用户名: 密码: 验证码:
亚洲棉7号染色体文库构建及RGA克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界上主要的天然纤维作物,也是重要的经济作物。其中,亚洲棉成熟早、抗逆性强、抗虫性、纤维强度高等优点,在生产中具有极高的经济价值。但是棉花细胞具有特殊性,不仅染色体较小、相互之间的差异小,而且棉花细胞含有多糖、酚、丹宁等物质,所以棉花染色体制片相比较是困难的,直接导致了棉花的分子细胞遗传学研究相对滞后。本研究针对棉花细胞的特点,探索二倍体棉花单条染色体的分离建库技术,并在此基础上进行棉花单条染色体RGA克隆,以期为深入进行棉花基因组研究提供基础资料。研究结果如下:
     1.单条染色体的分离、去蛋白、酶切、扩增和验证技术体系的完善。采用酶解前的前低渗、酶解、酶解后的后低渗和盖片轻压相结合的方法获得适于激光切割仪切割的高质量亚洲棉石系亚1号中期染色体的膜制片,分离单条染色体后去蛋白、酶切和PCR扩增,以Southern杂交、SSR引物扩增和FISH验证扩增产物,形成了完整的分析验证体系。完善了棉花单染色体分离技术体系。
     2.染色体涂色研究。根据棉种间的单染色体涂色研究,发现亚洲棉和草棉之间的同源程度高,两者几乎相似;在与5个四倍体棉种进行单染色体涂色研究表明,亚洲棉与毛棉的同源性最差,与黄褐棉、达尔文棉的同源性较低,而与陆地棉、海岛棉的同源性较高,其中,与陆地棉的同源性最高。说明棉花四倍体之间进化程度或者速度可能也存在着差异。
     3.单条染色体文库的构建。构建了亚洲棉石系亚1号的第7号染色体文库,文库包含38000个克隆重组子,插入片段长度在150~1000bp,平均长度为550bp。对文库进行分析可以看出,文库覆盖为1.9倍,空载率为1%,滴度为1.3×106pfu/mL,单一和低拷贝达到59%以上。文库建立为该条染色体重要基因克隆和定位、分子标记的筛选、遗传图谱的饱和奠定了坚实的基础。
     4.单条染色体抗病基因同源序列的克隆。利用同源序列法扩增亚洲棉石系亚1号的第7号单染色体DOP-PCR第二次扩增池,获得30余条序列,将这些序列进行酶切归类并测序后,获得L3、L11、L15、L20和L27等5个代表性序列。将此序列与已有的抗病基因同源序列(RGA)进行比对,结果表明,这5条序列均为NBS-LRR类的RGA序列,含有RGA所特有的保守序列。将此5条序列与几种植物已经克隆的RGA序列进行聚类,得出序列L3、L11和L15聚成很窄的一类,与毛果杨的一个RGA序列NBS-LRR,mRNA (gi|224102274| ref|XM_002334160)相近,说明它们之间的同源性非常高,L20和L27聚成另一类,与柑橘的两个RGA序列RGA17(gi|53680927|gb|AY746413.1)和RGA12 (gi|53680917|gb|AY746408-.1)同源性较高,聚在相近的类别中。
Cotton is one of the main natural fiber and major cash crops in the world. Among them Gossypium arboreum has a very economic high value in production because of its advantage about early maturity, stress resistance, insect resistance, high fiber strength. It is difficult to prepare good chromosome preparations of cotton, not only because of the cotton chromosomes are small and similar, but also there are much substance such as polysaccharide, tannins and gossypol in cotton cell. The study was aim at constructing the technique about chromosome microdissection, and a single chromosome library construction. Forthermore, cloning resistance gene analogs (RGAs) in a single chromosome pool from second Diolig-prime-polymerase chain reaction (DOP-PCR). We were looking forword to accumulating basic cotton genome research data in the end. The major findings are as follows:
     1. Complete the system of a single chromosome microdissection, protein removed, enzymolysis, PCR and verification of production in Gossypium arboreum. The high qulity mitosis metaphase chromosome membrane preparations of Gossypium arboreum suitable for laser cutting were obtained after dealed with the method of pre-hypotonicity, enzymolysis, post-hypotonicity and squashed with cover slide. Amplified production was obtained after the single chromosome was removed protein, enzymolysis and PCR. A verified system was constructed after integrating the method of Southern blotting, SSR primer amplification and fluorescence in situ hybridization. A highly efficient technique of cotton chromosome microdissection was completed.
     2. Studying on cotton chromosome painting. According to the study of chromosome painting, Gossypium arboreum has high homology with Gossypium herbaceum, it is speculated that the two species has close relationship. Compared with five tetraploid cotton, it was found that Gossypium arboreum had the lowest homology with Gossypium mustelinum, had lower homology with Gossypium tomentosum, Gossypium darwinii, but had higher homology with Gossypium hirsutum and Gossypium barbadense, and had highest homology with Gossypium hirsutum, which indicated that the degree or speed of evolution between the tetraploid cotton may different.
     3. Single chromosome library construction. A single chromosome library of the 7th chromosome of Gossypium arboreum Shixiya 1 was constructed. There were approximately 38,000 recombinant clones in the library. After analying the library it was found that the size of the inserted DNA sequences varied from 150bp to 1000bp and the average size was about 550bp, the coverage of library was about 1.9 times, the rate of no-load was 1%, the titer was 1.3×106pfu/mL, single and low copy sequences were over 59%. The construction of the 7th chromosome library of G. arboreum Shixiya 1 would facilitate the cloning and mapping of important genes, specific probe screening, genetic map saturation on this chromosome.
