用户名: 密码: 验证码:
耐辐照硅橡胶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统地研究了提高硅橡胶(包括高温硫化硅橡胶和室温硫化硅橡胶)耐辐照性能的途径,合成了一系列能提高硅橡胶耐辐照性能的化合物作抗辐射剂,并利用IR、~1HNMR等对其进行了表征;研究了不同配方的硅橡胶样品在不同氛围(真空、氮气、空气)、不同辐照剂量下交联密度和力学性能的变化;同时,合成了具有优异的耐辐照性能的高苯基含量甲基苯基硅橡胶。
     芳香族化合物(联苯、萘、菲)能有效地提高高温硫化硅橡胶的耐辐照性能,其辐射保护效果随着芳香性的增大而增大;菲由于在三者之中具有最大的芳香性而具有最好的辐射保护效果。当芳香族化合物的共轭原子数较多时,分子量较大,其熔点较高(高于硅橡胶的一段硫化温度170℃),导致在硅橡胶体系中的分散性较差,进而影响了硅橡胶的综合力学性能和其辐射保护效果。因此,对联三苯和9,10二苯基蒽虽然含有较多的共轭原子,其对硅橡胶的辐射保护效果并不及上述三者。二苯乙炔和二苯甲酮由于其独特的辐射保护机理而具有很好的辐射保护效果。这些化合物在硅橡胶中的最佳用量为6份(重量份数)。由于芳香族化合物是物理性分散在硅橡胶体系内的,其辐射保护效果为“外保护”。
     利用芳香族化合物来提高硅橡胶耐辐照性时,存在其在硅橡胶体系内的分散性和相容性的问题,因此通过化学反应把具有大共轭结构的多苯基基团引入到有机硅化合物中是一个很好的解决办法。利用四苯基环戊二烯酮和乙烯基的Diels—Alder反应合成了两种含有四苯基苯基的有机硅化合物:(四苯基苯基)三乙烯基四甲基环四硅氧烷和四甲基乙烯基(四苯基苯基)二硅氧烷。当前者作为添加剂应用于高温硫化硅橡胶时,由于其每分子内含有三个乙烯基,在辐照过程中过多的乙烯基非常容易引发辐射交联反应,因而其不能用作硅橡胶的耐辐照添加剂;而四甲基乙烯基(四苯基苯基)二硅氧烷则可以用作高温硫化硅橡胶的一种耐辐射添加剂,其最佳用量为4~6份。
     因此,为了得到具有较好辐射保护效果的化合物,所合成的化合物理应具有如下条件:
     (1)、含有较多的具有大共轭结构的稠环基团;
     (2)、具有较低的熔点,最好在常温下为液态,且与硅橡胶的相容性较好;
     (3)、体系内的乙烯基含量较少。
     根据此原则,利用四苯基环戊二烯酮、苊式环戊二烯酮和菲式环戊二烯酮与C胶上的乙烯基进行Diels—Alder反应,分别合成了三种含稠环基团的乙烯基硅油:四苯基苯基乙烯基硅油(C_1胶),苊式多苯基苯基乙烯基硅油(C_2胶)和菲式多苯基苯基乙烯基硅油(C_3胶),并根据~1HNMR谱图上不同氢原子的积分面积计算了三种胶中稠环基团和乙烯基的含量。
     把C_1胶、C_2胶或C_3胶作为一种耐辐射添加剂引入到高温硫化硅橡胶体系时,当采用过氧化物(双—2,5)硫化时,由于C_1胶、C_2胶或C_3胶侧链上的稠环基团具有大共轭结构,能够稳定橡胶硫化过程中过氧化物分解产生的自由基,进而随着含稠环基团的硅油用量的增多,硅橡胶变得不易硫化,即使增加过氧化物的用量,也不能很好地解决橡胶片“欠硫化”的问题;当利用氯铂酸作催化剂,采用加成型硫化体系时,含有C_1胶、C_2胶或C_3胶的硅橡胶样品都可以完全硫化,其最佳用量为10~14份。当C_1胶、C_2胶和C_3胶应用于二甲基二苯基硅橡胶时,由于硅橡胶体系中同时存在大量的苯基和稠环基团,二者会产生协同效应,所得样品具有较好的耐辐照性能。如在N_2中辐照后,甲基乙烯基硅橡胶的拉伸强度为5.7MPa(350kGy),3.2MPa(500kGy)和2.0MPa(850kGy);含有10份C_1胶的甲基乙烯基硅橡胶辐照后的拉伸强度分别为6.7MPa,4.5MPa和2.6MPa;含有10份C_1胶的二甲基二苯基硅橡胶的拉伸强度分别为8.7MPa,5.7MPa和3.5MPa。
     C_1胶、C_2胶和C_3胶能明显地提高硅橡胶的耐辐照性能,主要归因于乙烯基硅油侧链上稠环基团的大共轭结构。稠环基团体系内的离域的大π键能够分散辐照时体系所吸收的辐射能,使激发能在分子间或分子内进行转移,从而避免了化学键的断裂,因而材料的耐辐照性能得到大幅度地提高。另外,当把含稠环基团的乙烯基硅油作为一种抗辐射剂来引入到硅橡胶体系中时,硅油分子链上少量的乙烯基则是必不可少的官能团。当硅橡胶在硫化时,C_1胶、C_2胶或C_3胶侧链上的乙烯基能参与交联反应而形成交联网络。在这个过程中,稠环基团就会被引入到交联网络中,其辐射保护效果可以称为“内保护”。
     试验发现C_2胶具有最好的辐射保护效果。利用紫外光谱研究发现C_2胶侧链上的苊式多苯基苯基具有最大的芳香性。但是,在C_1胶、C_2胶和C_3胶三者中,C_1胶侧链上的四苯基苯基和C_3胶侧链上的菲式多苯基苯基都含有30个碳原子,而C_2胶侧链上的苊式多苯基苯基含有28个碳原子,比前面二者小2个碳原子,理应其芳香性在三者之中最小,但事实却恰恰相反。为了解释其原因,我们利用量子力学方法进行了计算,研究了三种稠环基团在B3LYP/6-31G*基组水平下优化得到的几何结构,发现苊式多苯基苯基中的萘环和中间的苯环共面,电子离域性最大,而其他二者所有苯环都不共面,发生了明显地扭曲;同时,在优化几何结构的基础上,对三种化合物进行了前线分子轨道的分析,利用密度泛函理论方法(density function theory,DFT)计算了稠环基团的最高占有轨道(HOMO)和最低未占轨道(LUMO)之间的能量差,即能隙(Eg),发现C_2胶上苊式多苯基苯基的Eg最小,解释了C_2胶具有最好的辐射保护效果的原因。
     利用甲基三氯硅烷和溴苯的格氏反应合成了甲基苯基二氯硅烷,用核磁分析证实了格氏反应中高沸点副产物为甲基二苯基氯硅烷;通过甲基苯基二氯硅烷和二甲基二氯硅烷的共水解,再裂解而制得含Me_2SiO链节的甲基苯基环硅氧烷混合物,进而利用碱胶开环聚合得到甲基苯基硅橡胶生胶;也可通过甲基苯基二氯硅烷水解所得甲基苯基环硅氧烷(D_3~(3Ph)、D_4~(4Ph_)与D_4开环聚合制得甲基苯基硅橡胶生胶。研究发现高苯基含量的甲基苯基硅橡胶(苯基含量30mol%)具有优异的耐辐照性能,这归因于体系内存在大量的具有共轭结构的苯基基团。如在经过450kGy的辐照后,其拉伸强度从6.0MPa降到5.4MPa,只降低10.0%。同时对比了甲基苯基硅橡胶和二甲基二苯基硅橡胶耐辐照性能的好坏。发现,当二者具有相同的苯基含量时,在经过高剂量的高能射线辐照后(900kGy),甲基苯基硅橡胶的耐辐照性能稍微比二甲基二苯基硅橡胶要好。这应归因于前者体系内的苯基分布比后者较为均匀。
     为了提高缩合型室温硫化硅橡胶的耐辐照性能,首次合成了两种新型的缩合型室温硫化硅橡胶交联剂:(苊式多苯基苯基)三乙氧基硅烷和(菲式多苯基苯基)三乙氧基硅烷。其熔点分别为:49℃和76℃,并通过核磁、红外谱图进行了表征。当(苊式多苯基苯基)三乙氧基硅烷和(菲式多苯基苯基)三乙氧基硅烷用作缩合型RTV硅橡胶的交联剂时,由于二者所含的稠环基团的空间位阻较大,因而样品硫化速度较慢。为了加快RTV胶的硫化速度,可提高温度促进样品的硫化(50~60℃)。研究发现,交联剂(苊式多苯基苯基)三乙氧基硅烷和(菲式多苯基苯基)三乙氧基硅烷能够有效地提高硅橡胶的耐辐照性能,其最佳用量为14~18份。
In this paper, ways to improve the radiation resistance of silicone rubber (including HTV and RTV silicone rubber) are studied systematically. And a series of compounds, characterized by IR and HNMR analysis, are synthesized and used as anti-rays to improve silicone rubber's radiation resistance. The changes of crosslinking density and mechanical properties under different atmosphere (in vacuum, N_2 and air) and different radiation dose are studied. Moreover, polymethylphenylsilicone rubber with excellent radiation resistance is also synthesized.
