用户名: 密码: 验证码:
牛磺酸镁抗哇巴因诱发心肌细胞心律失常的电生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究牛磺酸镁配合物(taurine magnesium coordination compound, TMCC)对正常心室肌细胞及哇巴因所致大鼠心室细胞心律失常模型的钠电流(INa)和钙电流(ICa,L)的影响,探讨其抗心律失常的作用机制。
     方法:酶解法急性分离大鼠单个心室肌细胞,以5μmol·L-1哇巴因诱发细胞水平心律失常,采用全细胞膜片钳技术,在电压钳模式下记录不同浓度的牛磺酸镁、胺碘酮对正常心室肌细胞及哇巴因所致大鼠心室细胞心律失常模型的INa和Ica,L的影响。
     结果:
     1、TMCC (100,200,400μmol·L-1)使大鼠心室肌细胞INa电流密度由给药前的(45.56±1.96)pA/pF分别减少到(42.42±4.75) pA/pF,(39.71±1.63)pA/pF, (37.59±4.75) pA/pF (n=5,p<0.01),抑制呈浓度依赖性。24.24μmol·L-1胺碘酮则使电流密度减小到(34.23±1.33) pA/pF (n=5, P<0.01)。TMCC和胺碘酮均使INa的电流-电压曲线上移,但不改变其激活电位、峰值电位和反转电位。TMCC和胺碘酮均使INa激活曲线右移,使激活减慢。TMCC及胺碘酮对INa失活曲线的影响是使之右移,失活减慢。
     2、5μmol·L-1哇巴因使大鼠心室肌细胞钠电流密度从(45.56±1.96)pA/pF下降至(34.74±1.61)pA/pF(n=5,P<0.01),使INa的电流-电压曲线上移。TMCC (100, 200,400μmol·L-1)作用后使电流密度分别恢复为(39.57.42±1.96) pA/pF, (36.61±2.47) pA/pF, (32.95±1.18) pA/pF(n=5,P<0.01)。24.24μmol·L-1胺碘酮则使其变为(28.47±1.65) pA/pF (n=5,P<0.01)。TMCC (100,200μmol·L-1)可对抗哇巴因引起的INa的电流-电压曲线上移,TMCC (400μmol·L-1)和胺碘酮作用后均使上移的电流-电压曲线进一步上移。5μmol·L-1哇巴因使钠通道激活曲线失活曲线都右移,激活减慢快,失活也减慢。TMCC及胺碘酮作用后则使其右移。
     3、TMCC (100,200,400μmol·L-1)使大鼠心室肌细胞ICa,L电流密度由给药前的(4.31±1.62) pA/pF改变为(4.02±0.75) pA/pF、(4.59±0.30) pA/pF、(5.17±0.20) pA/pF,其中400μmol·L-1显著升高钙电流(n=5,<0.01)。胺碘酮作用后的电流密度减小为(2.84±0.19)pA/pF(n=5,P<0.01).400μmol·L-1 TMCC使ICa,L的I-V曲线下移,100,200μmol·L-1 TMCC对I-V曲线影响不明显,胺碘酮则使I-V曲线上移。TMCC使钙通道激活曲线左移,激活加快;胺碘酮使曲线右移,激活减慢。TMCC使钙通道失活曲线右移,失活减慢;胺碘酮使曲线左移,失活加快。
     4、哇巴因大鼠心室肌细胞钙电流密度从(4.31±1.62) pA/pF下降到(2.89±0.52) pA/pF (n=5, P<0.01),使ICa,L的电流-电压曲线上移。TMCC (100, 200,400μmol·L-1)作用后使电流密度分别恢复为(2.86±0.65)pA/pF, (3.87±0.57) pA/pF, (4.48±0.91)pA/pF。24.24μmol·L-1胺碘酮则使其变为(2.55±0.49) pA/pF (n=5,P<0.01)。TMCC使电流-电压曲线下移,胺碘酮使电流-电压曲线上移。5μmol·L-1哇巴因使激活曲线右移,失活曲线左移。TMCC和胺碘酮使激活、失活曲线恢复正常。
     结论:
     1、100,200,400μmol·L-1TMCC呈浓度依赖性抑制大鼠正常心肌细胞INa,在-45 mV除极电压时,与正常INa相比分别下降6.89%,12.84%(n=5,p<0.01),17.49%(n=5,p<0.01),使钠通道的激活延迟,使钠通道失活提前;可增强哇巴因引起的INa抑制作用,但影响较小。
     2、TMCC对大鼠正常心肌细胞ICa,L呈双向作用,100μmol·L-1TMCC可抑制ICa,L, 400μmol·L-1TMCC可增强ICa,L; 100μmol·L-1TMCC可增强哇巴因引起的浓度抑制(1.03%,p>0.05),200,400μmol·L-1TMCC可对抗哇巴因引起ICa,L抑制,使其电流峰值分别增加33.91%和55.17%(p均小于0.01),浓度依赖性使钙通道激活提前,失活延迟。
     3、TMCC通过对INa和Ica,L的作用而发挥抗心律失常作用。
     4、与胺碘酮相比,TMCC对大鼠正常心肌细胞的IN。的抑制作用较温和,而且不会在钠通道处于抑制状态时加重这些通道的抑制;TMCC对钙的作用则表现为双向作用,TMCC可能是一种致心律失常作用弱于胺碘酮的化合物。
Objectives:To investigate the antiarrhythmic mechanism of TMCC,we observed the effect of TMCC on sodium current (INa) and L-type calcium current (ICa,L) in rat ventricular cardiomyocytes of arrhythmia induced by oubaine.