     4. RGA Cloning from a single cotton chromosome. About 30 DNA sequences were obtained after amplified with the second round DOP-PCR as plate and with disease-resistant homologous sequence as primer. Five classic nucleotide sequence L3, L11, L15, L20 and L27 were selected after cluster and sequencing among the 30 DNA sequences. Sequences alignment with other resistant gene analog homologous showed that the five sequences were the typical NBS-LRR-type resistant gene analog. Clustering analysis with several plant RGA sequences indicated that the sequences of L3, L11 and L15 in the same cluster and were highly homologous with one RGA sequence from Populus trichocarpa, NBS-LRR, mRNA (gi|224102274| ref|XM_ 002334160), L20 and L27 was in the other cluster and homologous with two RGA sequences, RGA17 (gi|53680927|gb|AY746413.1) and RGA12 (gi|53680917|gb|AY746408-.1) from Citrus reticulata Blanco.
引文
[1]别墅,王坤波,王春英,宋国立,孔繁玲,刘方,等.二倍体栽培棉45S rDNA-FISH作图及核型比较.棉花学报, 2004, 16(4): 223-228
    [2]程华.棉花BAC-FISH体系的建立及其初步应用. [硕士学位论文].北京:中国农业科学院, 2008
    [3]程祝宽,颜辉煌,党本元,胡赞民,顾铭洪,朱立煌,等.水稻第5染色体短臂端四体在染色体臂分离中的应用.科学通报, 1998, 43(3): 272-276
    [4]崔丽华,胡赞民,王兰凤,李良才,陈正华.黑麦1R染色体的显微分离与回收.植物学报, 1997, 39(8): 697-700
    [5]党本元,胡赞民,周奕华,崔丽华,王兰岚,李良才,等.王百合单染色体DNA文库的构建.科学通报, 1998, 43(2): 434-438
    [6]郭歌,陈成彬,李秀兰,宋文芹,陈瑞阳.黑麦B染色体端粒相关序列的克隆的研究.植物学报, 1998, 40(12): 1123-1128
    [7]何聪芬,马有志,辛志勇,徐琼芳,钱江.携带抗黄矮病基因染色体的分离.作物学报, 1999, 25(3): 273-278
    [8]胡赞民,崔丽华,陈正华.染色体微切割微分离与微克隆技术研究进展.生物工程进展, 1998a, 18(5): 32-39
    [9]胡赞民,崔丽华,王兰岚,李良才,陈正华.王百合单条染色体和染色体片断的分离.遗传学报, 1997, 24 (3): 278-281
    [10]胡赞民,党本元,周奕华,崔丽华,王兰岚,张铁汉,等.玉米单染色体的分离和体外扩增.遗传学报, 1998b, 25(6): 545-550
    [11]黄代青,吕柳新,王平.银杏第1染色体DNA文库的构建.福建农林大学学报(自然科学版), 2002, 31(4): 490-494
    [12]黄代青,吕柳新,周奕华.柚第一染色体的显微分离.农业生物技术学报, 2002, 10(1): 53-55
    [13]李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究, 1985, 3(4): 291-302
    [14]李子银,陈受宜.水稻抗病基因同源序列的克隆、定位及其表达.科学通报, 1999, 44(7): 727-733
    [15]刘宝,戎均康,董英山,韩方普,刘振兰,何孟元,等.普通小麦7B染色体的显微分离和低拷贝专化DNA序列的克隆.科学通报, 1999, 44(4): 389-393
    [16]马雪霞,丁业掌,蒋峰,朱协飞,郭旺珍,周保良,张天真.亚洲棉纤维品质和产量性状的主基因与多基因遗传分析,植物遗传资源学报, 2008, 9(2): 212-217
    [17]马有志,徐琼芳,辛志勇,李连城,何聪芬,钱红,等.小麦染色体的显微激光分离.遗传学报, 1999, 26(1): 43-48
    [18]聂汝芝,李懋学.棉属植物核型研究.北京:科学出版社, 1993
    [19]聂汝芝,李懋学.三种野生和四个栽培棉种的核型研究.植物学报, 1985, 27(2): 113-121
    [20]彭仁海.棉花单染色体分离和DNA纤维FISH及其应用研究[博士学位论文].北京:中国农业科学院, 2009
    [21]彭永康,赵建,陈瑞阳.大蒜根尖细胞有丝分裂同步化诱导与中期染色体分离.植物研究, 1999, 19(3): 302-307
    [22]宋国立,崔荣霞,王坤波,郭立平,黎绍惠,王春英,等.改良CTAB法快速提取棉花DNA.棉花学报, 1998, 10(5): 273-275
    [23]宋文芹,崔香芹,许文胜,李秀兰,彭永康,陈瑞阳.蚕豆大M染色体长臂端部的显微切割与PCR扩增.科学通报, 1996, 41(4): 360-363
    [24]宋文芹,李秀兰,祁仲夏,梁思源,陈瑞阳.水稻染色体的显微分离与克隆.南开大学学报(自然科学), 2000, 33(3): 83-88
    [25]宋文芹,李秀兰,许文胜,陈瑞阳.黑麦染色体的显微分离与PCR扩增.植物学报, 1998, 40(2): 158-162
    [26]田靫,卢一凡,邓继先,李滨,张学勇,刘广田.普通小麦-中间偃麦草TAI-27中附加染色体的显微切割及特异性探针的筛选.中国科学, 1999b, 29 (2): 174-179
    [27]田靫,卢一凡,邓继先,刘广田.小麦染色体显微切割及HMW-GS1Dx5亚基因克隆.生物工程学报, 1999a, 15(2): 255-258
    [28]王春英,王坤波,王文奎,李懋学,宋国立,崔荣霞,等.棉花gDNA体细胞染色体FISH技.术棉花学报, 1999, 11(2): 79-83
    [29]王槐,周奕华,党本元,胡赞民,王兰岚,李良材,等.大麦染色体的激光微束切割、片段分离及体外扩增.科学通报, 1998, 43(7): 736-740
    [30]王槐.植物染色体区段DNA文库的建立及染色体微切割、微分离和微克隆技术的改进. [博士学位论文].北京:中国科学院, 1999
    [31]王坤波,李懋学.棉属D染色体组的核型变异和进化.作物学报, 1990, 16(3): 200-207
    [32]王兰岚,陆仲康,黄力全,宋桂英,徐正平,梁宏.激光微束显微切割植物染色体的研究.中国激光, 1991, 18: 313- 316
    [33]王兰岚,宋桂英,徐正平,陆仲康,梁宏.激光微束切割小冰麦异附加系染色体的研究.遗传学报, 1997, 24 (3): 238-240
    [34]王省芬,马骏,马峙英,张桂寅,郑拥民.高纤维强力棉花种质系苏远7235 BAC文库的构建.棉花学报, 2006, 18(4): 200-203
    [35]王石平,刘克德,王江,张启发.用同源序列的染色体定位寻找水稻抗病基因DNA片段.植物学报, 1998, 40(1): 42-50
    [36]王文明.水稻基因组作图及图位基因克隆. [王文明博士后研究工作报告].北京:中国科学院遗传研究所, 2000
    [37]魏建华,周奕华,孙传清,党本元,胡赞民,王象坤,等.水稻第12染色体微分离及LA-PCR扩增.中国农业科学, 1998, 31 (2): 14-18
    [38]吴琼,宋国立,刘三宏,王春英,刘方,黎绍惠,等.黄褐棉45S rDNA的FISH定位及核型分析.植物遗传资源学报, 2008a, 9 (4): 439-442
    [39]吴琼.黄褐棉、达尔文棉的原位杂交研究及棉属D基因组着丝粒FISH探针筛选. [博士学位论文].北京:中国农业科学院, 2008b
    [40]夏家辉,杜鹃,戴和平,傅俊江,潘乾,龙志高,等.人类7号染色体专特性探针池的构建及应用.实验生物学报, 1994, 27(3): 321-326
    [41]薛勇彪,唐定中,张燕生,李维明.水稻基因组中R类抗病基因同源序列的分离.科学通报, 1998, 40 (3): 277-281
    [42]易图永,谢丙炎,张宝玺,高必达.几个抗疫病性不同的辣椒材料抗病基因同源序列的分离与比较.园艺学报, 2003, 30(5): 540-544
    [43]张东方,郑用,曹志刚.玉米S组CMS线粒体组细菌人工染色体文库的构建.科学通报, 2000, 45: 729-735
    [44]张荣信,陈成彬,李秀兰,宋文芹,陈瑞阳.黑麦A, B染色体着丝粒区同源性的荧光原位杂交分析.科学通报, 1999, 44 (5): 520-524
    [45]张守攻,齐力旺,韩素英,陈成彬,李秀兰,宋文芹,等.杨属(Populus)黑杨组(Aigeiros)种(品种)间核型比较.园艺学报, 2005, 32(1): 70-73
    [46]张守攻,张勇,刘博,李秀兰,宋文芹,韩素英,等.欧洲山杨一号染色体显微分离、原位杂交分析及特异文库的构建.园艺学报, 2006, 33(4): 794-800
    [47]郑先武,翟文学,李晓兵,王文君,徐吉臣,刘国振,等.水稻NBS-LRR类R基因同源序列.中国科学, 2001, 31(1): 43-51
    [48]周奕华,党本元,胡赞民,崔丽华,李良才,陈正华.大豆单染色体的显微分离及体外扩增.植物学报, 1998, 40(2): 144-150
    [49]周奕华,党本元,王槐,胡赞民,王兰岚,陈正华.黑麦1R染色体微克隆文库的构建与分析.植物学报, 1999, 41(12): 1269-1275
    [50] Albani D, Cote M J, Armstrong K C, Chen Q, Segal A, & Robert L S. PCR amplification of micro- dissected wheat chromosome arms in a simple“single tube”reaction. Plant J, 1993, 4(6): 899-903