     Aromatic compounds (such as biphenyl,.naphthalene and phenanthrene) can be used as additives to improve HTV silicone rubber's radiation resistance. The bigger the aromaticity, the better the radiation protection effects are. Phenanthrene has the best radiation protection effects among them. When the aromatic compounds contain more conjugated atoms, their molecular weight becomes bigger and their melting points become higher. Once the melting points are higher than 170℃(the first cure temperature of silicone rubber), their dispersion in rubber system becomes worse, which affects silicone rubber's mechanical properties and the radiation protection effects of aromatic additives. Thus the radiation protection effects of p-terphenyl and 9,10-diphenylanthracene are worse than biphenyl, naphthalene and phenanthrene in spite of their bigger conjugated structure. Diphenylacetylene and benzophenone have good radiation protection effects due to their special radiation protection mechanism. And the suitable amount of aromatic compounds used in silicone rubber is 6 phr (weight parts). Since aromatic compounds are dispersed physically in rubber system, their radiation protection effects can be characterized as "external protection".
     When aromatic compounds are used to improve silicone rubber's radiation resistance, there exist two problems: their dispersion and compatibility in the rubber system. Introducing multi-phenylphenyl groups into silicone compound seems to be a good way to solve the problems. By the Diels-Alder reaction between tetraphenylcyclopentadienone and vinyl groups, two compounds containing tetraphenylphenyl groups are synthesized: (tetraphenylphenyl) trivinyltetramethyl cyclotetrasiloxane and tetramethylvinyl (tetraphenylphenyl) disiloxane. When the former is used in HTV silicone rubber, many vinyl groups are also introduced into rubber system, which can be easily broken by irradiation and then induce radiation crosslinking reactions. So, (tetraphenylphenyl) trivinyltetramethyl cyclotetrasiloxane can not be used to improve rubber's radiation resistance. While tetramethylvinyl (tetraphenylphenyl) disiloxane can be used to improve rubber's radiation resistance, and its suitable amount used is 4-6 phr.
     Therefore, in order to obtain compounds with good radiation protection effects, the compounds should:
     (1) Contain condensed aromatics with big conjugated structure;
     (2) Have lower melting point and have good compatibility with silicone rubber,
     (3) Contain less vinyl groups.
     So, by the Diels-Alder reaction of tetraphenylcyclopentadienone, acenaphthenecyclone and benzophenanthrenecyclone with the vinyl groups in C gum, three kinds of polymethylvinylsilicone oil with condensed aromatics are synthesized respectively: polymethylvinylsilicone oil with tetraphenylphenyl groups (called C_1 gum for short), polymethylvinylsilicone oil with acenaphthenyl groups (C_2 gum) and polymethylvinylsilicone oil with benzophenanthrene groups (C3 gum). And the content of vinyl groups and condensed aromatics in C_1 gum, C_2 gum and C_3 gum is calculated by ~1HNMR analysis according to the integral value of various H atoms.
     C_1 gum, C_2 gum and C_3 gum are used as additives in silicone rubber to improve the radiation resistance. When vulcanizates are cured by peroxide (DBPMH), the condensed aromatics with big conjugated structure have stabilization on radicals forming during decomposition of initiator and inhibit the crosslinking reactions of silicone rubber, causing the vulcanizates to be in a state of "lack of cure". Even increasing the amount of peroxide used, vulcanizates with better vulcanization characteristics are not easy to be obtained. When vulcanizates are cured by hydrosilylation, which is catalysed by chloroplatinic acid catalyst, vulcanizates can be cured adequately when C_1 gum, C_2 gum and C_3 gum are used. And their suitable amount used is 10-14 phr. When C_1 gum, C_2 gum and C3 gum are used in poly(dimethyl-diphenyl) silicone rubber, both the condensed aromatics and phenyl groups can provide radiation protection effects to silicone rubber with Synergistic effect. For example, after irradiated in N_2, the tensile strength of polymethylvinyl silicone rubber is 5.7 MPa (350 kGy), 3.2 MPa (500 kGy) and 2.0 MPa (850 kGy); the tensile strength of polymethylvinyl silicone rubber containing 10 phr C_1 gum is 6.7 MPa, 4.5 MPa and 2.6 MPa respectively; the tensile strength of poly(dimethyl-diphenyl) silicone rubber containing 10 phr C_1 gum is 8.7 MPa, 5.7 MPa and 3.5 MPa respectively.
     The reason that C_1 gum, C_2 gum and C_3 gum can obviously improve silicone rubber's radiation resistance is attributed to the condensed aromatics in polymethylvinyl silicone oil. When samples are irradiated, the absorbed energy could dissipate in the large conjugated structure of condensed aromatics before bond rupture occurs. So the radiation resistance is improved greatly. In addition, the vinyl groups in silicone oil are necessary. During the curing of silicone rubber, condensed aromatics could be introduced into the molecular network of silicone rubber by the reaction of vinyl groups in C_1 gum, C_2 gum and C_3 gum. So, their radiation protection effects could be characterized as "internal protection".
     According to the experiment results, C_2 gum has the best radiation protection effects among three gums. From the UV spectra, it can be found that the aromaticity of acenaphthenyl groups in C_2 gum is the largest. But there are 30 carbon atoms in the conjugated structure of condensed aromatics in C_1 gum and C_3 gum, while 28 carbon atoms in acenaphthenyl groups in C_2 gum. So, the aromaticity of acenaphthenyl groups in C_2 gum should be the least. In order to explain the reason, quantum chemical calculation is utilized. The optimized geometrical structrures of condensed aromatics in C_1 gum, C_2 gum and C_3 gum are calculated at B3LYP/6-31G* levels. We find that some phenyl groups in acenaphthenyl groups are coplanar and have the largest conjugated structure. While all the phenyl groups in tetraphenylphenyl groups or benzophenanthrene groups are not coplanar. At the same time, by density function theory (DFT), the electronic energy gap (Eg) between HOMO and LUMO frontier molecular orbitals of condensed aromatics are calculated and the Eg of acenaphthenyl groups in C_2 gum is the smallest, which explains the reason why C_2 gum has the best radiation protection effects.
     Methylphenyldichlorosilane is synthesized by Grignard reaction between methyltrichlorosiliane with bromobenzene. And the by-product with high boiling point in Grignard reaction is proved as methyldiphenylchlorosilane by ~1HNMR analysis. By the hydrolyzation of MePhSiCl_2 and Me_2SiCl_2, polymethylphenylsilicone rubber can be obtained. And the rubber containing 30 mol% phenyl groups has excellent radiation resistance, which is attributed to the phenyl groups in rubber system. For example, after 450 kGy radiation, the tensile strength decreased from 6.0 MPa to 5.4 MPa, only decreased 10%. When the content of phenyl groups in rubber system is the same, the radiation resistance of polymethylphenylsilicone rubber is a little better than that of poly(dimethyl-diphenyl)silicone rubber after higher dose radiation (900 kGy). This is attributed to the distribution of phenyl groups in rubber system.
