用户名: 密码: 验证码:
耐锌液腐蚀合金的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对热镀锌行业中熔融锌液对材料产生强烈腐蚀的问题,对耐锌液腐蚀合金的制备及应用进行研究。
     通过向合金中添加合金元素,并比较其耐锌液腐蚀性能,发现B元素能显著提高材料的耐锌液腐蚀性能。含硼量为7%左右时,合金耐锌液腐蚀性能提高近10倍,锌液腐蚀速率仅为15.6g/m~2·h。当硼含量超过8.83wt%时,合金几乎不受锌液腐蚀。与此同时材料脆性增大。通过对Fe-B合金的微观分析,发现合金中存在大量的脆硬相Fe_2B、FeB,有效的抵御了锌液的腐蚀。Fe-B合金在锌液中的腐蚀是晶间腐蚀,为此本文提出了“短路腐蚀”模型,即在锌液腐蚀过程中,锌液优先对晶间组织中的α-Fe相产生腐蚀,使锌液能够沿晶间区域绕过Fe_2B晶粒向材料内部侵入,并相互贯通形成“短路”,在相变应力的作用下使Fe_2B晶粒脱落,使Fe_2B耐锌液腐蚀性能不能充分发挥,造成合金腐蚀。
     通过向Fe-B合金添加其它合金元素,发现用Mo、W等元素对Fe-B合金多组元合金化,可以强烈抑制晶间腐蚀,显著改善合金的耐锌液腐蚀性能。经Mo、W合金化的合金,耐锌液腐蚀性能提高近10倍。锌液腐蚀速率仅为1.42g/m~2·h。通过对材料的微观分析发现,Fe_2B晶粒之间弥散的分布着团絮状的高Mo、W金属间化合物Mo_2FeB_2相,抑制了锌液对晶间组织的腐蚀。关于含钼钨高硼合金在锌液中的腐蚀,本文提出了“塞积腐蚀”模型。即锌液会穿过团絮状的Mo_2FeB_2相进入晶间与残留的α-Fe发生反应,大量的反应产物会在Mo_2FeB_2相堵塞的晶间区域塞积,使两侧Fe_2B晶粒在应力作用下碎裂、脱离基体。因此通过加入稀土元素改善组织、韧化Fe_2B晶粒,使合金的锌液腐蚀速率降低到0.667g/m~2·h左右。
     在此基础上,通过测试含钼钨高硼合金的各项性能,摸索出了合金的熔炼和铸造成型的各项工艺参数,制定了完善的铸造工艺,实现了材料的铸造成型。
     将该材料制成的热镀锌内加热器外套管直接应用于热镀锌的内加热设备上进行工业试验,元件在工作50天左右时出现意外断裂。分析认为是材料的高温蠕变断裂。因此除了保证材料耐锌液腐蚀性能外,还需考虑材料的高温性能。
According to the problem of the molten zinc-corrosion to materials in the hot-dip galvanizing industry, the research on the development and application of the alloy with corrosion resistance to molten zinc is making in this paper.
    By adding alloy elements to the metal and examining the corrosion resistance to molten zinc, we find that B element can enhance the performance of the alloy's corrosion resistance to molten zinc. The anti-corrosion ability of the alloy with 7% B is more 10 times than that of alloy before adding B, its corrosion rate is only 15.6 g/m2 ?h. The alloy is hardly corroded by molten zinc when its B content exceeding to 8.83%. At the same time, the brittleness of Fe-B alloy is increased. Basing on the micro analyzing of Fe-B alloy, we find lots of crisp-hard phases Fe2B or FeB exist in Fe-B alloy, which resist the corrosion of zinc. The form of Fe-B alloy corrosion in the molten zinc is intercrystalline corrosion, therefore we render a model of" short circuit corrosion ", In the course of molten zinc corroding, for the first corrosion to a -Fe existing in the intercrystal region, molten zinc will invade internal region along border of grain and get a " short circuit " behind Fe2B grains which results in the Fe2B grains' falling from matrix. As result, the Fe-B alloy is corroded.
    It is show that alloying Fe-B alloy with Mo, W can inhibit intercrystalline corrosion and enhance alloy's ability to resisting to molten zinc. The anti-corrosion ability of the alloy alloyed with Mo and W is more 10 times than that of alloy before alloying, its corrosion rate is only 1.42 g/m2 +1. Basing on the microanalyses of the alloy, we find lots of wadding phases Mo2FeB2 disperse in the intercrystalline area, which resist the intercrystalline corrosion by molten zinc. About the corrosion of this alloy, we render a model of" plug corrsion ". That is, the molten zinc will react with rudimental a -Fe crossing the phase Mo2FeB2, then, the great stress will be generated by the accumulation of reaction products in the intercrystal region, which make Fe2B grain disintegrate and fall from matrix. So, through composition meliorating and grain malleableizing by adding rare earth elements, the alloy corrosion rate can drop to 0.667g/m2 ?h.