    [51] Ambady S, Mendiola J R, Louis C F, Janzen M A, Schook L B, Buoen L, et al. Development and use of a microdissected swine chromosome 6 DNA library. Cytogenet cell genet, 1997, 76: 23-27
    [52] Anderson C. Genome shortcut leads to problems. Science, 1993, 19(5102): 1684-1687
    [53] Anderson P A, Lawrence G J, Morrish B C, Ayliffe M A, Jean F E, & Ellisaib J G. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell, 1997, 9: 641-651
    [54] Andrew F B, Barbara N K, Douglas D, Brown K L, Schmidt R, Giraudat J, et al. Rps2 of Arabidopsis thaliana: a leuine-rich repeat class of plant disease resistance gene. Science, 1994, 265(23): 1856-1860
    [55] Anthony P, Monacoa & Larinb Z. YACs, BACs, PACs and MACs: Artificial chromosomes as researchtools. Trends in Biotechnology, 1994, 242: 511-558
    [56] Arts M G, Lintel B, Holub E B, Beynon J L, Stiekema W J, & Pereira A. Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. Mol Ptant Microbe Interact, 1998, 11: 251-258
    [57] Arumuganathan K, Martin G B, Telenius H, Steven D, & Elizabeth D E. Chromosome 2-specific DNA clones from flow-sorted chromosomes of tomato. Mol Gen Genet, 1994, 242: 511-558
    [58] Baker B, Zambryski P, Staskawicz B, & Dinesh-Kumar S P. Signaling in plant-microbe interactions. Science, 1997, 276: 726-733
    [59] Bao L, Gregorio S, Juan M V, Moshe F, & Shahal A. Isolation and characterization of chromosome-specific DNA sequence from a chromosome arm genomic library of common wheat. The Plant Journal, 1997, 11(5): 959-965
    [60] Beasley J O. Hybridization, cytology, and polyploidy of Gossypium. Chronica Botanica, 1941, 6: 394-395
    [61] Boyes D C, Nam J, & Dang J L. The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA, 1998, 95: 15849-15854
    [62] Burke D T, Carle G F, & Olson M V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science, 1987, 236(4803): 806-812
    [63] Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, et al. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695-700
    [64] Caicedo A L, Schaal B A, & Kunkel B N. Diversity and molecular evolution of the RPS2 resistance gene in Arabidopsis thaliana. PNAi USA, 1999, 96: 302-306
    [65] Cail L, Taylor J F, Wing R A, Gallagher D S, Woo S S, & Davis S K. Construction and characterization of a bovine bacterial artificial chromosome library. Genomics, 1995, 29: 413-425
    [66] Carraneo R, Gorski J, & Mach B. Cloning of multiple copies of immunoglobulin variable kappa genes in cosmid vectors. Nucleic Acids Research, 1981, 9: 2777-2790
    [67] Chakrabarty P K, & Gabriel D W. Identification of resistance gene analogs in bacterial blight-resistant cotton (Gossypium hirsutum L.) based on conserved domains of plant disease resistance genes. [Ghi-RGA-C1 NBS (AY705378.1)]
    [68] Chen Q, & Armstrong K C. Characterization of a library from a single microdissected oat (Avena sativa L.) chromosome. Genome, 1995, 38: 706-714
    [69] Chen Z J, Scheffler B E, Dennis E, Barbara A. Triplett, Zhang T Z, Guo W Z, et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol, 2007, 145: 1304-1310
    [70] Chen Zhong, Theresa A G, Xin-yuan Guan, Pamela J N, John F S, Jeffrey M T, et al. Maternal balanced translocation leading to partial duplication of 4q and partial deletion of 1p in ason:cytogenetic and FISH studies using Band-specific painting probes generated by chromosome microdissection. Am J Med Genet, 1997, 71: 160-166
    [71] Cherry J P, Katterman F R H, & Endrizzi J E. Comparative studies of seed proteins of species of Gossypium by gel electrophoresis. Evolution, 1970, 24: 431-447
    [72] Clowyn M T, David A J, Martin P, Parniske M, Harrison K, Balint-Kurti P J, Hatzixanthis K, et al. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequence that determine recognitional specificity in Cf-4 and Cf-9. The Plant Cell, 1997, 9(12): 2209-2224
    [73] Cohen S N, Chang A C Y, Boyert H W, & Helling R B. Construction of biologically functional bacterial plasmids in vitro. PNAS USA, 1973, 70(11): 3240-3244
    [74] Collins N C, Webb C A, Seah S, Ellis J G, Hulbert S H, & Pryor A. The isolation and mapping of disease resistance gene analogs in maize. Mol Plant Microbe Interact, 1998, 11(10): 968-978
    [75] Creusot F, Macadre C, Cana E F, Rioc C, Geffroy V, Sevignac M, et al. Cloning and molecular characterazation of three members of the NBS-LRR subfamily located in the vicinity of the Co-2 locus for anthrancnose resistance in Phaseolus vulgaris. Genome, 1999, 42: 254-264
    [76] Dang B Y, Hu Z M, Zhou Y H, Cui L H, Wang L L, Li L C, & Chen Z H. Construction of single-chromosome DNA library from Lilium regale Wilson. Chin Sci Bull, 1998, 43: 434-439
    [77] David A J, Clowyn M T, Kim E H, Balint-Kurti P J, & Jones J D. Isolation of the tomato Cf-9 gene for Cladosporium fulvum by transposon tagging. Science, 1994, 266 (4): 789-793