     In order to improve the radiation resistance of condensed-type RTV silicone rubber, two kinds of crosslinking agents are synthesized successfully: triethoxysilane with acenaphthenyl groups (m.p. 49℃) and triethoxysilane with benzophenanthrene groups (m.p. 76℃), characterized by IR and ~1HNMR analysis. When they are used as crosslinking agent in condensed-type RTV silicone rubber, the curing speed can be accelerated by improving the curing temperature (50-60℃). After radiation, the results show that they can effectively improve the radiation resistance of RTV silicone rubber and their suitable amount used is 14-18 phr.
引文
1.李克顺,日本信越公司部份硅橡胶牌号、性能及用途.化工新型材料,1994(10):p.32-39.
    2. Zhang Jie, Z. S., Feng Shengyu, Jiang Zhigang, The correlativity of positive temperature coefficient effects in conductive silicone rubber. Polymer International, 2005.54(8): p. 1175-1179.
    3. Zhang Jie, F. S., Wang Xinqiang, DC current voltage characteristics of silicone rubber filled with conductive carbon black. Journal of Applied Polymer Science, 2004. 94(2): p. 587-592.
    4. Zhang Jie, F. S., Effect of crosslinking on the conductivity of conductive silicone rubber. Journal of Applied Polymer Science, 2003.89(13): p. 3471-3475.
    5. Zhang Jie, F. S., Ma Qingyu, Kinetics of the thermal degradation and thermal stability of conductive silicone rubber filled with conductive carbon black. Journal of Applied Polymer Science, 2003.89(6): p. 1548-1554.
    6. Zhang Jie, F. S., Temperature effects of electrical resistivity of conductive silicone rubber filled with carbon blacks. Journal of Applied Polymer Science, 2003.90(14): p. 3889-3895.
    7. Qiuhong Mu, S. F., Guangzhao Diao, Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 2007: p. 125-130.
    8.姜志钢,冯圣玉,聚硅氧烷辐射效应研究进展.化学进展,2005.17(6):p.1096-1101.
    9.王惠明,巫松祯,r辐照对聚合物电导性能的影响.西安交通大学学报,1995.29(3):p.58-62.
    10.哈鸿飞,吴季兰,高分子辐射化学——原理及应用.2002,北京:北京大学出版社.3-6.
    11.张曼维,辐射化学入门.1993,合肥:中国科学技术大学出版社.8-11.
    12.王贵一,橡胶耐辐射性能的测定.特种橡胶制品,2000.21(4):p.50-54.
    13.陈用烈,曾兆华,杨建文,辐射固化材料及其应用.2003,北京:化学工业出版社.400-401.
    14.斯沃罗,陈文绣,贾海顺,包华影,辐射化学导论.1985:原子能出版社.
    15.刘锐硕士论文,光纤抗辐照特性的研究.1999:p.1-11.
    16.哈鸿飞,吴季兰,高分子辐射化学——原理与应用.2002,北京:北京大学出版社.7-11.
    17.哈鸿飞,吴季兰,高分子辐射化学——原理及应用.2002,合肥:中国科学技术大学出版社.22.
    18. Wundirch, K., A review of raidation resistance for plastic and elastomeric materials. Radiation Physics and Chemistry, 1985.24(5,6): p. 503-510.
    19. Charleaby, A., Nature, 1954. 173: p. 679-680.
    20. Charlesby, A., Proc. R. Soc., 1955.A230: p. 120-135.
    21. Warrick, E. L., Effects of radiation on organopolysiloxanes. Ind. Engng. Chem., 1955.47(11): p. 2388-2393.
    22. Traeger, R. K., Effect of r-radiation on the dynamic mechanical properties of silicone rubbers. Journal of Applied Polymer Science, 1966. 10: p. 535-550.
    23. F. Hanisch, P. M., S. Okada, H Schonbacher, Effects of radiation types and dose rates on selected cable-insulating materials. Radiation Physics and Chemistry, 1987. 30(1): p. 1-9.
    24.胡文军,张凯,陈晓丽,郭积华,中子辐照对硅橡胶泡沫材料性能的影响.橡胶工业,1999.46:p.206-268.
    25.黄玮,傅衣备,王朝阳,许云书,刑丕峰,王和义,甲基乙烯基硅橡胶泡沫的辐射效应.辐射研究与辐射工艺学报,2001.19(2):p.99-104.
    26.黄玮,傅依备,刑丕峰,王和义,r辐射场中硅橡胶泡沫的辐射效应研究.原子能科学技术,2002.36(6):p.503-507.
    27.黄纬,傅依备,许云书,卞直上,何美英,两种硅泡沫材料耐电子束辐射性能的研究.高分子材料科学与工程,2002.18(3):p.102-105.
    28. Wei Huang, Y. F., Chaoyang Wang, Yunshu Xu, Zhishang Bian, A study on radiation resistance of siloxane foam containing phenyl. Radiation Physics and Chemistry, 2002.64: p. 229-233.
    29.陈欣方,唐小辉,关洪涛,聚合物的强化辐射交联.辐射研究与辐射工艺学报,1985.3(3):p.8.
    30.周其凤,胡汉杰,高分子化学.2001,北京:化学工业出版社.46-47.
    31. Sania Akhtar, P. P. D., Sadhan K. DE, Tensile Failure of r-ray irradiated blends of high-density polyethylene and natural rubber. Journal of Applied Polymer Science, 1986. 32: p. 4169-4183.
    32. I. Banik, K. A., Bhowmick, Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiation Physics and Chemistry, 2000. 58: p. 293-298.
    33. G. Lopitaux, X. C., F. Boursereau, G. Larnac, Immediate and long-term effects of electron beam in-adiation on nitrile-butadiene rubber. Nuclear Instruments and Methods in Physics Research B, 2003.208: p. 500-504.
    34. I. Banik, K. A., Bhowmick, Influence of electron beam irradiation on the mechanical properties and crosslinking of fluorocarbon elastomer. Radiation Physics and Chemistry, 1999. 54: p. 135-142.
    35. M. C. S. Perera, C. C. R., Radiation degradation of MG rubber studied by dynamic mechanical analysis and solid state NMR. Polymer, 2000. 41: p. 323-334.
    36.黄玮,傅衣备,许云书,聚合物辐射老化降解效应研究进展.核技术,2002.25(1):p.65-70.
    37. T. Seguchi, S. H., K. Arakawa, N. Hayakawa, W. Kawakami, I. Kuriyama, Radiation induced oxidative degradation of polymer-Ⅰ. Radiation Physics and Chemistry, 1981.17: p. 195-201.
    38. T. Seguchi, K. A., M. Ito, N. Hayakawa, S. Machi, Radiation induced oxidative degradation of polymers-Ⅱ. Radiation Physics and Chemistry, 1983. 21(6): p. 495-501.
    39. B. Balazs, S. D., R. Maxwell, E. kokko, T. Smith, Techniques for the analysis of aging signatures of silica-filled siloxanes. Polymer Degradation and Stability, 2003. 82: p. 187-191.
    40.宋襄玉,张秀化,杨德才,r—射线辐照对HIPS/SBS共混物结构与性能的影响.应用化学,1994.11(1):p.111-112.
    41.罗世凯,傅依备,罗顺火,郝莹,龙新平,黄奕刚,陈曙东,核辐射对氟树脂F2313力学性能的影响.高分子材料科学与工程,2002.18(3):p.106-109.
    42. T. Sasuga, N. H., K. Yoshida, M. Hagiwara, Degradation in tensile properties of aromatic polymers by electron beam irradiation. Polymer, 1985.26: p. 1039-1045.
    43. F. Yoshii, A. S., D. Binh, K. Makuuchi, S. Nishimoto, Radiation-resistant polypropylene improved by a compatibilizer. Polymer Degradation and Stability, 1998. 60: p. 393-399.
