用户名: 密码: 验证码:
合金粉末对WC/钢基表面复合材料组织和界面的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,WC/钢基表面复合材料研究得到了较好的发展,但是对颗粒增强钢基复合材料的界面研究涉及领域不广,特别是对WC/钢基复合材料的界面研究很少有报道。针对于此,论文研究合金粉末对WC/钢基表面复合材料的影响,重点考察合金粉末对复合层的组织和界面的影响,为WC/钢基表面复合材料的研究打下理论基础。
     论文采用真空实型负压铸渗工艺,成功制备了不同成份的WC/钢基表层复合材料。组织分析表明:复合层的基体组织是珠光体、马氏体和残余奥氏体,其上分布着白色鱼骨、枝状含钨量较高的初生碳化物和黑色枝状含铬量较高的初生碳化物,这两种碳化物连接成网状,在初生碳化物中间分布着少量微小粒状的共晶碳化物。其中,Fe3W3C相是主要的初生碳化物生成物,含量较高,是主要的碳化物生成物,是钢基复合材料的重要组织。三种成份的复合层中,含钨预置层制备的钢基表层复合材料中M6C型碳化物含量最高,且新生了很多小WC颗粒;含钼预置层制备的钢基表层复合材料中M6C型碳化物含量也较多,仅次于含钨预置层制备的钢基表层复合材料;含镍预置层制备的钢基表层复合材料中在含镍量较高的区域,存在一个单相奥氏体区,使复合材料在耐磨的同时,有较好的耐蚀性和耐高温性。
     复合层宏观硬度的变化:从基材至复合层表面,硬度值呈先升后降的趋势,复合层平均硬度比基材提高几乎两倍。
     合金粉末对钢基表层复合材料的复合层组织的影响规律:随着合金含量的增加,复合层中共晶碳化物含量逐渐增加,含钨的初生碳化物体积、数量也增多,复合层中无缺陷,铸渗厚度增加,复合层厚度变大。其中,含钨元素的复合层中还有小碳化钨颗粒生成,并均匀分布于组织。
     预置层中添加合金粉末的WC/钢基表层复合材料复合层的基体具有较高的硬度,高于高铬钢基体,显微硬度由基体通过界面结合层向复合层方向逐渐增大。在界面结合处,硬度并没有在某一界面两侧发生突变,而是存在一个低硬度向高硬度渐变的狭窄区域。界面间原子的相互扩散形成了良好的冶金结合,基体和复合层之间的界面是连续的。
Recently, WC particles/steel surface composite become a new class of advanced materials, but the particle of steel composite materials studies involving domain is not widely, especially have rare reports in the WC ceramic particle/steel composite materials research. Based on this, the paper studies the effects of alloy powder particles to WC surface/steel composite material, The effects of the microstructure, phase, elements changed, microhardness, to lay the theoretical foundation of WC particles/steel surface composite materials research.
     In the paper, the high-carbon chromium steel substrate surface composites containing different volume fractions of WC particles were fabricated successfully by V-EPC infiltrating casting process. Organizational analysis shows that the organization is matrix composite layer for pearlite, martensite and austenite, its distributed netted connected into white bones, branch shape tungsten carbide is higher primary and black branch shape organization chromium-contained quantity of high carbon, born in net primary carbide substrate with small black in the distribution of eutectic carbide particulate tiny. Among them, Fe3W3C phase is the main primary carbide products, is the main content is higher, the carbon steel products, is to improve the resistance of composite important organization. Three components of the composite layer, tungsten steel base layer of preset surface preparation M6C in composite materials, and the highest content of carbide freshman many smaller particle, abrasion resistance; the WC containing molybdenum preset layer of steel base surface preparation M6C type of composite material, after the content is also more carbon tungsten steel base layer of preset surface preparation of composite materials, better wearability, containing nickel layer, the yankees were preset steel surface composite nickel content is higher in the area, there is a single austenite zone, composite materials in wear-resisting, has good corrosion resistance and high temperature resistant properties.
     Composite layer organizational changes can be seen for macro hardness change of material:from the composite material of base material to the surface, first increased and then decreased, and the composite layer of average hardness enhanced almost twice as much.
     Prefabrication of alloy powder on the surface of steel and composite material tissue: compound floor crystal carbide content increase gradually with the increase of the content of alloy, the primary tungsten carbide size, number also increased, composite layer thickness, without defect, composite cast-penetrated layer thickness. Among them, the elements of tungsten and small tungsten particles, and evenly distributed in organizations.