    [78] De Witt P J G M. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol, 1992, 30: 391-418
    [79] Deng Z, Huang S, Ling P, Chen C, Yu C, Weber C A, et al. Cloning and characterization of NBS-LRR class resistance gene candidate sequences in citrus. Theor Appl Gene, 2000, 101: 814-822
    [80] Dinesh-Kumar S P, Whitham S, Choi D, Hehl R, Corr C, & Baker B. Transposon tagging of the tobacco mosaic virus resistance gene N: its possible role in TMV-N mediated signal transduction pathway. Proc Natl Acad Sci USA, 1995, 92(10): 4175-4180
    [81] Dison K M, & Gale M D. Comparative genetics in the grasses. Plant Mol Biol, 1997, 35: 3-15
    [82] Dixon R A, & Lamb C J. Molecular communication in interactions between plants and microbial pathogens. Ann Rev Plant Physiol Plant Mol Biol, 1990, 41: 339-367
    [83] Dixon M S, Jones D A, Keddie J S, Thomas C M, Harrison K, & Jones J D G. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 1996, 84: 451-459
    [84] Dixon M S, Hatzixanthis K, Jones D A, Harrison K, & Jones J D G. The tomato-disease resistance gene and six homologs show pronounced allelic variation in leucine- rich repeat copy number. Plant Cell, 1998, 10: 1915-1925
    [85] Ellis J G, Lawrence G J, Luck J, & Dodds P N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell, 1999, 11: 495-506
    [86] Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes. Curr Opin Plant Biol, 2000, 3: 278-284
    [87] Feuillet C, Schachermayr G, & Keller B. Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. The Plant J, 1997, 11: 45-52
    [88] Flor H H. Current status of the gene-for-gene concept. Ann Phytopathol, 1971, 9: 275-296
    [89] Fominaya A, Linares C, Loarce Y, & Ferrer E. Microdissection and microcloning of plant chromosomes. Cytogenetic and Genome Research, 2005, 109: 1-3
    [90] Fourmann M, Chariot F, Froger N, Delourme R, & Brunel D. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome, 2001, 44(6): 1083-1099 [RGA30 (AF 209499.1)]
    [91] Fryxell P A. Stages in the evolution of Gossypium. Adv Front Plant Sci, 1965, 10: 31-56
    [92] Fukui K, Minezawa M, Kamisugi K, Ishikawa M, Ohmido N, Yanagisawa T, et al. Microdissection of plant chromosomes by argon-ion laser beam. Theor Appl Genet, 1992, 84: 787-791
    [93] Gabriel D W, & Rolfe B G. Working models of specific recognition in plant-microbe interaction. Ann Rev Phytopathol, 1990, 28: 365-391
    [94] Gerstel D U. Chromosome translocations in interspecific hybrids of the genus Gossypium. Evolution, 1953, 7: 234-244
    [95] Grant, M R, Godiard L, Straube E, Ashfield T, Lewald L, Sattle A, et al. Structrue of the Arabidopsis RPMl gene enabling dual specificity disease resistance. Science, 1996, 269: 843-846
    [96] Gregory J L, Jean E F, Michael A A, & Ellis J G. The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. The Plant Cell, 1995, 7(8): 1195-1206
    [97] Grogory B M, Sergio H B, Julapark C, Frary A, Ganal M W, Spivey R, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262(26): 1432-1435
    [98] Grosveld F G, Lund T, Murray E J, Mellor A L, Dahl H H, & Flavell R A. The construction of cosmid libraries which can be used to transtform eukaryotic cells. Nucleic Acids Res, 1982, 10(21): 6715-32
    [99] Grube R C, Radwanski E R, & Jahn M. Comparative genetics of disease resistance within the Solanaceae. Genetics, 2000, 155: 873-887
    [100] Guan Xin-Yuan, Paul S, Burgess Ann C, & Trent J M. Coverage of chromosome 6 by chromosome microdissection: generation of 14 subregion-specific probs. Hum Genet, 1995, 95: 637-640
    [101] Hahlbrock K, & Scheel D. Physiology and molecular biology of phenyl-propanoid metabolism. Ann Rev Plant Physiol Plant Mol Biol, 1989, 40: 347-369
    [102] Hamilton C M, Frary A, Lexist C, & Tanksley S. Stable transfer of intact high molecular weightDNA into plant chromosomes. PNAS USA, 1996, 93: 9975-9979
    [103] Hamilton C R, Frary A, Xu Y, Tanksley S D, & Zhang H B. Construction of tomato genomic DNA library in a binary-BAC(BIBAC) vector. The Plant Journal, 1999, 18: 223-229
    [104] He L M, Du C G, Covaleda L. Cloning, characterization and evolution of the NBS-encoding resistance gene analogue family in polyploid cotton(Gossypium hirsutrn L.). Molecular Plant Microbe Interaction, 2004, 17: 1234-1241
    [105] Henk A D, Warren R F, & Innes R W. A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics, 1999, 151: 1581-1589
    [106] Hibata F, Hizume M, & Kuroki Y. Chromosome painting of Y chromosomes and isolation of Y-specific repetitive sequence in the diocious plant Rumex acetosa. Chromosoma, 1999, 108: 266-270
    [107] Holub E B. Organization of resistance genes in Arabidopsis. See Ref, 1997, 27: 5-26
    [108] Houben A, Kynast R G, Heim U, Herman H, Forster J W, & Jones R N. Molecular cytogenetics characterization of the terminal heterochromatic segment of the B-chromosome of rye (Secale cereale). Chromosoma, 1996, 105: 97-103