    44. C. T. Ratnam, M. N., A. Baharin, K. Zaman, The effect of electron beam irradiation on the tensile and dynamic mechanical properties of epoxidized natural rubber. European Polymer Journal, 2001.37: p. 1667-1676.
    45.张利华,杜娜,聚合物辐射交联机理与其结构和运动多重性.辐射研究与辐射工艺学报,2004.22(3):p.129-138.
    46.梁恕湘,周式毅,佟世维,硅橡胶r—辐射效应对其结构—流变性能的影响.有机硅材料及应用,1995(3):p.11-13.
    47. Huiliang Wang, W. C., Effect of Penta- and tetramethyl HALS on the radiation resistance of polypropylene. Journal of Applied Polymer Science, 1998. 69: p. 2649-2656.
    48. Huiliang Wang, W. C., The effect of grafted TMPM on the radiation resistance of polypropylene. Journal of Applied Polymer Science, 1999. 74: p. 2150-2157.
    49.汪辉亮,彭.,陈文琇,r辐照下HALS与抗氧剂在PP中的并用效应及机理研究Ⅱ.r辐照下HALS与抗氧剂在PP中的并用机理.高分子材料科学与工程,2002.18(4):p.143-146.
    50.汪辉亮,彭.,陈文琇,r辐照下HALS与抗氧剂在PP中的并用效应及机理研究Ⅰ.r辐照下HALS与抗氧剂在PP中的并用效应.高分子材料科学与工程,2002.18(3):p.136-139.
    51.赵文伟,徐俊,孙家珍,共混聚合物辐射效应研究的进展.高分子通报,1992(5):p.129-137.
    52. Indranil Banik, A. K. B., Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiation Physics and Chemistry, 2000. 58: p. 293-298.
    53. Sh. Perrin, H.S., M. Tavlet, R. Widler, Evaluation of the radiation resistance of electrical insulation materials. Nuclear Instrments and Methods in Physics Research Bq, 2002. 198: p. 77-82.
    54. C. G. Delides, I. W. S., Effect of r-irradiation on chemically crosslinked poly(dimethyl siloxane). Polymer, 1977. 18: p. 1191-1193.
    55. Chapiro, A., Chemical modifications in irradiated polymers. Nuclear Instrments and Methods in Physics Research Bq, 1955.32: p. 111-114.
    56.褚风民,聚合物辐射效应的应用.橡塑资源利用,2005(4):p.19-23.
    57. Bopp C. D., S. O., Radiation stability of plastics and elastomers. Nucleonics, 1955. 13(7): p. 28-33.
    58. Belova V. V., P. N. N., Papova A. I., Serenkov V. I., Radiolysis of polysiloxane resin. Plast. Massy,, 1971.3: p. 120-135.
    59. St. Pierre L. E., D., H. A., Bueche A. M., Swelling and elasticity of irradiated polydimethylsiloxanes. J. Polym. Sci., 1959. 36: p. 105-111.
    60. Folland R., C. A., The use of pulsed NMR to follow radiation effects in long-chain polymers. Radiation Physics and Chemistry, 1980. 15: p. 393.
    61. O'Donnell J., S. D., Principles of radiation chemistry. 1970, London: Edward Arnold Publishers Ltd.
    62. Rajram M., F. E. J., Effects of radiation on the properties of low thermal expansion coefficient materials: a review. Journal of non-crystalline solids, 1989. 108: p. 1.
    63. Bohm G. G. A., T. J. O., The radiation chemistry of elastomers and its industrial applicatioins. Rubber Chemistry and Technology, 1982. 55: p. 575.
    64. Kashiwabara H., S. S., Radiation-induced oxidation of plastics. 1992: Hanser Publishers. 221.
    65. A., M. F., Radiation physics and chemistry of polymers. 1975, New York: Wiley. 240.
    66. F. Ranogajec, M. M. -M., Stability and stabilization of polyers under irradiation. IAEA-TECDOC-1063, Vienna, 1999: p. 79.
    67. Cholli A. L., R.W.M., Koenig J. L., Investigation of the effect of gamma-radiation on high-density polyethylene by solid-state magic-angle 13CNMR spectroscopy. Appl. Spectrosc., 1987.41: p. 1418-1421.
    68. Banik I., D. S. K., Chaki T. K., Bhowmick A. K., Electron beam induced structural modification of a fluorocarbon elastomer in the presence of polyfunctional monomers. Polymer, 1999. 40: p. 447.
    69. Banik I., B. A. K., Influence of electron beam irradiation on the mechanical properties and crosslinking of fluorocarbon elastomer. Radiation Physics and Chemistry, 1999. 54: p. 135.
    70. Banik I., B.A.K., Tikku V. K., Majali A. B., Deshpande R. S., Effect of electron beam on the structural modification of the copolymedc and the terpolymedc fluorocarbon rubbers. Radiation Physics and Chemistry, 1998. 51: p. 195.
    71. Dutta S. K., C. T. K., Bhowmick A. K., Electron beam initiated grafting and crosslinking of ethylene vinyl acetate copolymer. Part Ⅰ: structural characterization. Rubber Chemistry and Technology, 1996. 69: p. 120.
    72. Chandra R., S. V., Changes in physical properties and molecular structure of butyl rubber during r-irradiation. Polymer, 1982. 23(11): p. 457.
    73.陈金周,屈凌波,,PF尼龙的辐射交联.高分子材料科学与工程,1994.10(4):p.92.
    74.王铭钧,殷明,石晓燕,聚氯乙烯辐射交联凝胶生成动力学研究.高分子材料科学与工程,1989.5(1):p.74.
    75.方月娥,李希明,史天义,辐射硫化高强度硅橡胶研究.辐射研究与辐射工艺学报,1990.8(4):p.214.
    76. Seguchi T., H. S., Arakawa K.,, Radiation induced oxidative, degradation of polymers Ⅰ: Oxidation region in polymer films irradiated in oxygen under pressure. Radiation Physics and Chemistry, 1981.17(2): p. 195-201.
    77. Banik I., D. S. K., Chaki T. K., Bhowmick A. K.,, Electron beam induced structural modification of fluorocarbon elastomer in presence of polyfunctional monomers. Polymer, 1997. 39.
    78. Bendedy A. S., B. B. S., Radiation crosslinked polypropylene: physical and dielectric properties. Journal of Applied Polymer Science, 1969. 15: p. 666.
    79. Gillen K. T., C. R. L., Occurrence and implications of radiation dese-rate effect for material ageing studies. Radiation Physics and Chemistry, 1981.18: p. 679.
    80. Nethsinghe L. P., G. M., Structural-property relationships of irradiation crosslinked flexible PVC: 1. Structural investigations. Polymer, 1988.29: p. 1935.
    81. Sasuga T., H. N., Yoshida K.,, Electron beam irradiation effects on mechanical relaxation of aromatic polysulfones. Polymer, 1987.28: p. 236.
    82. Seguchi T., A. K., Hayakawa N., Machi S.,, Radiation induced oxidative degradation of polymer—Ⅳ Dose rate effects on chemical and mechanical properties. Radiation Physics and Chemistry, 1981.18: p. 671.
    83. Youssef H. A., Y. F., Makuchi K., Millig A. A. E. I., Aziz M. M. A.,, Physical properties of SBR radiation vulcanized with functional monomers. Macromolecular Reports A 1993.90: p. 315.
    84. Wu S., G. S., Fourecer R. A., et al.,, The effect of r-irradiation of the eletrical properties of epoxy resin system. J. Uncler Materials, 1988. 151: p. 141-160.
    85. P. Aiamsen, U. P., S. Sangribsub, D. Polpanich, P. Tangboriboonrat, Toughness and morphology of radiation-crosslinked natural rubber modified polystyrene. Polymer International, 2003.52(1198-1202).
    86. M. Frounchi, S. D., F. Panahinia,, Comparison between electron-beam and chemical crosslinking of silicone rubber. Nuclear Instrments and Methods in Physics Research B, 2006. 243: p. 354-358.