     Methods:Enzymatic dissociation was used to get single rat ventricular myocytes and whole-cell patch clamp was used to record INa and ICa,L in normal and arrhythmic ventricular cardiomyocytes induced by oubaine in rat exposed to amiodarone and different concentration of TMCC.
     Results:
     1. In normal ventricular cardiomyocytes of rat, TMCC (100,200,400μmol·L-1) decreased INa densities from (45.56±1.96) pA/pF to (42.42±4.75) pA/pF, (39.71±1.63) pA/pF, (37.59±4.75) pA/pF (n=5, p<0.01), respectively. The inhibition was in a concentration-dependent manner.24.24μmol·L-1 amiodarone decreased INa densities to (34.23±1.33) pA/pF (n=5,P<0.01). The INa I-V curve was shifted upwards by TMCC and amiodarone without changes of their active, peak and reverse potentials. TMCC and amiodarone turned INa steady-state activation and inactivation curves to right, which made activate and inactivate slowly.
     2. In arrhythmic ventricular cardiomyocytes of rat induced by 5μmol·L-1 oubaine the INa density decreased from (45.56±1.96)pA/pF to(34.74±1.61) pA/pF(n=5, P<0.01), which was restored to (39.57.42±1.96) pA/pF, (36.61±2.47) pA/pF, (32.95±1.18) pA/pF(n=5,P<0.01) by TMCC (100,200,400μmol·L-1). The the INa density decreased to (28.47±1.65) pA/pF (n=5, P<0.01) by 24.24μmol·L-1 amiodarone. The I-V curve upward shift induced by 5μmol·L-1oubaine was inhibited by TMCC(100,200μmol·L-1) while TMCC(400μmol·L-1)and amiodarone made this shift further. INa steady-state activation and inactivation curve was shifted to the right by 5μmol·L-1 oubaine.
     3. In normal ventricular cardiomyocytes of rat, TMCC (100,200,400μmol·L-1) changed ICa,L densities from (-4.31±1.62)pA/pF to (4.02±0.75)pA/pF, (4.59±0.30) pA/pF, (5.17±0.20) pA/pF, respectively.400μmol·L-1TMCC increased ICa,L densities significantly (n=5, P<0.01).Amiodarone decreased ICa,L densities to (2.84±0.19) pA/pF (n=5, P<0.01). The ICa,L I-V curve was shifted downwards by 400μmol·L-1TMCC, while upwards by amiodarone.TMCC turned the ICa,L steady-state activation curve to left, while turned inactivation curve to right. Amiodarone turned the Ica,L steady-state activation curve to right, while turned inactivation curve to left..
     4. In arrhythmic ventricular cardiomyocytes induced by 5μmol·L-1 oubaine the current density decreased from (4.31±1.62) pA/pF to (2.89±0.52) pA/pF, TMCC (100, 200,400μmol·L-1) could inhibit the action of oubaine and made the I-V curve upper shift in a concentration-dependent manner. The ICa,L densities was restored to (2.86±0.65) pA/pF, (3.87±0.57) pA/pF, (4.48±0.91) pA/pF(n=5,P<0.01), respectively.24.24μmol·L-1 amidodarone restored ICa,L densities to (2.55±0.49) pA/pF (n=5, P<0.01).5μmol·L-1 oubaine turned ICa,L steady-state activation curve to right, while inactivation curve to left. TMCC and amiodarone can make them normal.