    [109] Houben A, Leach C R, Verlin D, Rofe R, & Timmis J N. A repetitive DNA sequence common to the different B chromosomes of the genus B rachycome. Chromosoma, 1997, 106: 513-519
    [110] Hu Z M, Gui L H, Li L C, Wang L L, & Chen Z H. Isolation of chromosome and chromosomal fragment of Lilium regale. Acta Genetica Sinica, 1997, 24(3): 278-281
    [111] Huang D, Wu W, Zhou Y, Hu Z, & Lu L. Microdissection and molecular manipulation of single chromosomes in woody fruit trees with small chromosomes using pomelo (Citrus grandis) as a model: I. Construction of single chromosomal DNA libraries. Theor Appl Genet, 2004, 108: 1366-1370
    [112] Hulbert S, Pryor T, Hu G R T, Richter T, & Drake J. Genetic fine structure of resistance loci. See Ref, 1997, 27: 27-43
    [113] Hutchinson J B, Stephens S G., & Dodds K. S. The seed hairs of Gossypium. Ann Bot, 1945, 9: 361-368
    [114] Hutchinson J B, Silow R A, & Stephens S G. The evolution of Gossypium and the differentiation of the cultivated cottons. London: Oxford University Press, 1947
    [115] Hwang C F, Bhakta A V, Truesdell G M, PudloW M, & Williamson V M. Evidence for a role of the N terminus and leucine- rich repeat region of the Mi gene product in regulation of localized cell death. Plant Cell, 2000, 12: 1319-1329
    [116] Innes R W. Genetic dissection of R gene signal transduction pathways. Curr Opin Plant Biol, 1998, 1: 229-304
    [117] Jamilena M, Garrido-Ramos M, Rejon R R, Ruiz R C, & Parker, J S. Characerisation of repeated sequence from microdissected B chromosomes of Ctepis capillaries. Chromosoma, 1995, 104(2): 113-120
    [118] Jia Y, McAdams S A, Bryan G T, Hershey H P, & Valent B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J, 2000, 19: 4004-4014
    [119] Johnson B L. Assessment of evolutionary affinities in Gossypium by protein electrophoresis. American J Botany, 1970, 57: 1081-1092
    [120] Jones D A, Thomas C M, Hammond-Kosack K E, Balint-Kurti P J, & Jones J D. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science, 1994, 266: 789-793
    [121] Jung C, Claussen U, Horsthemke B, Fischer F, & Herrmann R G. RGA DNA library from an individual Beta patellaris chromosome conferring nematode resistance obtained by microdissection of meiotic metaphase chromosome. Plant Mol Biol, 1992, 20: 503-511
    [122] Kamisugi Y, Sakai F, Minezawa M, Fujishita M, & Fukui K. Recovery of dissected C-band region in Crepis chromosomes. Theor Appl Genet, 1993, 85: 825-828
    [123] Kammacher P. Observations cytologiques sur deux hybrides F, entre especes cultivees tetraploides de cotonniers et lespece diploide sauvage Gossypium raimondii. UlB Rev Cytol Biol Veg, 1960, 22: 1-31
    [124] Kanazin V, Marek L F, & Shoemaker R C. Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci USA, 1996, 93: 11746-11750
    [125] Kao F T, & Yu J W. Chromosome microdissection and cloning in human genome and genetic disease analysis. Proc Natl Acad Sci USA, 1991, 88: 1844-1848
    [126] Kobe B, & Deisenhofer J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature, 1995, 374: 183-186
    [127] Kuhn D N, Heath M, Wisser R J, Kuhn D N, Heath M, Wisser R J, et al. Resistance gene homologues in Theobroma cacao as useful genetic markers. Theor Appl Genet, 2003, 107(2): 191-202 [125 NBS/LRR (AF402768.1)]
    [128] Lambrecht B, & Moralesn D. Veterinary immunology & immunopathology, 1999, 70: 257-267
    [129] Leister D, Ballvora A, Salamini F, & Gebhardt C. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet, 1996, 14: 421-429
    [130] Leister D, Kurth J, Laurie D A, Yano M, Sasaki T, Devos K, et al. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA, 1998, 95: 370-375
    [131] Liu B, Segal G, Vega J M, Feldman M, & Abbo S. Isolation and characterization of chromosome- specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J, 1997, 11(5): 959-965
    [132] Liu Y G, Shrano Y, Fukaki H, Yanai Y, Tasaka M, Tabata S, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. PNAS USA, 1999, 96: 6535-6540
    [133] Luck J E, Lawrence G L, Dodds P N, Shepherd K W, & Ellis J G. Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell, 2000, 12: 1367-1377
    [134] Ludecke H J, Senger G, Clasussen U, & Horsthemke B. Cloning defined regions of the human genome by microdissection of banded chromosomes and enzymmatic amplification. Nature, 1989, 338(23): 348-350
    [135] Ludecke H J, Senger G, Clasussen U, & Horsthemke B. Construction and characterization of banded-specific DNA libraries. Human Genet, 1990, 84: 512-516
    [136] Ludecke H J, Johnson G, Wagner, Wells D E., Turleau C, Tommerup N, et al. Molecular definition of the shortest region of deletion overlap in the langed-Giedion syndrom. Am J Hum Genet, 1991, 49: 1197-1206