    87. Di Mingwei, H. S., Li Ruiqi, Yang Dezhuang, Radiation effect of 150 keV protons on methyl silicone robber reinforced with MQ silicone resin. Nuclear Instrments and Methods in Physics Research B, 2006. 248: p. 31-36.
    88. R. Y. Wang, H. F. H., Y. G. Wang,, Study on oxidation of polymers treated by high let radiation,. Radiation Physics and Chemistry, 1998.52: p. 251.
    89. G. Martinez-Barrera, H. L., V. M. Castano, R. Rodriguez, Studies on the rubber phase stability in gamma irradiated polystyrene-SBR blends by using FT-IR and Raman spectroscopy. Radiation Physics and Chemistry, 2004. 69: p. 155-162.
    90. Yohsuke Morita, M. H., Noboru Kasai, Protection effects of condensed bromoacenaphthylene on radiation deterioration of ethylene-propylene-diene rubber. Journal of Applied Polymer Science, 1982.27: p. 3569-3576.
    91. Clough R., G. K., Campan J. L., Gaussens "G., Schonbacher H., Seguchi T., Wilski H., Machi S., Accelerated-aging tests for predicting radiation degradation of organic materials. Nucl. Safety, 1984.25: p. 238.
    92. Seguchi T., A. K., Ito M., Hayakawa N., Machi S., Radiation induced oxidative degradation of polymers-Ⅲ. Radiation Physics and Chemistry, 1983.21: p. 495.
    93. M. Celina, K. T. G., R. L. Clough, Stability and stabilization of polymers under irradiation. IAEA-TECDOC-1063, Vienna, 1999: p. 79.
    94. Wang R. Y., H. H. F., Wang Y. F., Zhang W. J., Study on oxidation of polymer treated by high let radiation. Radiation Physics and Chemistry, 1998. 52: p. 251.
    95. Aliev, R., Effect of dose rate and oxygen on radiation crosslinking of silica filled fluorosilicone rubber. Radiation Physics and Chemistry, 1999. 56: p. 347-352.
    96. Alam, T. M., Clenia M. Wheeler D. R., Assink R. A., Clough R. L., Gillen K. T., Using 17OHMR spectroscopy to investigate polymer degradation. Polym. News, 1999. 24: p. 186-191.
    97. Alam, T. M., Celina M., Assink R. A., Gillen K. T., Clough R. L., 17ONMR investigations of oxidative degradation in polymers. Polym. Prepr., 1997. 38: p. 784-785.
    98. Alam T. M., C. M., Assink R. A., Clough R. L., Gillen K. T., 17ONMR investigation of oxidative degradation in polymers under r-irradiation. Radiation Physics and Chemistry, 2001.60: p. 121-127.
    99. Bovey F. A., S.F.C., Cheng H. N., 13CNMR observation of the effects of high energy radiation and oxidation on polyethylene and model paraffins. Adv. Chem. Scr., 1978. 169: p. 133-141.
    100. Miller, A. A., Radiation chemistry of polymethylsiloxane. Ⅰ. Crosslinking and gas yields. Journal of American Chemical Sociaty, 1960. 82: p. 3519-3523.
    101. Miller, A. A., Radiation chemistry of polydimethylsiloxane. Ⅱ. Effects of Additives. Journal of American Chemical Sociaty, 1961.83: p. 31-36.
    102. Alam, T. M., 17ONMR investigation of radiolytic hydrolysis in polysiloxane composites. Radiation Physics and Chemistry, 2001.62: p. 145-152.
    103.于旻,罗云霞,宋法江,隋雪梅,杨连军,方天如,吸收剂量对二甲基 硅橡胶于甲基乙烯基硅橡胶分子量和凝胶含量的影响.合成橡胶工业,1994.17(3):p.153-156.
    104. H. Menhofer, J. Z., H. Heusinger, The influence of irradiation temperature and oxygen on crosslink formation and scgrncnt mobility in gamma-irradiated polydimethylsiloxanes. Radiation Physics and Chemistry, 1989. 33(6): p. 561-566.
    105.冯圣玉,张洁,李美江,朱庆增,有机硅高分子及其应用.2004,北京:化学工业出版社.83-86.
    106. V. V. Strelko, L.N.G., Z. Z. Uysotskii,, Ukr Khim Zh,, 1963.29: p. 363-368.
    107. A. Chien, R. M., D. Chambers, B. Balazs, J. JeMay, Characterization of radiaiton-induced aging in silica-reinforced polysiloxanc composites. Radiation Physics and Chemistry, 2000. 59: p. 493-500.
    108. R. S. Maxwell, B. B., NMR measurements of residual dipolar couplings for lifetime assessments in r-irradiatied silica-PDMS composite materials. Nuclear Instruments and Methods in Physics Research B, 2003. 208: p. 199-203.
    109. I. Stevenson, L. D., C. Gauthicr, L. Arambourg, J. Davcnas, G. Vigier, Influence of SiO2 on the irradiation ageing of silicone rubbers. Polymer, 2001.42: p. 9287-9292.
    110. J. Davenas, I. S., N. Celette, S. Cambon, J. L. Gardettc, A. Rivaton, L. Vignoud, Stability of polymers under ionising radiation: The many faces of radiation interactions with polymers. Nuclear Instruments and Methods in Physics Research B, 2002. 191: p. 653-661.
    111.吕俊怀,吴可,马季涛,姚康德,辐照交联聚甲基乙烯基硅氧烷的ESR谱研究.高等学校化学学报,1990.11(1):p.66-70.
    112.李法华,耐辐照苯撑硅橡胶.特种橡胶制品,2001.22(1):p.13-18.
    113. C. C. Bopp, O. S., Nucleonics, 1955. 13(7): p. 28-33.
    114. Warrick, E. L., Effects of radiation on organopolysiloxanes. Ind. Eng. Chem., 1955.47: p. 2388-2393.
    115.张丽新,杨士勤,何世禹,质子辐照与热循环联合作用对空间级硅橡胶损伤效应的研究.中国胶粘剂,2002.11(3):p.7-10.
    116.张丽新,杨士勤,何世禹,质子辐照空间级硅橡胶的正电子淹没寿命谱研究.强激光与粒子束,2002.14(4):p.629-632.
    117.谭必恩,朱波,张廉正,曾一兵,潘慧铭,r射线对加成型硅橡胶力学性能的影响.特种橡胶制品,2001.22(3):p.4-6.
    118. Tsumeo Sasuga, N. H., Kenzo Yoshida, Miyuki Hagiwara, Degradation in tensile properties of aromatic polymers by electron beam irradiation. Polymer, 1985. 26: p. 1041-1045.
    119. Zenldewicz, M., Effects of electron-beam irradiation on some mechanical properties of polymer films. Radiation Physics and Chemistry, 2004. 69: p. 373-378.
    120. Sasuga T., K. H., Seguchi T.,, High energy ion irradiation effects on polymer material-changes in mechanical properties of PE, PSF and PES. POlymer, 1999. 40: p. 5095-5112.
    121. Zenkiewicz, M., Investigation of tensile properties and tear resistance of polypropylene film modified by irradiation. Pollmery, 2003.48(1): p. 57-59.
    122. Waldir Pedro Ferro, L. G., Andrade e Silva, Ionizing radiation effect studies on polyamide 6.6 properties,. Radiation Physics and Chemistry, 2004. 71: p. 267-269.
    123. Yah Aoshuang, G. Z., Li Li, Zhai Ying, Zhou Peng, The mechanical properties of radiation-vulcanized NR/BR blending system. Radiation Physics and Chemistry, 2002. 63: p. 497-500.
    124. W. G. Jeffrey, S.S.D., D. L. Joseph,, Low earth orbit resistant siloxane copolymers,. Journal of Applied Polymer Science, 1996. 60q: p. 591.
    125. Basfar, A. A., Hardness measurements of silicone rubber and polyurethane rubber cured by ionizing radiation. Radiation Physics and Chemistry, 1997. 50(6): p. 607-610.