     Conclusion:
     1. TMCC inhibits INa in a concentration-dependent manner in normal cardiomyocytes, meanwhile, TMCC can restore INa to normal in ventricular cardiomyocytes.
     2. TMCC of lower concentration inhibits ICa,L which TMCC of high concen-tration inhances ICa,L in a biphasic manner in normal myocardiocytes.TMCC restores ICa,L in ventricular myocardiocytes.
     3. The affection on INa and ICa,L may attribute to the antiarrhythmic effect of TMCC.
     4. Compared with amiodarone, TMCC is less likely to cause arrhymias.
引文
[1]Sanguinetti MC, Bennett PB. Antiarrhythmic drug target choices and screening. Circ Res.2003; 93(6):491-499.
    [2]Xu YQ. Antiarrhythmic druge and sodium current [J]. University of Leuven Press, Belgium.1982 Cardiac arrhythmia suppression trial 2investigors:N Engl J Med,1992; 327:227-233.
    [3]Roden DM. Principles in phanmacogenetics [J]. Curr Med Chem 2002; 9(1):41-46.
    [4]Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action methanesulfonanilide class 3 antiarrhythmic agent:specific block of rapidly activating delayed rectifier K current by dofitilide [J]. Circ Res.1993; 72:75-83.
    [5]Ebenroth ES, Cordes TM, Dan agh RK. Second-line treatment of fetal supraventricular tachycardia using flecainide acetate [J]. Epilepsia 2001; 42(Suppl 5):44-48.
    [6]Plotnikov AN, Shvilkin A, Xiong W, de Groot JR, Rosenshtraukh L, Feinmark S, Gainullin R, Danilo P, Rosen MR. Interactions between antiarrhythmic drugs and cardiac memory [J]. Acta Pharmacol Sin 2000; 21(3):249-252.
    [7]Murgatroyd FD."Pills and pulses":hybrid therapy for atrial fibrillation [J]. Naunyn Schmiedebergs Arch Pharmacol 2001; 363(6):604-611.
    [8]Walker CA, Spinale FG. The structure and function of the cardiac myocyte:a review of fundamental concepts [J]. Zhongguo Yao Li Xue Bao,1999; 20(7): 631-634.
    [9]Carlsson L, Abrahamsson C, Drews L, Duke G. Antiarrhythmic effects of potassium channel openers in rhythm abnormalities related to delayed repolarization [J]. Circulation.1992; 85(4):1491-1500.
    [10]Carmeliet E. Antiarrhythmic drugs and ion channels:have we made the connection [J]? Circ Res,1993; 73:857-868.
    [11]Prakash A, Saksena S, Krol RB, Filipecki A, Philip G.. Catheter Ablation of Inducible Atrial Flutter, in Combination with Atrial Pacing and Antiarrhythmic Drugs ("Hybrid Therapy") Improves Rhythm Control in Patients with Refractory Atrial Fibrillation [J]. J Interv Card Electrophysiol 2002; 6(2): 165-172.
    [12]Opincariu M, Varro A, Iost N, Virag L, Hala O, Szolnoki J, Szecsi J, Bogats G,Szenohradszky P, Matyus P, Papp JG.The cellular electrophysiologic effect of a new amiodarone like antiarrhythmic drug GYKI 16638 in undiseased human ventricular muscle:comparison with sotalol and mexiletine [J]. Pediatr Cardiol 2001; 22(6):483-487.
    [13]Balser JR. Structure and function of the cardiac sodium channels [J]. Cardiovasc Res,1999; 42(2):327-338.
    [14]Carmeliet E. Antiarrhythmic drugs and ion channels:have we made the connection [J]. J Cardiovasc Electrophsiol,1999; 10(5):755-758.
    [15]周宝宽,康毅.心血管药物—牛磺酸镁配合物(TMC)的合成及抗心律失常作用[J].美国中华医学进展杂志,2002;1(7):10-1.