    [137] Mago R, Nair S, Mohan M. Resistance gene analogues from rice: cloning, sequencing and mapping. Theor Appl Genet, 1999, 99: 50-57
    [138] Marks D, David A J, James S K, Colwyn M T, Kate H, Jonathan D G J, et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine rich repeat proteins. Cell, 1996, 84(9): 451-459
    [139] Marks D, Kostas H, David A J, Kate H, & Jonathan D G J. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. The Plant Cell, 1998, 10 (11): 1915- 1925
    [140] Martin G B, Brommonschenkel S H, Chunwongse J, Frary A, Ganal M W, Spivey R, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science, 1993, 262: 1432-1436
    [141] Martin G B. Functional analysis of plant disease resistance genes and their downstream effectors. Curr Opin Plant Biol, 1999, 2: 273-279
    [142] Meyerowitz E M, Guild G M, Prestidge L S, & Hogness D S. A new cosmid vector and its use. Gene, 1980, 11: 271-282
    [143] Meyers B C, Shen K A, Rohani P, Gaut B S, & Michelmore R W. Receptor like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell, 1998, 10: 1833-1846
    [144] Michelmore R W. Isolation of disease genes from plants. Curr Opinion in Biotech, 1995, 6: 145-152
    [145] Mukai Y, & Gill B S. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 1991, 34: 448-452
    [146] Muller-Navia J, Nebel A, & Schleiermacher E. Complete and precise characterization pf marker chromosomes by application of microdissection in prenatal diagnosis. Hum Genet, 1995, 96: 661-667
    [147] Murray N E, & Murray K. Manipulation of restriction targets in phageλto form receptor chromosomes for DNA fragments. Nature, 1974, 251: 476-483
    [148] Murray A W, & Szostak J W. Construction of chromosomes in Yeast. Nature, 1983, 305: 189-193
    [149] Murray R G, Layrence G, Esther S, Ashfield T, Lewald J, Sattler A, et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995, 269(11): 843-846
    [150] Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, & Kawasaki S. Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta2 using a highly representative rice BAC library. Mol Gen Genet, 1997, 254: 611-620
    [151] Osoegawa K, Tateno M, Woon P Y, Frengen E, Mammoser A G, Catanese J J, et al. Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res, 2000, 10: 116-128
    [152] Pan Q, Wendel J, & Fluhr R. Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J Mol Evol, 2000, 50: 203-213
    [153] Pan Q, Liu Y S, Budai-Hadrian, Sela M, Carmel-Goren L, Zamir D, et al. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics, 2001, 155: 309-322
    [154] Parks C R, Ezell W L, Williams D E, & Dreyer D L. The application of flavonoid distribution to taxonomic problems in the genus Gossypium. Bulletin of the Torrey Botanical Club, 1975, 102: 350-361
    [155] Peter A A, Gregory J L, Bronwyn C M, Ayliffe M A, Finnegan E J, & Ellis J G. Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. The Plant Cell, 1997, 9(4): 641-651
    [156] Phillips L L. Segregation in new alloploids of GossypiumⅤ. Mutivalent formation in new world×Asiatic and new world×wild American hexaploids. Ameri Jour Bot, 1964, 51(3): 324-329
    [157] Phillips L L. The cytogenetics of Gossypium and the origin of new world cotton. Evolution, 1963, 17: 460-496
    [158] Pich U, Houben A, Fuchs J, Meister A, & Schubert I. Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field bean. Mol Gen Genet, 1994, 243: 173-177
    [159] Ponelies N, Stein N, & Weber G. Micro-amplification of specific chromosome sequences: an improved method for genome analysis. Nucleic Acids Research, 1997, 25(17): 3555-3557
    [160] Rong J, Bowers J E, Schulze S R, Waghmare V N, Rogers C J, Pierce G J, et al. Comparative genomics of Gossypium and Arabidopsis: unraveling the consequences of both ancient and recent polyploidy. Genome Res, 2005, 15: 1198-1210
    [161] Royal A, Garapin A, Cami B, Perrin F, Mandel J L, LeMeur M, et al. The ovalbumin gene region: common features in the organization of three genes expressed in chicken oviduct under hormonal control. Nature, 1979, 279(5709): 125-132
    [162] Salmeron J M, Barker S L, Garland F M, Scofield S R, Kim H S, Lavelle D T, et al. Tomato Prf is the member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 1996, 86: 123-133
    [163] Sambrook J, Fritsch E F, & Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press, 1989
    [164] Sandery M J, Forster J M, Macadam S R, Blunden R, Jones R N, & Brown S D M. Isolation of sequence common to A and B-chromosomes of rye (Secale ceresle) by microcloning. Plant Mol Biol Rep, 1991, 9(1): 21-30
    [165] Saunder R D C, Glover D M, Ashburner M, Siden-Kiamos I, Louis C, Monastirioti M, et al. PCR amplification of DNA microdissected from a single polytene chromosome band, a comparison with conventional microcloning. Nucleic Acids Res, 1989, 17(22): 9027-9037