    126. Robert S. Maxwell, S.C.C., David Solyom, Rebecca Cohenour, Radiation-induced cross-linking in a silica-filled silicone elastomer as investigated by multiple quantum 1HNMR. Macromolecules, 2005.38: p. 7026-7032.
    127. R. S. Maxwell, R. C., W. Sung, D. Solyom, M. Patel, The effects of r-radiation on the thermal, mechanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber. Polymer Degradation and Stability, 2003.80: p. 443-450.
    128. R. Folland, A. C., Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes. Radiation Physics and Chemistry, 1977. 10: p. 61-68.
    129. Maxwell R. S., B. B., Residual dipolar coupling for the assessment of corss-link density changes in gamma-irradiated silica-PDMS composite materials. J. Chem. Phys., 2002. 116(23): p. 10492-10502.
    130. Hill D. J. T., P. C.M.L., Whittaker A. K., Hunt S. M., The radiation chemistry of poly(dimethylsiloxane)q. Macromol. Symp., 2000. 195: p. 95-102.
    131. D. J. T. Hill, M.L.C., Preston, Andrew, Whittaker, NMR study of the gamma radiolysis of poly(dimethyl siloxane) under vacuum at 303 K. Polymer, 2002. 43q: p. 1051-1059.
    132. D.J.T. Hill, M.L.C., Preston, J. Daniel, Salisbury, K. Andrew, Whittaker, Molecular weight changes and scission anti crosslinking in poly(dimethyl siloxane) on gamma radiolysis. Radiation Physics and Chemistry, 2001.62: p. 11-17.
    133. C. G. Delides, I.W.S., The protcetive effect of phenyl group on the crosslinking of irradiated dimethylphenylsiloxane. Radiation Physics and Chemistry, 1980. 16: p. 345-352.
    134. C. G. Delides, I.W.S., Does effects in the crosslinking of irradiated polysiloxane. Radiation Physics and Chemistry, 1977. 10: p. 379-385.
    135. Ei-Sayed A. Hegazy, T.S., M. Nishii, T. Seguchi, Irradiation effects on aromatic polymers: 1. Gas evolution by gamma irradiation. Polymer, 1992. 33(14): p. 2897-2903.
    136. Hegazy, E.-S.A., Sasuga T., Nishii M., Seguchi T.,, Irradiation effects on aromatic polymers: gas evolution by r irradiation. Polymer, 1992. 33(14): p. 2897-2903.
    137. Evans D., C. M., Irradiation of plastics: damage and gas evolution. MRS Bull., 1997.22(4): p. 36-40.
    138. M. G. Ormerod, A. C., Polymer, 1963.4: p. 459-470.
    139. V. V. Belova, N.N.P., A. I. Papova, Plast. Massy,, 1971.3: p. 24-26.
    140. M. Patel, J.J.M., A. R. Skinner, S. J. Powell, P. F. Smith, Volatile evolution from room temperature cured polysiloxane rubber induced by irradiation with He2+ ions. Polymer Testing 2003.22: p. 923-928.
    141.哈鸿飞,吴季兰,高分子辐射化学——原理及应用.2002,北京:北京大学出版社.17.
    142. Charlesby A., G.T.G., Radiation protection in irradiated dimethysiloxane polymers. Proc. Roy. Soc. London A, 1963. 273(117-132).
    143.王铭钧,陈永禄,核技术,1983.1:p.17-22.
    144.哈鸿飞,吴季兰,高分子辐射化学——原理及应用.2002,北京:北京大学出版社.75-76.
    145. Clough, R. L., High-energy radiation and polymers: A review of commercial processes and emerging applications. Nuclear Instrument and Methods in Physics Research B, 2001.185: p. 8-33.
    146.张曼维,辐射化学入门.1993,合肥:中国科学技术大学出版社.141-142.
    147. A. Charlesby, R. F., The use of pulsed NMR to follow radiation effects in long chain polymers. Radiation Physics and Chemistry, 1980. 15: p. 393-403.
    148. Ruller J., F. E.J., The effect of gamma-irradiation on the density of various types of silica. Journal of non-crystalline solids, 1991. 136: p. 163.
    149. A., C., Radiation chemistry of polymers. 1987, New York: VCH Publishers. 461.
    150. L. X. Zhang, S.Y.H., Zh. Xu, Q. Wei,, Damage effects and mechanisms of proton irradiation on methyl silicoine rubber. Mater. Chem. Phys., 2004. 83: p. 255.
    151. Jun Kumagai, K.-I.O., Hiroshi Yoshida, Tsuneki Ichikawa, Effect of ionizing radiation on polysilane. Radiation Physics and Chemistry, 1996.47(4): p. 631-636.
    152. Charlesby, A., The effects of ionizing radiation on polymers.. Irradiation effects on polymers. 1991, London: Elsevier Applied Science. 39-78.
    153. L. E. Pierre, H.A.D., Journal of Physics and Chemistry, 1960. 64: p. 1060-1062.
    154. R. K. Traeger, T.T.C., Journal of Applied Polymer Science, 1966. 10: p. 535-550.
    155. Burlant W., N. J., Serment V., r-radiation of p-substituted polystyrenes. J. Polym. Sci., 1962. 58: p. 491.
    156.王庚超,刘飚,史宇正,方斌,张志平,60Co γ射线辐照对PTMPS-DPS共聚物形态结构及性能的影响.辐射研究与辐射工艺学报,2000.18(4):p.241-245.
    157.王富良,苯撑硅橡胶.原材料,1996(3):p.14-15.
    158.堪永钟,张国定,低地球轨道环境对材料的影响.宇航材料工艺,2003(1):p.1-5.
    159. E. Grossman, I. G., Space enviroment effects on polymers in low earth orbit. Nuclear Instrument and Methods in Physics Research B, 2003.208: p. 48-57.
    160. George P. E., D. H. W., Low earth, orbit effects on organic composites flown on the long duration exposure facility. Journal of Advanced Materials, 1994. 25(3): p. 10-19.
    161.郭守学,辛振祥,橡胶配合加工技术讲座 第9讲 硅橡胶(续完).橡胶工业,1999.46(4):p.249-256.
    162.郭守学,辛振祥,橡胶配合加工技术讲座 第9讲 硅橡胶.橡胶工业,1999.46(3):p.183-189.
    163.第六分册下册.橡胶工业手册.1979,北京:化学工业出版社.67,80 92.
    164.中和人民共和国国家标准.GB531-83,GB528-82,GB530-81.
    165.复旦大学化学系,高分子实验技术.1983,上海:复旦大学出版社.60-65.
    166. Flory, P. J., Principles of Polymer Chemistry. 1953, New York: Ithaca. 576.
    167. Shengyu Feng, P. J., Shuqi Yu, Shengyou Zhang, Jianhua Chen, Zuodong Du, Effects of some phenylethynylsilicon compounds on heat-curable silicone rubber-Ⅳ. Tetraphenylethynylsilane. European Polymer Journal, 1995.31 (3): p. 309-311.
    168. Wu Y. Z., F.S.Y., Bei Y. L., Liu P.,, Preparation of aminopropyl polysiloxane-based heat-curable silicone rubber. Journal of Applied Polymer Science, 2001.80: p. 2341-2346.
    169. Zhao S. G., F.S.Y., Vinyl-containing silicone resin as the crosslinking agent of heat-curable silicone rubber. Journal of Applied Polymer Science, 2002. 83: p. 3123-3127.
    170.冯圣玉张洁,李.,朱庆增,有机硅高分子及其应用.2004,北京:化学工业出版社.412-413.
    171.董文飞,张万喜,裂解型聚合物的辐射改性机理及方法.高分子材料科学与工程,2000.16(6):p.18-23.
    172.哈鸿飞,吴季兰,高分子辐射化学——原理及应用.2002,合肥:中国科学技术大学出版社.77-79.
    173. Wundrich, K., Effect of temperature and physical state on the inhibition by additives of radiation-induced degradation of poly(methyl Methacrylate). Journal of Polymer Science: Polymer Physical Edition, 1974. 12: p. 201-212.
