural properties of CaO–Na2O(MgO)-P2O5-CaF2-SiO2 derived glass ceramics[J]. Ceramics International, 2010, 36: 55-61.
    [28]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006:29-30.
    [29] Moisescu C., H?chet T., Carl G. et al. Influence of the Ca/P ratio on the morphology of fluorapatite crystals in SiO2-Al2O3-CaO-P2O5-K2O-F glass-ceramics[J]. Journal of Non-Crystalline Solids, 2001, 289:123-134.
    [30] Goswamia M., Kothiyalb G.P., Montagne L., MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content[J]. Journal of Solid State Chemistry, 2008, 181: 269-275.
    [31] Wegner S., Wüllen L.V., Tricot G., The structure of phosphate and borosilicateglasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange[J]. Solid State Sciences, 2009, 3: 1-12.
    [32]陈德平,刘凤梅,赵万智,等.一种多次分相乳浊釉及其分相机理[J].北京科技大学学报,1995, 17(3): 203-207.
    [33]杜新民,沈定坤,陈显求.K2O-CaO-Al2O3-SiO2系统玻璃的分相[J].硅酸盐通报,1994,3: 11-14.
    [34] Du W. F., Kuraoka K., Akai T.,et al. Study of Al2O3 effect on structural chang and phase separation in Na2O-B2O3-SiO2 glass by NMR[J]. Journal of Materials Science, 2000, 35: 4865-4871.
    [35]卢安贤,黄继武,卢仁伟.P2O5-PbO-B2O3系统玻璃和微晶玻璃的结构[J].中国有色金属学报,1997,7(1):88-92.
    [36]肖汉宁,马微微,涛猛.P2O5含量对Al2O3-SiO2- P2O5系统玻璃结构和析晶性能的影响[J].陶瓷学报,2007,28(4):246-249.
    [37]赵玉成,宋文灿.K2O-MgO-SiO2-B2O3-F系统生物玻璃的分相行为研究[J].燕山大学学报,2001,25(1):88-91.
    [38] Tulyaganov D. U., Agathopoulos S., Ventura J. M.,et al. Synthesis of glass- ceramics in the CaO-MgO-SiO2 system with B2O3, P2O5, Na2O and CaF2 additives[J]. Journal of the European Ceramic Society, 2006, 26: 1463-1471.
    [39] Agathopoulos S., Tulyaganov D.U., Ventura J.M.G., et al. Structural analysis and devitrification of glasses based on the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives[J]. Journal of Non-Crystalline Solids, 2006, 352: 322-328.
    [40] Tulyaganov D.U., Agathopoulos S., Fernandes H.R.,et al. Processing of glass- ceramics in the SiO2-Al2O3-B2O3-MgO-CaO-Na2O(P2O5)-F system via sintering and crystallization of glass powder compacts[J].Ceramics International, 2006, 32: 195-200.
    [41] Bou E., Moreno A., Escardino A., et al.Microstructural study of opaque glazes obtained from fritsof the system: SiO2-Al2O3-B2O3-(P2O5)-CaO- K2O-TiO2[J].Journal of the European Ceramic Society, 2007, 27: 1791-1796.
    [42] Faeghi-Nia A., Marghussian V.K., Taheri-Nassa E. Effect of B2O3 on crystallization behavior and microstructureof MgO-SiO2-Al2O3-K2O-F glass- ceramics[J]. Ceramics International, 2007, 33: 773-778.
    [43]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006, 104-105.
    [44]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006, 95-96.
    [45]王承遇,陶瑛,等.玻璃成分设计与调整[M].北京:化学工业出版社,2006,95-98.
    [46]干福熹.现代玻璃科学技术(下册)[M].上海:上海科学技术出版社.1990, 2-2.
    [47]郭公毅,陈玉莉.铅-钡-铝磷酸盐玻璃的热性质和红外光谱[J].无机材料报,1997, 12(2): 224-227.
    [48] Brow R. K., Tallant D. R., Myers S.T., et al. The short-range structure of zinc polyphosphate glass[J]. Journal of Non-Crystalline Solid , 1995(191): 45 -55.
    [49] English S, Hodkin W F, Turner S E W. Further investigation of the influence of alumina on the properties of glass [J] . J Soc Glass Technol , 1974 (8):173-182.
    [50]肖卓豪,卢安贤.R2O-MO-Al2O3-SiO2玻璃的组成与其热膨胀系数的关系[J].中南大学学报,2005,36(4): 566-570.
    [51]宋謦玉,姜中密.磷硼酸盐玻璃形成及性质的研究[J].1990.18(1).1-6.
    [52] Vogel W. Chemistry of Glass[M].The American Ceramic Society, 1985: 196-197.
    [53] Taylor P., Ashmore S. D., Owen D. J. Chemical durability of some sodium borosilicate glasses improved by phase separation[J]. J. Am. Ceram. Soc.1987, 70: 333–338.
    [54] Fischera H., Hemelikb M., Tellea R.,et al. Marx Influence of annealing temperature on the strength of dental glass ceramic materials[J]. Dental Materials, 2005, 21: 671-677.
    [55] Fischer H, Rentzsch W, Marx R. R-curve behavior of dental ceramic materials[J]. J Dent Res, 2002, 81: 547–51.