    [166] Scalenghe F, Turco E, Edstrom J E, Pirrotta V, & Melli M. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma, 1981, 82: 205-216
    [167] Schondelmaier J, Martin R, Jiahoor A, Houben A, Graner A, Koop H U, et al. Microdissection and microcloning of the barley (Hordeum vulgare L.) chromosome 1 HS. Theor Appl Genet, 1993, 86: 629-636
    [168] Scofield S R, Tobias C M, Rathjen J P, Chang J H, Lavelle D T, Michelmore R W, et al. Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science, 1996, 274: 2063-2065
    [169] Scutt C P, Kamisu G I Y, Sakai Y, & Gilmartin P M. Laser isolation of plant sex chromosomes: studies on the DNA composition of the X and Y sex chromosomes of Silene latifolia. Genome, 1997, 40: 805-815
    [170] Seah S, Sivasithamparam K, Karakousis A, & Lagudah E S. Cloning and characterization of a family of disease gene analogs from wheat and barley. Theor Appl Genet, 1998, 97: 937-945
    [171] Seelanan T, Schnabel A, & Wendel J F. Congruence and consensus in the cotton tribe. Systematic Botany, 1997, 22: 259-290
    [172] Senger G, Ludecke H J, Horthemke B, & Claussen U. Microdissection of banded human chromosomes. Hum Genet, 1990, 84: 507-511
    [173] Shen K A, Meyers B C, Islam-Faridi M N, Chin D B, Stelly D M, & Michelmore R W. Resistance gene candidates identified by PCR with degenerate oligonucleotide primers map to cluster of resistance genes in lettuce. Mol Plant Microbe Interact, 1998, 1: 815-823
    [174] Sherwin K H. Winds across the Atlantic-possible African origins for some pre-columbia mew world cultigens. Res Rec Univ Mus S Univ Meso-Am, 1970, 6: 1-33
    [175] Shibata F, Hizume M, & Kuroki Y. Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rnmex acetvsa. Chromosoma, 1999,108: 266-270
    [176] Shizuya H, Birren B, Kim U J, Mancino V, Slepak T, Tachiiri Y, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. PNAS USA, 1992, 89(18): 8794-9797
    [177] Small R L, Ryburn J A, Cronn R C, Seelanan T, & Wendel J F. The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am J Bot, 1998, 85: 1301-1315
    [178] Small R L, & Wendel J F. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics, 2000a, 155: 1913-1926
    [179] Small R L, & Wendel J F. Phylogeny, duplication, and intraspecific variation of Adh sequences in New World diploid cottons (Gossypium L. Malvaceae). Mol Phyl Evol, 2000b, 16: 73-84
    [180] Song W Y, Wang G L. Chen L L, Kim H S, Pi L Y, Holsten T, et al. A receptor kinase-like protein encoded by rice disease resistance gene, Xa21. Science, 1995, 270: 1804-1806
    [181] Song W Y, Pi L Y, Bureau T E, & Ronald P C. Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice. Mol Gen Genet, 1998, 258: 449-456
    [182] Song W Q, Li X L, Qi Z X, Liang S Y, & Chen R Y. Microdissection and microcloning of rice chromosome. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2000, 33(3): 83-88
    [183] Speulman E, Bouchez D, Holub E B, & Beynon J L. Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. The Plant J, 1998, 14(4): 467-474
    [184] Stahl E A, Dwyer G, Mauricio R, Kreitman M, & Bergelson J. Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature, 1999, 400: 667-671
    [185] Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, & Jones J D. Molecular genetics of plant disease resistance. Science, 1995, 268: 661-667
    [186] Stein N, Ponelies N, Musket T, McMullen M, & Weber G. Chromosome micro-dissection and regionspecific libraries from pachytene chromosomes of maize (Zea mays L.). Plant J, 1998, 13: 281-289
    [187] Sun Q, Collins N C, Ayliffe M, Smith S M, Drake J, Pryor T, et al. Recombination between paralogues at the rpl rust resistance locus in maize. Genetics, 2000, 158: 423-438
    [188] Telenius H, Carter N P, Bebb C E, Nordenskjold M, Ponder B A J, & Tunnacliffe A. Degenerate oligonucleotide-primed PCR: General amplification of target DNA by a single degenerate primer. Genomics, 1992, 13: 718-725
    [189] Town C D, Haas B J, & Maiti R. Arabidopsis thaliana chromosome 5 CHR5v07142002 genomic sequence. [TIR-NBS-LRR (NM-123373.2)]
    [190] Tu L, Zhang X, & Nie Y. Identification of resistance gene analogs in cotton based on NBS domainsof plant disease resistance genes. [108-28 NBS-type (AY331209.1)]
    [191] Tuskan G A, Difazio S, & Jansson S. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313(5793): 1596-1604 [NBS-LRR(XM-002334160.1)]
    [192] Umbeck P F, & Stewart J M. Substitution of cotton cytoplasms from wild diploid species for cotton germplasm improvement. Crop Sci, 1985, 25: 1015-1019
    [193] van den Ackerveken G F, Van Kan J A, & De Wit P J. Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J, 1992, 2: 359-366
    [194] Vega J M, Abbo S, Fedman M, & Levy A A. Chromosome painting in plants: in situ hybridization with a DNA probe from a specific microdissected chromosome arm of common wheat. Proc Natl Acad Sci USA, 1994, 91: 12041-12045