    [16]孙涛,康毅,娄建石,周宝宽.牛磺酸镁的合成及对乌头碱诱发心律失常的作用[J].中国心血管杂志,2003;8(4):238-39,272
    [17]周宝宽,康毅.牛磺酸镁抗心律失常的实验研究[J].国际心血管杂志,2001;3(1):69-71.
    [18]刘欣,汪涛,周宝宽,康毅,娄建石.牛磺酸镁对抗哇巴因诱发心律失常的实验研究[J].中国心血管杂志,2004;9(2):79-82.
    [19]Jianshi Lou, Yongqiang Yin, Yi Kang, Baokuan Zhou. Effects of magnesium taurate on cardiac electrophysiology in rabbit and isolated left atrium. The Fifth Scientific Conference on Cardiovascular Sciences Across the Strait.2005-12-3 Hong Kong. Abstracts P68.
    [20]周宝宽,汪涛,孙涛,娄建石,康毅.牛磺酸镁的化学表征与急性毒性研究[J].国际心血管杂志2002;4(2):144.
    [21]于雷,尹永强,李欣,高卫真,康毅,娄建石.牛磺酸镁对豚鼠心室肌细胞钾离子通道的影响[J].中国药理学通报,2008,24(2):203-5.
    [22]于雷,尹永强,李欣,高卫真,康毅,娄建石,牛磺酸镁配合物对豚鼠心室肌细胞钠离子和钙离子通道的影响[J].中国药理学与毒理学杂志,2009,23(1):17-22
    [23]杨宝峰,单宏丽,龚冬梅.抗心律失常药物作用最佳靶点研究[J].哈尔滨商业大学学报,2002,181:1-5.
    [24]Yang BF,Lin HX, Xu CQ, et al. Choline produces cytoprotetive effects against ischemic myocardial injuries:evidence for the role of cardiac M3 subtype muscarinic acetylcholine receptors[J]. Cell Physiol Biochem,2005,16 (4-6):163-174.
    [25]杨宝峰 单宏丽 周宇宏 龚冬梅 董德利 杜智敏.一种筛选抗心律失常药物新模型的建立[J].中国药理学通报,2003,19(2):217-21.
    [26]龚冬梅,邹晓龙,白云龙,单璐琛,孟庆新,于金玲,王绍婷,吕延杰,杨宝峰.哇巴因和乌头碱对豚鼠和大鼠心肌细胞钠电流的作用[J].哈尔滨医科大学学报,2006,40(5):347-350.
    [27]林志彬,金有豫.医用药理学基础[M].第6版.北京:世界图书出版公司,2008:177.
    [28]龚冬梅,单宏丽,董德利,等.哇巴因诱发大鼠心律失常作用靶点的研究[J].哈尔滨医科大学学报,2002,36:87-90.
    [29]杨宝峰,单宏丽,周宇宏,等.一种筛选抗心律失常药物新模型的建立[J].中国药理学通报,2003,19(2):217-219.
    [30]Nishio M,Ruch SW,Andrew Wasserstrom. Positive inotropic effects of ouabain in isolated cat ventricular myocytes in sodium-free conditions[J]. AmJ Physiol Heart Circ Physiol,2002,283 (5):H2045-H2053.
    [31]杨宝峰,单宏丽,龚冬梅,等.抗心律失常药物作用最佳靶点研究[J].哈尔滨商业大学学报,2002,18(1):1-5.
    [32]Hodgkin AL, Huxley AF, Katz B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo [J]. J Physiol.1952; 116 (4): 424-428.
    [33]Frank H Yu, William A Catterall. Overview of the voltage-gated sodium channel family [J]. Genome Biology,2003; 4(3):207-213.
    [34]Fozzard HA, Hanck DA. Structure and function of voltage-dependent sodium channels:comparison of brain II and cardiac isoforms [J]. Physiol Rev.1996; 76 (3):887-926.
    [35]Grant AO. Molecular biology of sodium channels and their role in cardiac arrhythmias [J].Am J Med,2001; 110 (4):296-305.
    [36]Rook MB, Bezzina Alshinawi C, Groenewegen WA, van Gelder IC, van Ginneken AC, Jongsma HJ, Mannens MM, Wilde AA. Human SCN5A gene mutations alter cardiac sodium channels kinetics and are associated with the Brugada syndrome [J]. Cardiovasc res,1999; 44:507-517.