    174. S. Tabuse, Y. I., T. Kojima, Y. Yoshida, T. Kozawa, M. Mild, S. Tagawa, Radiation protection effects by addition of aromatic compounds to n-dodecane. Radiation Physics and Chemistry, 2001.62: p. 179-187.
    175. Takashi Fujimura, K. A., Naohiro Hayakawa, Isamu Kuriyama, Effect of an additive on the radiation resistance of polyethylene and ethylene-proylene copolymer. Journal of Applied Polymer Science, 1982.27: p. 2475-2482.
    176. Y.S. Soebianto, Y.K., K. Ishigure, J. Kubo, T. Koizumi, Protection in radiolysis of n-hexadecane-1. Radiolysis of pure liquid n-hexadecane. Radiation Physics and Chemistry, 1992. 39(3): p. 251-256.
    177. Yanti S. Soebianto, Y. K., Kinkichi Ishigure, Junichi Kubo, Takeo Koizumi, Protection in radiolysis of n-hexadecane—2. Radiolysis of n-hexadecane in the presence of additives. Radiation Physics and Chemistry, 1992.40(6): p. 451-459.
    178. Y. S. Soebianto, Y.K., K. Ishigure, J. Kubo, T. Koizumi, Model experiment on the protection effect in polymers: radiolysis of liquid squalane in the presence and absence of additives. Polymer Degradation and Stability, 1993.42: p. 29-40.
    179.李光亮,SiO2填料对硅橡胶力学性能的影响.合成橡胶工业,1991.14(6):p.433-436.
    180. Feng Shengyu, D. Z., Effects of some phenylethynylsilicon compounds on heat-curable silicone rubber. Ⅰ. 1,3-bis(methylphenylethynylvinyl)disiloxane. Journal of Applied Polymer Science, 1991.43: p. 1323-1326.
    181. Xu Caihong, F. S., Investigation of polysiloxanes containing phenylethynyl groups as cross-linkers of heat-curable silicone rubber. Journal of Applied Polymer Science, 2000. 76: p. 1554-1557.
    182. S. N. Boricov, K., Rezina, 1962. 12: p. 3.
    183.李光亮,有机硅高分子化学.1998,北京:科学出版社.131.
    184. Zhigang Jiang, J. Z., Shengyu Feng, Effects of additives on the radiation resistance of heat-cruable silicone rubber. Journal of Radiation Research and Radiation Processing, 2006. 24(3): p. 141-144.
    185. V. YA. Kabanov, R. E. A., Radiation-induced grafting polymerization by the anionic mechanism. Journal of Polymer Science: Polymer Chemistry Edition, 1979. 47: p. 1255-1266.
    186. F. Cataldo, M. P., P. Ragni i, A study on the chemical structure of phenyl acetylene radiopolymer. Polymer International, 2000. 49: p. 1343-1347.
    187. Johnson, J., R., Tetraphenylcyclophentadienone. Organic syntheses collective, 1955.3: p. 806.
    188.杜作栋,陈剑华,史保川,王浩,李亚胜,宫淑玲,李永明,多苯基芳基类硅化合物作为聚合物热稳定剂的研究.高分子通讯,1981(3):p.174-178.
    189.陈剑华,冯圣玉,杜作栋,几种新的四苯(基)苯基有机硅化合物的研究.高等学校化学学报,1986.7(12):p.1150-1155.
    190.丁云桥,钛掺杂聚硅烷和非对称取代的聚硅烷的电子结构及其性质的理论研究(硕士论文).2006,山东大学:济南.
    191.冯圣玉,陈剑华,杜作栋,四苯(基)苯基多乙烯基硅油的合成及结构测定.高分子学报,1987(6):p.471~475.
    192. J, D. W., J. Parkt. Chem., 1935.189:p.143.
    193.杜作栋,尹.,含有稠环侧链的聚硅氧烷的合成及其对加成型高温硫化硅橡胶性能的影响.高分子学报,1988(6):p.422-427.
    194. Zhigang Jiang, J. Z., Shengyu Feng, Effects of polyvinylsilicone oil with condensed aromatics on the radiation resistance of heat-curable silicone rubber. Journal of Applied Polymer Science, 2006. 102: p. 1937-1942.
    195. Charleaby, A., Folland, R., The use of pulsed NMR to follow radiation effects in long chain polymer Radiation Physics and Chemistry, 1983.15: p. 393.
    196.李美江,含稠环基硅—硅键聚合物的合成及其性能研究(博士论文).2003,山东大学:济南.p.22.
    197. W,. D., J. Prakt. Chem., 1935.143:p.189.
    198.冯圣玉,于淑歧,,合成橡胶工业,1987.10:p.32.
    199. Shigui Zhao, S. F., Vinyl-containing silicone resin as the crosslinking agent of heat-curable silicone rubber. Journal of Applied Polymer Science, 2002. 83: p. 3123-3127.
    200. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A., 1988. 38: p. 3098.
    201. Becke, A.D., Gaussian-2 theory using reduced Moller-Plesset orders. J. Chem. Phys., 1993.98: p. 5648.
    202. C. Lee, W.Y., R. G. Parr., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B., 1988.37: p. 785.
    203. B. Miehlich, A. S., H. Stoll, H. Preuss, Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989. 157: p. 200.
    204. Zhang G., M. J., Jiang Y.,, Charged-Doped and Heteroatom-Substituted polysilane, poly(vinylenedisilanylene), and poly(butadienylenedisilanylene): Electronic structures and band gaps. J. Phys. Chem. B., 2005. 109(28): p. 13499-13509.
    205. M. J. Frisch, G. W.T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al.,, Gaussian, Inc., Pittsburgh PA. 2003.
    206.廖学巍,史保川,张茂根,孙培培,顾玮瑾,冯玉英,聚甲基苯基硅烷及其共聚物的合成与表征.有机硅材料,2000.14(5):p.1~3.
    207.幸松民,王.,有机硅合成工艺及产品应用.2000,北京:化学工业出版社.25~32.
    208.幸松民,王.,有机硅合成工艺及产品应用.2000,北京:化学工业出版社.541-542.
    209. Andrianov, K. A., Polym. Preprint, 1967(8): p. 474.
    210. M. Patel, J.J.M., A. R. Skinner, S. J. Powell, P. F. Smith,, Wolatile evolution from room temperature cured polysloxane robber induced by irradiation with He2+ ions. Polym. Test., 2003.22: p. 923.
    211. Patel M., J.J.M., A. R. Skinner, S. J. Powell, P. F. Smith, Volatile evolution from room temperature cured polysiloxane robber induced by irradiation with He2+ ions. Polymer Testing, 2003.22: p. 923-928.
    212. M. E. Beatty, C.V.W., R. K. Crouch, Thermal and particulate radiation effects on potting polymers. Journal of Materials, 1970.4(5): p. 972.
    213.林满辉,林东灿,黄素娟,加成型硅橡胶防中毒问题的研究.有机硅材料,2001.15(1):p.24-26.