     Add preset layer of alloy powder WC/steel base surface composite matrix composite layer with high hardness and high chrome matrix, higher microhardness by matrix interface bonding layer by layer direction to increase. In the interface, hardness and union of an interface in both mutations, but there is a low hardness of high hardness gradient from the narrow area. Interface between atomic interdiffusions of forming a good metallurgical combination, body and compound layer between the interface is continuously.
引文
[1]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展[J].铸造技术2001,(2):42-45
    [2]王俊英,杨启志,林化春,等.金属基复合材料的进展、问题与前景展望[J].青岛建筑工程学院学报,1999,20(4):90-91
    [3]M. M. Stack, D. Pena. Solid particle erosion of Ni-Cr/WC metal matrix composites at elevated temperatures, construction of erosion mechanism and process control maps [J]. Wear,1997,203-204:489-497
    [4]B. A. Lindslay, A.R. Mander. Solid particle erosion of an Fe-Fe3C metal matrix composite[J]. Metallurgical and Materials Transactions,1998,29A (3):1071-1079
    [5]梁作俭.碳化钨颗粒增强金属基复合材料磨损性能研究:[硕士学位论文],西安交通大学,2000
    [6]于华顺,等.金属基复合材料及其制备技术[M].化学工业出版社:2006.
    [7]Bryggman, U.Lindqvist, J.O. Non-Ferrous Materials, Vol.6 [M]. Metal Powder Industries Federation, Princeton,1992.
    [8]S. F. Corbin, D. S. Wilkonson. Influence of matrix strength and damage accumulationon the mechanical response of a particulate metal matrix composite [J]. Acta Metallurgica et Materialia,1994,42 (4):1329-1335
    [9]蒲小聪,林金辉,禾苗.高温金属基复合材料的研究进展[J],材料热处理技术,2009,5:118-121
    [10]李建辉,李春峰,雷延权.金属基复合材料成形加工研究进展[J],材料科学与工艺,2002,2(3):170-172
    [11]E. Pagounis, V. K. Lindroos. Processing and properties of particulate reinforce steel matrix composites [J]. Materials Science and Engineering A.1998,246:221-234
    [12]黄民建.颗粒增强铸造金属基复合材料[J].湖南冶金,2001(1):44-47
    [13]郭小军.铸渗法制取颗粒增强钢基复合材料的研究:[硕士学位论文].沈阳:东北大学,2001
    [14]李秀兵.制备WC增强钢/铁基表层复合材料的复合剂及应用:[博士学位论文].西安:西安交通大学,2005.
    [15]KAMBAKAS K, TSAKIROPOULOS P. Solidification of high-Cr white cast iron-WC particle reinforced composites[J]. Materials Science and Engineering, 2005, A413-414:538-544.
    [16]宁海霞.WC颗粒增强钢基复合复合材料的制备及耐磨性研究[J].铸造技术,2009,30(4):503-505.
    [17]Rong Zhou, Yehua Jiang, Dehong Lu. The effect of volume fraction of WC particles on erosion resistance of WC reinforced iron matrix surface composites. Wear,2003, 255(1-6):134-138
    [18]李祖来.V-EPC制备铁基表面耐磨复合材料:[硕士学位论文].昆明:昆明理工大学机电学院,2004
    [19]李祖来,蒋业华,周荣,等.V-EPC制备铁基表面复合材料的表面质量和组织[J].特种铸造及有色合金,2005,25(1):21-23
    [20]李祖来,蒋业华,叶小梅,等.WC在WC/灰铸铁复合材料基体中的溶解[J].复合材料学报,2007,24(2):13-18
    [21]高凡,李祖来,蒋业华,等.预置层中合金粉末粒度对WC/钢基表层复合材料复合效果的影响[J].铸造,2008,57(11):1166-1170
    [22]于思荣,隋忠祥.铸造碳化钨颗粒/中锰钢表面复合材料制作新工艺及理论研究[J].吉林工业大学学报,1996(4):30-34
    [20]D.Huda, M.A. El Baradie, M.S.J. Hashmi. Factors afecting the machinability of Al/SiC metal-matrix composite [J]. Master Process Technology,1994,44:152-156.