    [195] Venter C, Adams M D, Sutton G G, Kerlavage A R, Smith H Q, & Hunkapiller M. Shotgun sequencing of the human genome. Science, 1998, 280: 1540-1542
    [196] Walker J C. Structure and functions of the receptor-like protein kinase of higher plants. Plant Mol Biol, 1994, 26:1599-1609
    [197] Walker J E, Saraste M, Runswick M J, & Gay N J. Distantly related sequences in the a-andβ-subunits of ATP synthetase, myosin, kinases and other ATP-requiring enrymes and a common nucleotide binding fold. EMBO J, 1982, 1: 945-951
    [198] Wang K B, Song G L, Wang C Y, Liu S H, Liu F, Li M X, et al. FISH-based karyotype of Gossypium herbuceum generated with 45S rDNA and gDNA of Gossypium raimondii as probes. Cotton Science, 2008a, 20(4): 264-273
    [199] Wang K, Song X L, Han Z G, Guo Wa Z, Yu J Z, Sun J, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113: 73-80
    [200] Wang K, Guo W Z, & Zhang T Z. Development of one set of chromosome-specific microsatellite- containing BACs and their physical mapping in Gossypium hirsutum L. Theor Appl Genet, 2007, 115: 675-682
    [201] Wang K, Guan B, Guo W Z, Zhou B L, Hu Y, Zhu Y C, et al. Completely distinguishing individual A-genome chromosomes and their karyotyping analysis by multiple bacterical artificial chromosome-fluorescence in situ hybridization. Genetics, 2008b, 178: 1117-1122
    [202] Wang, M L, Leitch A R, Schwarzacher T, Heslop-Harrison J S, & Moore G. Construction of a chromosome-enriched Hpall library from flow-sorted wheat chromosomes. Nucl Acids Res, 1992, 20: 1897-1901
    [203] Warren R E, Henk A, Mowery P, Holub E, & Innes R W. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial anddowny mildew resistance genes. Plant Cell, 1998, 10: 1439-1452
    [204] Warren R F, Merritt P M, Holub E, & Innes R W. Identification of three putative signal transduction genes involved in R gene-specified disease resistance in Arobidopsis. Genetics, 1999, 152: 401-412
    [205] Wei F, Gobelman-Werner K, Morroll S M, Kurth J, Maoe L, Winge R, et al. The Mlo (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome SS (1HS) of barley. Genetics, 1999, 153(4): 1929-1948
    [206] Wendel J F, Schnabel A, & Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proceedings of the National Academy Sciences USA, 1995, 92: 280-284
    [207] Wendel, J F. Genome evolution in polyploids. Plant Molecular Biology, 2000, 42: 225-249
    [208] Willhoeft U, Jutta M N, & Gerald F. Analysis of the sex chromosome of the Mediterranean fruit fly by microdissected DNA probes. Genome, 1998, 41: 74-78
    [209] Woo S S, Jiang J, Gill B S, Paterson A H, & Wing R A. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acid Res, 1994, 22: 4922-4931
    [210] Yokoyama Y, Ohsugi K, Kozaki T, & Sakuragawa N. Microdissection mediated selection of chromosome region-specific cDNAs .Cytogenetics and Cell Genet, 1997, 77: 192-196
    [211] Yu Y G, Buss G R, & Maroof M S S. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA, 1996, 93: 11751- 11756
    [212] Zaitsev V S, Khavkin E E, & Tsvetkov I L. Homologs of the genes for receptor kinase-like proteins conferring plant resistance to pathogens. NBS-LRR homologs in the Brassicaceae. [RPS2 (AF420476.1)]
    [213] Zhang Y, Zhang S G, Qi L W, Liu B, Gao J M, Chen C B, et al. Construction of poplar (Populus tremula) chromosome 1 specific DNA library by using a microdissection technique. Plant Molecular Biology Reporter, 2005, 23(3): 129-138
    [214] Zhao X P, Si Y, Hanson R E, Crane, Price H J, Stelly D M, et al. Dispersed repetitive DNA has spread to new genomes since polyploidy formation in cotton. Genome Res, 1998a, 8: 479-492
    [215] Zhao X, Ji Y F, Ding X, Stelly D M, & Paterson A H. Macromolecular organization and genetic mapping of a rapidly evolving chromosome-specific tandem repeat family (B77) in cotton (Gossypium). Plant Mol Bio, 1998b, 38: 1031-1042
    [216] Zhou J, Tang X, & Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J, 1997, 16: 3207-3218
    [217] Zhou Y H, Hu Z M, Dang B Y, Wang H, Deng X D, Wang L L, et al. Microdissection andmicrocloning of rye (Secale cereale L.) chromosome 1R. Chromosoma, 1999, 108: 250-255
    [218] Zhou Y H, Wang H, Wei J, Cui L, Deng X, Wang X, et al. Comparision of two PCR techniques used in amplification of microdissected plant chromosomes from rice and wheat. Bio Techniques, 2000, 28 (4): 766-774
    [219] Zimmer R, King W A, & Verrinder G A M. Generation of chicken Z-chromosome painting probes by microdissection for screening large-insert genomic libraries. Cytogenet Cell Genet, 1997a, 78: 124-130
    [220] Zimmer R, Haberfeld A, & Gebbins A M V. Microisolation of the chicken Z chromosome and construction of microclone libraries. Genome, 1997b, 40: 865-872

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700