    [37]Lalevee N, Nargeot J, Barrere-Lemaire S, Gautier P, Richard S. Effects of amiodarone and dronedarone on voltage-dependent sodium current in human cardiomyocytes[J]. J Cardiovasc Electrophysiol.2003 Aug;14(8):885-90.
    [38]Antzelevitch C, Belardineli L. The Role of Sodium Channel Current in Modulating Transmural Dispersion of Repolarization and Arrhythmogenesis[J]. J Cardiovasc Electrophysiol.2006; 17(Suppl1):S79-S85.
    [39]Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure role of sodium-calcium exchange, inward rectifier potassium current and residual adrenergic responsiveness [J]. Circ Res.2001; 88:1159-1167.
    [40]Zhang X, Qu Y, Zhang T, Zhang Q.Antagonism for different doses of taurine on calcium overload in myocardial cells of diastole heart failure rat model[J].Zhongguo Zhong Yao Za Zhi.2009 Feb;34(3):328-31.
    [41]Liu HY, Gao WY, Wen W, et al. Taurine modulates calcium influx through L-type voltage-gated calcium channels in isolated cochlear outer hair cells in guinea pigs[J]. Neuroscience Letters,2006; 39 (1-2):23-6.
    [42]Satoh H, Sperelakis N. Review of some actions of taurine on ion channels of cardiac muscle cells and others[J]. Gen Pharmacol,1998,30(4):451-463.
    [43]Liu GX, Yang YZ, Gu QB, Liu YH, Guo Q. Effects of taurine on L-type voltage-dependent Ca2+ channel in rat cardiomyocytes infected with coxsackie virus B3[J]. Acta Pharmacol Sin,1998,19(3):238-240.
    [44]Singh BN. Expanding indications for the use of class Ⅲ agents in patients at high risk for sudden death. J Cardiovasc Electrophysiol,1995;6:887-900
    [45]Waldo AL, Camm AJ, de Ruyter H, et al. SWOED Investigators.Preliminary mortality results from the survival with oral d-sotalol(SWORD) trial. (Abstr.) J Am Coll Cardiol,1995; 15A
    [46]Kodama I, Kamiya K, Toyama J. Cellular electropharmacology of amiodarone. Cardiovasc Res,1997; 35:13-29
    [47]Liu DW,Antzelevitch C. Characteristics of the delayed rectifier current (Ikr and Iks) in canine ventricular ep icardial,midmyocardial, and endo cardial-myocytes:a weaker Iks contributes to the longer action potential of the M cell [J]. Circulation Research,1995,76:351
    [48]Shi GF, XuW, Huang SS. Mechanism of the delayed onset of action after intravenous amiodarone for treatment of ventricular arrhythmias[J]. Drug Development Research,2003,58:145
    [49]Kowey PR, Levine JH, Herre JM, et al. Randomized, double-blind comparison of intravenous amiodarone and bretylium in the treatment of patients with recurrent, hemodynamically destabilizing ventricular tachycardia or fibrillation. The Intravenous Amiodarone Multicenter Investigators Group [J]. Circulation, 1995,92:3255
    [50]Dorian P, Cass D, Schwartz B, et al. Amiodarone as compared with lidocaine for shock2resistant ventricular fibrillation [J]. N Engl J Med,2002,346:884
    [51]Lalevee N, Nargeot J, Barrere-Lemaire S, Gautier P, Richard S. Effects of amiodarone and dronedarone on voltage-dependent sodium current in human cardiomyocytes[J]. J Cardiovasc Electrophysiol.2003 Aug;14(8):885-90.
    [1]Pogwizd SM, Schlotthauer K, Li L, Yuan W, Bers DM. Arrhythmogenesis and contractile dysfunction in heart failure role of sodium-calcium exchange, inward rectifier potassium current and residual adrenergic responsiveness [J]. Circ Res. 2001; 88:1159-1167.
    [2]Takahashi T, Allen PD, Lacro RV, Marks AR, Dennis AR, Schoen FJ, Grossman W, Marsh JD, Izumo S. Expression of dihydropyridine receptor (Ca2+channel) and calsequestrin genes in the myocardium of patients with end-stage heart failure [J]. J Clin Invest.1992; 90:927-935.
    [3]Schroder F, Handrock R, Beuckelmann DJ, Hirt S, Hullin R, Priebe L, Schwinger RH,Weil J, Herzig S. Increased availability and open probability of single L-type calcium channels from failing compared with nonfailing human ventricle [J]. Circulation.1998; 98:969-976.