    [21]V.L. Ezhov et al. Increasing Service Life of Casting Hot-Moulding Dies [J]. Liteione Proizvodstvo,1991,5
    [22]刘德健,陈彦宾,李福泉,等.激光熔注法制备WC颗粒增强金属基复合材料[J].中国激光,2008,35(7):1084-1086
    [23]吴朝锋,马明星,吴爱平,等.激光原位制备颗粒增强铁基复合涂层中碳化物相得形貌分析.金属学报,2009,45(9):1091-1098
    [24]李秀兵,张国赏,邢建东,等.碳化钨颗粒增强钢基复合材料的冲蚀磨损性能研究.摩擦学学报,2007(1):16-20
    [25]张国赏,高义民,邢建东,等.钢/铁双金属复合材料的离心铸造工艺及界面控制.西安交通大学学报,2006(7):815-819
    [26]尤显卿,任昊,斯延智.电渣熔铸WC/钢复合材料的磨损性能研究[J].特种铸 造及有色合金,2003(6):19-21
    [27]叶劲.离心铸造WC/钢基复合材料的组织及热疲劳裂纹形成研究:[硕士学位论文].合肥:合肥工业大学,2009
    [28]刘宝.热处理工艺对离心铸造WC/钢基复合材料组织性能的影响:[硕士学位论文].合肥:合肥工业大学,2009
    [29]尤显卿,王基才,任昊.电冶熔铸WC/钢基复合材料的显微缺陷[J].中国有色金属学报,2004(4):646-650
    [30]D. Lou, J. Hellman, D. Luhulima et.al. Interaction between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites[J]. Materials Science and Engineering.2003,340:155-162
    [31]C.S. Wright, B. Ogel, F. Lemoisson, Y. Bienvenu, Powder Metall.38 (1995) 221-229
    [32]M. M. Stack, D. Pena. Solid particle erosion of Ni-Cr/WC metal matrix composites at elevated temperatures, construction of erosion mechanism and process control maps [J]. Wear,1997,203-204:489-497.
    [33]李炯辉,林德成,等.金属材料进行图谱[M].机械工业出版社,2006
    [34]崔忠圻,等.金属学与热处理[M].机械工业出版社,2000
    [35]徐州,姚寿山,等.材料加工原理[M].科学出版社,2004
    [36]K. Kambakas, P. Tsakiropoulos. Solidification of high-Cr white cast iron-WC particle reinforced composites.2005,413-414:538-544
    [37]沈蜀西,刘炳,于青,等.铸渗铬合金层组织特征分析[J].现代铸铁,2000,3:9-13
    [38]李卫,曾绍连.含钨量对铸态290Cr26MoW耐磨铸铁组织和硬度的影响.铸造,2007,4:76-80
    [39]周志宏,严东生,钱宝筠,等.钢和铁、镍基合金的物理化学相分析[M].上海科学技术出版社,1979
    [40]张俊宝,杨晓萍,王秀芳,等.精细退火GCr15钢各相微观组织纳米压痕表征[J].宝钢技术.2008(2):50-54
    [41]李祖来,蒋业华,卢德宏,等.V-EPC铸渗法制备铁基表面复合材料的组织及性能[J].铸造.2005,54(8):783-786
    [42]刘旋,李祖来,蒋业华,等.预制层中合金种类对V—-EPC制备表层复合材料 组织和界面的影响.见:特种铸造及有色合金2008年年会专刊.复合材料,2008
    [43]卢建伟.GX12耐热铸钢热力学计算分析及组织性能研究:[硕士学位论文].黑龙江:哈尔滨理工大学,2009
    [44]常立民,刘建华,于升学,等.热变形后的冷却速度对高碳铬铸钢组织和性能的影响.钢铁研究学报[J],2002,14(6):45-50
    [45]杨俊茹,刘福田,张悦刊,等.铬系白口铸铁的研究进展[J],金属铸锻焊技术,2009,7:70-74
    [46]陈葵,高文理,吴有伍,等.Cr15高铬铸铁固液混合铸造铸件组织的研究[J].铸造,2006,55(4):341-345
    [47]李文虎,徐峰,刘福田,等.铸渗法制备Mo2FeB2增强钢基表面复合材料[J].特种铸造及有色合金,2009,29(1):57-60
    [48]赵正,刘福田,李文虎,等.金属陶瓷覆层材料界面结合层的研究[J].粉末冶金技术,2008,6(2):11-116
    [49]刘福田,黄巍铃,李文虎,等.金属陶瓷覆层—钢基体界面结合状态的研究[J].材料科学与工艺,2005,13(5):434-438
    [50]刘福田,李文虎,张英才.硬质合金覆层—钢基体结合界面层及其生长模型的研究[J].陶瓷学报,2004,25(3):139-145
    [51]高明星.碳化钨颗粒增强高锰钢基表面复合材料的研究:[硕士学位论文].内蒙古:内蒙古科技大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700