    1. Traeger R K, Castonguay T T, Journal of Applied Polymer Science, 1966, 10(4): 535-550
    2. Basfar AA, Radiation Physics and Chemistry, 1997, 50(6): 607-610
    3. Aliev R, Radiation Physics and Chemistry, 1999, 56(3): 347-352
    4. Stevenson I, David L, Gauthier C, Polymer, 2001, 42(22): 9287-9292
    5. HUANG Wei, FU Yibei, XU Yunshu, et al. Polymer Materials Science and Engineering, 2002, 18(3): 102-105
    6. HUANG Wei, FU Yibei, WANG Chaoyang, Radiation Physics and Chemistry, 2002, 64(3): 229-233
    7. Maxwell R S, Cohenour R, Sung, W, et al. Polymer Degradation and Stability, 2003, 80(3): 443-450
    8. Delides C G, Radiation Physics and Chemistry, 1980, 16(5): 345-352
    9. Robert H, Rubber Age, 1957, 81(611:971-980
    10. Wundrich K, Journal of Polymer Science: Polymer Physics Edition, 1974, 12(5): 201-212
    11. DONG Wenfei, ZHANG Wanxi, Polymer Materials Science and Engineering, 2000, 16(6): 18-23
    12. HA Hongfei, WU Jilan, Macromolecular Radiation Chemistry, Beijing, Peking University Press, 2002, 77-79
    13. Tabuse S, Izumi Y, Kojima T, et al. Radiation Physics and Chemistry, 2001, 62(1): 179-187
    14. LI Fahua, Special purpose rubber products, 2001, 22(1): 13-18
    15. FENG Shengyu, YU Shuqi, CHEN Jianhua, et al, China Synthetic Rubber Industry, 1987, 10(1): 32-36
    16. Flory P J, Principles of Polymer Chemistry. Ithaca, NY, Comell University Press, 1953, 576-580
    17. Chemistry Department of Fudan University, Technologies of Polymer Experiments, Shanghai, Fudan University Press, 1983, 60-65
    18. FENG Shengyu, DU Zuodong, Journal of Applied Polymer Science, 1991, 43(7): 1323-1326
    19. FENG Shengyu, JIANG Ping, YU Shuqi, et al. European Polymer Journal, 1995, 31(3): 309-311
    20. XU Caihong, FENG Shengyu, Journal of Applied Polymer Science, 2000, 76(10): 1554-1557
    21. Hill D J T, Preston C M L, Silisbury D J, et al. Radiation Physics and Chemistry, 2001, 62(1): 11-17
    22. Hill D J T, Preston C M L, Whittaker A K, Polymer, 2002, 43(4): 1051-1059
    23. Kawanishi S, Hagiwara M, Radiation Physics and Chemistry, 1986, 27(1): 65-70
    24. Cataldo F, Pentimalli M, Ragni P, Polymer International, 2000, 49(11): 1343-1347
    25. Kabanov V Y, Aliev R E, Journal of Polymer Science: Polymer Chemistry Edition, 1979, 17(5): 1255-1266
    26. Soebianto Y S, Katsumura Y, Ishigure, K, et al. Radiation Physics and Chemistry, 1992, 40(6): 451-459
    1. Tabuse, S.; Izumi, Y.; Kojima, T.; Yoshida, Y.; Kozawa, T.; Miki, M.; Tagawa, S. Radiation Physics and Chemistry, 2001, 62, 179.
    2. Wundrich, K. Journal of Polymer Science: Polymer Physics Edition, 1974, 12, 201.
    3. Delides, C. G. Radiation Physics and Chemistry, 1980, 16, 345.
    4. Robert, H. Rubber Age, 1957, 81, 6, 971.
    5. Huang, W.; Fu, Y. B.; Xu, Y. S.; Bian, Z. S.; He, M. Y. Polymer Materials Science and Engineering, 2002, 18, 3, 102.
    6. Huang, W.; Fu, Y. B.; Wang, C. Y. Radiation Physics and Chemistry, 2002, 64, 3, 229.
    7. Soebianto, Y. S.; Katsumura, Y.; Ishigure, K. Radiation Physics and Chemistry, 1992, 40, 6, 451.
    8. Dilthey, W. J. J Parkt. Chem., 1935, 189, 143.
    9. Feng, S.Y.; Chen, J. H.; Du, Z. D. Acta Polymerica Sinica, 1987, 6, 471.
    10. Du, Z. D.; Yin, S. Acta Polymerica Sinica, 1988, 6, 422.
    11. Feng, S.Y.; Du, Z. D. Journal of Applied Polymer Science, 1991, 43, 1323.
    12. Xu, C. H.; Feng, S. Y. Journal of Applied Polymer Science, 2000, 76, 1554
    13. Flow, P.J. Principles of Polymer Chemistry. Comell University Press, Ithaca, NY, 1953, p 576.
    14. Chemistry Department of Fudan University, Technologies of Polymer Experiments, Fudan University Press, Shanghai, 1983, p 60.
    15. Feng, S.Y.; Jiang, P.; Yu S. Q.; Zhang, S. Y.; Chen, J. H.; Du, Z. D. European Polymer Journal, 1995, 31, 3,309.
    16. Hill, D. J. T.; Preston, C. M. L.; Silisbury, D. J.; Whittaker, A. K. Radiation Physics and Chemistry, 2001, 62, 11.
    17. Hill, D. J. T.; Preston, C. M. L.; Whittaker, A. K. Polymer, 2002, 43, 1051.
    18. Miller, A. A. J.Am. Chem. Soc., 1961, 83, 31.
    19. Miller, A. A. J. Am. Chem. Soc., 1960, 82, 3519.
    20. Charlesby, A.; Folland, R. Radiation Physics and Chemistry, 1983, 15, 393.
    21. Chien, A.; Maxwell, R.; Chambers, D. Radiation Physics and Chemistry, 2000, 59, 493.
    22. Maxwell, R. S.; Balazs, B. NIMB, 2003, 208, 199.
    23. Maxwell, R. S.; Cohenour, R.; Sung, W.; Solyom, D.; Patel, M. Polymer Degradation and Stability, 2003, 80, 443.
    24. Stevenson, I.; David, L.; Gauthier, C. Polymer, 2001, 42, 9287.
    25. Zhao, S. G.; Feng, S. Y. Journal of Applied Polymer Science, 2002, 83, 3123 reactions and the rubber molecules suffer more or less oxidative degradation, which decreases the crosslinking of the vulcanizates. This work was supported by the National Natural Science Foundation of China (29974016), the Natural Science Foundation of Shandong Province of China (Y2003B01) and the Foundation for University Key Teacher by the Ministry of Education of China (2000(65)-24).
    1. Basfar, A. A. Radiat Phys Chem 1997, 50 (6), 607.
    2. Jiang, Z. G.; Zhang, J.; Feng, S. Y. J Radiat Res Radiat Process 2006, 24 (3), 141.
    3. Jiang, Z. G.; Zhang, J.; Feng, S. Y. J Appl Polym Sci 2006, 102, 1937.
    4. Tabuse, S.; Izumi, Y.; Kojima, T. Radiat Phys Chem 2001, 62 (1), 179.
    5. Feng, S. Y.; Du, Z. D. JAppl Polym Sci 1991, 43, 1323.
    6. Freeburger, M. E.; Spialter, L. The Journal of Organic Chemistry 1970, 35 (3), 652.
    7. Feng, S. Y.; Chen, J. H.; Du, Z. D. Acta Polymerica Sinica 1987, 6, 471
    8. Dai, M. X.; Tang W. H.; Pan B. X.; Tong, J. Q. China Synthetic Rubber Industry 1984, 3, 199.
    9. Feng, S. Y.; Yu, S. Q.; Wang, X. D.; Du, Z. D. China Synthetic Rubber Industry, 1989, 12 (5), 318.
    10. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953; p 576.
    11. Chemistry Department of Fudan University. Technologies of Polymer Experiments. Fudan University Press: Shanghai, 1983; p 60.
    12. Feng, S. Y.; Jiang, P.; Yu, S. Q. Zhang, S. Y.; Chen, J. H.; Du, Z. D. European Polymer Journal 1995, 31 (3), 309.
    13. Xu, C., H.; Feng, S., Y. JAppl Polym Sci 2000, 76, 1554.
    14. Charlesby, A.; Folland, R. Radiation Physics and Chemistry, 1983, 15, 393.
    15. Chien, A.; Maxwell, R.; Chambers, D. Radiat Phys Chem 2000, 59, 493.
    16. Maxwell, R. S.; Balazs, B. NIMB, 2003, 208, 199.
    17. Maxwell, R. S.; Cohenour, R.; Sung, W.; Solyom, D.; Patel, M. Polymer Degradation and Stability. 2003, 80, 443.
    18. Stevenson, I.; David, L.; Gauthier, C. Polymer. 2001,42, 9257.
    19. Wundrich, B., Radiat Phys Chem 1985, 24 (5), 503.
    20. Delides, C. G. Radiation Physics and Chemistry, 1980, 16, 345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700