    [4]Chen X, Piacentino V 3rd, Furukawa S, Goldman B, Margulies KB, Houser SR. L-type Ca2+ channel density and regulation are altered in failure human ventricular myocytes and recover after support with mechanical assist devices [J]. Circ Res.2002; 91:527-524.
    [5]Marx SO, Reiken S, Hisamatsu Y, et al. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor):defective regulation in failing hearts [J]. Cell.2000; 101:365-376.
    [6]Marks AR, Marx SO, Reiken S. Regulation of ryanodine receptors via macro-molecular complexes:a novel role for leucine/isoleucine zippers [J].Trends Cardiovasc Med.2002; 12:166-170.
    [7]Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N,Marks AR. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor):defective regulation in failing hearts [J]. Cell.2000; 101:365-376.
    [8]Lehnart SE, Wehrens XH, Marks AR. Calstabin deficiency, ryanodine receptors, and sudden cardiac death [J]. Biochem Biophys Res Commun.2004; 322: 1267-1279.
    [9]Wehrens XH, Marks AR. Altered function and regulation of cardiac ryanodine receptors in cardiac disease [J]. Trends Biochem Sci.2003; 28:671-678.
    [10]Schmidt U, Hajjar RJ, Kim CS, Lebeche D, Doye AA, Gwathmey JK. Human heart failure:cAMP stimulation of SR Ca2+-ATPase activity and phosphorylation level of phospholamban [J]. Am J physiol 1999; 277:H474-480.
    [11]Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy [J].Circulation.1995; 92:778-784.
    [12]Frank KF, Bolck B, Erdmann E, Schwinger RH. Sarcoplasmic reticulum Ca2+-ATPase modulates cardiac contraction and relaxation [J].Cardiovasc Res. 2003; 57:20-27.
    [13]Pogwized SM, Qi M, Yuan W, Yuan W, Samarel AM, Bers DM. Up regulation of Na+-Ca2+ exchanger expression and function in arrythmogenic rabbit model of heart failure [J]. Circ Res.1999; 85:1009-1019.
    [14]Conway SJ, Koushik SV. Cardiac sodium-calcium exchanger:a double-edged sword [J].Cardiovasc Res.2001; 52:194-197.
    [15]Litwin SE, Li J, Bridge JHB. Na+-Ca2+ exchanger and the trigger for sarcoplasmic reticulum Ca2+ release:studies in adult rabbit ventricular myocytes [J]. Biophys J.1998; 75:359-371.
    [16]Gray RP, McIntyre H, Sheridan DS, Fry CH. Intracellular sodium and contractile function in hypertrophied human and guinea-pig myocardium [J]. Pflugers Arch.2001; 442:117-123.
    [17]Pieske B, Houser S R. [Na+]i handling in the failing human heart [J]. Cardiovasc Res,2003; 57:874-886.
    [18]Pieske B, Maier LS, Piacentino V 3rd, Weisser J, Hasenfuss G, Houser S. Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium [J]. Circulation.2002;106:447-453.
    [19]Catterall WA, Goldin AL, Waxman SG, et al. International Union of Pharmacology. ⅩⅩⅩⅨ. Compendium of Voltage-Gated Ion Channels:Sodium Channels[J]. Pharmacol Rev,2003,55 (4):575-578.
    [20]李泱,程芮.离子通道学.第2版[M].武汉:湖北科学技术出版社,2007,21-32,146.
    [21]Maltsev VA, Undrovinas A. Late sodium current in failing heart:friend or foe [J] Prog Biophys Mol Biol,2008,96(1-3):421-451.
    [22]Tan HL, Bezzina CR, Smits JPP, et al. Genetic control of sodium channel function[J]. Cardiovascular Res,2003,57:961-973.
    [23]仇晓亮李翠兰.SCN5A基因致钠通道病研究新进展[J].心血管病学进展,2008,29(2):198-201.
    [24]Hong K, Guerchicoff A, Pollevick GD, et al. Cryptic 5'splice site activation in SCN5A associated with Brugada syndrome[J]. J Mol Cell Cardiol,2005,38: 555-560.
    [25]Sehott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associated with mutations in SCN5A[J]. Nature Genetics,1999,23:20.