    [56] Emad M.E. Machinable spodumene-fluorophlogopite glass ceramic[J]. Ceramics International, 2004, 30: 1059-1065.
    [57] Vogel W., Pergamon Press[M], Oxford, 1971: 66-69.
    [58] Volf M. B., Technical Approach to Glass[M], Elsevier, New York, 1990: 257-258.
    [59] Tilley R. Corlour and the Optical Properties of Materials[J], John Wiley, 1999, 335: 1347-1352.
    [60] Berthier T., Fokin V. M., Zanotto E. D., New large grain, highly crystalline, transparent glass-ceramics[J]. Journal of Non-Crystalline Solids, 2008, 354 (15-16): 1721-1730.
    [61] James P.F., McMillan P.W. Transmission electron microscopy of partially crystallised glasses[J]. Journal of Materials Science, 1971, 6(11): 1345-1349.[62] Holand W., Rheinberger V., Wegner S., et al. Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry[J]. Journal of materials science: Materials in medicine, 2000, 11(1):11-17.
    [63] Yue Y., Christiansen J. D., Jensen S.L., et al. Determination of the fictive temperature for a hyperquenched glass[J]. Chemical Physics Letters, 2002, 357: 20-24.
    [64]谢军,谢俊,李淑晶.氧化铈对锂铝硅微晶玻璃粘度和结构的影响[J].武汉理工大学学报,2009,31(22):30-32.
    [65] Giordano D., Potuzak M., Romano C., et al. Viscosity and glass transition temperature of hydrous melts in the system CaAl2Si2O8–CaMgSi2O6[J]. Chemical Geology, 2008, 256(3-4): 203-215.
    [66] Hrma P. Arrhenius model for high-temperature glass-viscosity with a constant pre-exponential factor[J], Journal of Non-Crystalline Solids, 2008, 354(18): 1962-1968.
    [67] Hrma P., Benjamin M. A., Michael J. S. Viscosity of many-component glasses[J]. Journal of Non-Crystalline Solids, 2009, 355(14-15): 891-902.
    [68] Hrma P., Glass viscosity as a function of temperature and composition: A model based on Adam–Gibbs equation[J]. Journal of Non-Crystalline Solids, 2008, 354(29): 3389-3399.
    [69]赵彦钊,殷海荣.玻璃工艺学[M].北京:化学工业出版社,2006: 78-79.
    [70] Moynihan C. T., Easteal A. J., Wilder J. et al. Dependence of the glass transition temperature on heating and cooling rate[J]. Journal of Physical Chemistry, 1974,78: 2673-2677.
    [71] Moynihan C.T. Structural relaxation and the glass transition[J]. Reviews in Mineralogy, 1995, 32: 1-19.
    [72] Richet P., Bottinga Y. Rheology and configurational entopy of silicate melts[J]. Reviews in Mineralogy, 1995, 32: 67-93.
    [73] Adam G., Gibbs J.H. On the temperature dependence of cooperative relaxation properties in glassforming liquids[J]. The Journal of Chemical Physics, 1965, 43(1): 139-146.
    [74] Richet P., Bottinga Y. Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth and Planetary Science Letters, 1984. 67: 415-432.
    [75] Bottinga Y., Richet P., Silicate melt structural relaxation: rheology, kinetics, and Adam-Gibbs theory. Chemical Geology, 1996. 128: 129-141.
    [76] Navrotsky A., Energetics of silicate melts[J]. Reviews in Mineralogy, 1995, 32: 121-143.
    [77] Lange R.A., Navrotsky A. Heat capacities of Fe2O3-bearing silicate liquids[J]. Contribution to mineralogy and petrology, 1992, 110: 311-320.
    [78] Courtial P., Richet P. Heat capacity of magnesium aluminosilicate melts[J]. Geochemica et Cosmochimica Acta, 1993, 57: 1267-1275.
    [79] Richet P., Neuville D.R., Thermodynamics of silicate melts: Configurational properties[J]. Advances in physical geochemistry, 1992, 11: 132-161.
    [80] Avramov I., Viscosity of undercooled melts[J]. Journal of Materials Science letters, 1994, 13: 1367-1369.
    [81] Avramov I. Viscosity of glassforming melts[J]. Preceeding of the 6th International Otto Schott Colloquium.Jena (Germany), 1998: 198-203
    [82] Avramov I. Viscosity of glassforming melts[J]. Journal of Non-Crystalline Solids, 1998,238: 6-10.
    [83] Avramov I., Milchev A. Effect of disorder on diffusion and viscosity in condensed systems[J]. Journal of Non-Crystalline Solids, 1988, 104: 253-260.
    [84] Laughlin W.T., Uhlmann, D.R. Viscous flow in simple organic liquids[J]. The Journal of Physical Chemistry, 1972, 76: 2317.
    [85] Angell C.A. Tucker, J.C. Glass-forming molten-salt systems[M]. in Chemistry of Process Metallurgy, Institute of Mining Metallurgy Publications. 1974, 207-214.
    [86] Angell C.A. Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems[J].Journal of Non-Crystalline Solids, 1991, 131-133: 13-31.
    [87] Angell C.A. Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267: 1924-1935.
    [88] Moynihan C.T. Structural relaxation and the glass transition[J]. Reviews in Mineralogy, 1995, 32: 1-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700