    [26]Groenewegen WA, Firouzi M, Bezzina CR, et al. A cardiac sodium channel mutation cosegragates with a rare connexin40 genotype in familial atrial standstill[J]. Circ Res,2003,92:14-22.
    [27]Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by Fecessige mutations in the cardiac sodium channel gene (SCN5A) [J]. J Clin Invest,2003,112:1019-1028.
    [28]Plant LD, Bowers PN, Liu Q, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans. SCN5A S1103Y[J]. J Clin Invest,2006,116:430-435.
    [29]Chen LY, Ballew JD, Herron KJ, et al. A common polymorphism in SCN5A is associated with lone atrial fibrillation[J]. Clin Pharmacol Ther,2007,81: 26-28.
    [30]Hesse M, Kondo CS, Clark RB, et al. Dilated eardiomyopathy is associated with reduced expression of the cardiac sodium channel SCN5A [J]. Cardiovase Res,2007,75:498-509.
    [31]Wit AL, Boyden PA. Triggered activity and atrial fibrillation[J]. Heart Rhythm, 2007,4:S17-S23.
    [32]Clancy CE, Tateyama M, Liu H, et al. Non-equilibrium gating in cardiac Na+ channels. An original mechanism of arrhythmia[J]. Circulation,2003,107: 2233-2237.
    [33]Bennett PB, Yazawa K, Makita N, et al. Molecular mechanism for an inherited cardiac arrhythmia[J]. Nature,1995,376:683-685.
    [34]Song Y, Shryock JC, Wu L, et al. Antagonism by ranolazine of the proarrhythmic effect of increasing late INa in guinea pig ventricular myocytes[J]. J Cardiovasc Pharmacol,2004,44:192-199.
    [35]Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart[J]. Circ Res,2005,96:535-542.
    [36]Song Y, Shryock JC, Belardinelli L. An increase of late sodium current induces delayed afterdepolarizations and sustained triggered activity in atrial myocytes[J]. Am J Physiol Heart Circ Physiol,2008,294(5):H2031-2039.
    [37]Antzelevitch C. Drug-induced spatial dispersion of repolarization[J]. Cardiol J.2008; 15(2):100-121.
    [38]Antzelevitch C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes[J]. Am J Physiol Heart Circ Physiol.2007; 293(4):H2024-H2038.
    [39]Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel{beta}4 subunit in congenital long-QT syndrome[J]. Circulation,2007, 116:134-142.
    [40]Wible BA, De Biasi M, Majumder K, Taglialatela M, Brown AM. Cloning and expression of an Inwardly Rectifying K Channel from human artrium [J]. Circ Res.1995; 76:343-350.
    [41]Kiehn J, Wible B, Ficker E, Taglialatela M, Brown AM. Cloned human inward rectifier K channel as a target for class 3 methanesulfonanilides [J]. Circ Res.1995; 77:1151-1155.
    [42]Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM. Spermine and spermidine as gating molecules for inward rectifier K channels [J]. Science. 1994; 266:1068-1072.
    [43]Wible BA, Taglialatela M, Ficker E, Brown AM. Gating of inwardly rectifying K channels localized to a single negatively charged residue [J]. Nature.1994; 371: 246-249.
    [44]Chandy KG, Gutman GA. Nomenclature for mammalian potassium channel genes [J]. Trends Pharmacol Sci.1993; 53:289-298.
    [45]Grover GJ. Protective effects of ATP-sensitive potassium-channel openers in experimental myocardial ischemia [J]. J Cardiovasc Phairmacol.1994; 24(supple4):S18-S27.
    [46]Zhang Y, Song LL, Gu SZ, Lu SG, Zhou ZN. Inhibitory effects of estradiol on rectifier and delayed rectifier K+ currents in guinea pig ventricular myocytes [J]. J Thorac Cardiovasc Surg 1999; 118(2):375-382.
    [47]Pritchett EL, Marcello SR. Azimilide for atrial fibrillation:clinical trial results and implications [J].Card Electrophysiol Rev.2003; 7(3):215-219.
    [48]龚冬梅,单宏丽,周宇宏,董德利,杨宝峰.哇巴因和乌头碱诱发豚鼠和大鼠心律失常的离子作用靶点.药学学报,2004;39(5):328-332.
    [49]杨宝峰.抗心律失常药物作用最佳靶点的研究.2003年药理学进展.2003;164-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700