    
    
    Besides, by testing the properties of the Fe-B alloyed with Mo, W, we established the proper casting technics, achieving the alloy cast molding.
    Applying the casing tube of immersion heater made of this alloy to the hot-dip galvanizing industry, the examination of the industry show the casing tubes usually rupture after running about 50 days. Basing on the analyses, we believe that the reason is alloy's creep at high temperature. So, we must think the high temperature properties of the material besides the corrosion resistance to molten zinc.
引文
1. A. J. Vazquez, Economy of Radiant Energy in Galvanizing Bath and Improvement of Heat Transfer in Surface-heated Ceramic Galvanizing Baths, 14th International Galvanizing Conference, Munich, Germany, (1985), 4/1
    2.曹晓明,耐熔锌蚀材料和器件的研究及其在热镀锌工业中的应用,北京科技大学博士学位论文,(1999.6)
    3. Vickers, C. W., Commercial Hot Dip Galvanizing, Materials Protection, Vol.2,No.30(1962)
    4.H.巴布利克,热镀锌理论与工艺,冶金工业出版社,(1959),384
    5.陈厚载,热镀锌技术(1000例),上海交通大学出版社,(1994)No.7(1984),57
    6. Ritchie, J. G., Application of Galvanized High Strength Bolts to Steel Structures in Australia, Proceedings of the 9th International Conference on Hot Dip Galvanizing (1971), 305
    7. K.N. Hewitt, The Prospects for Zinc Coatings, Lead and Zinc: Prospects to 2000, London, (1985),60
    8. Horvick. E. W, Hot Dip Galvanizing, Steel Structures Painting Manual, Vol. 1, (1982), 465-480
    9. Jacques Pekerin, Recent Market and Technical Development in Hot Dip Galvanizing Steel, Iron and Steel Engineer, No.6 (1988), 34
    10. Hanna. F, Hot Galvanizing of Cast Iron, Corrosion and Corrosion Prevention in Industry, Baghdad Iraq, (1990), 419
    11.黄颖,热度锌熔炼锅的现状和发展,机械工程材料,Vol.14,No.2,(1990),25
    12. J. Briand, etc., Latest Developments in Hot-dip Galvanizing in France, Thirteenth International Conference on Hot Dip Galvanizing, London, (1982), 38/1
    13.刘经国,对热镀锌铁锅及其炉子的探讨,河南电力增刊,(1989),91
    14. P. H. Roebuck, etc., Electric Immersion Heater, 14th International Galvanizing Conference, Munich, Germany, (1985), 4/3
    15.刘祥清,新型内加热镀锌锅直接内加热的设计探讨,金属制品,Vol.24,No.1,(1998),17
    16. A. Parent, Electric Bath Heating, Fifth International Conference on Hot Dip Galvanizing, Holland,(1958), 79
    17. K.H. Fritz, Industrial Experience with Top-heated for Large Throughputs, 6th International Galvanizing Conference, London, U.K., (1961), 351
    18.李志平,工频感应熔锌炉应用于生产近三十年小结,金属制品,Vol.6,No.4,(1990),47
    19. Nicholas V. Ross etc., Induction heating of strip for galvanneal, Iron and Steel Engineer, Vol.65, No.1, (1988), 40
    20.顾乃健,耐火材料锌锅与节能,河南电力,1989(增刊),83
    21.易福明等,内加热耐火材料锌锅在钢丝热镀锌中的应用,金属制品,Vol.24,No.3,(1998),9
    22. F. Teichmann, Technical and Operating Data for Some Top-heated Baths 6th International Galvanizing Conference, London, U.K., (1961), 358
    23.曹晓明等,液态锌对金属的腐蚀机制,钢铁研究学报,Vol.10,No.4,(1998),54
    
    
    24. 68 D. Horstmann, Problems of Attack by Molten Zinc, Arch. Eisenhuttenw, Vol.31, No. 7, (1960),405
    25. E.C. Green, Survey of Galvanizing Practice and Applications, 6th International Galvanizing Conference, London, U.K., (1961), 3
    26.孙建中,低碳钢丝热镀锌法,冶金工业出版社,(1958),106,101
    27.庞强杰,热镀锌锌液侧温热电偶保护套管的探讨,金属制品,Vol.12,No.2,(1986),61
    28. Ozturk, B, etc., Vaporization of zinc from steel scrap, Science and Technology of Steelmaking, Chiba, Japan, 22-24 Apr., (1996), 239-242
    29.黄润六,降低钢丝热镀锌锌耗的途径,金属制品,Vol.22,No.5,(1996),43
    30. Burns. J etc., Emersion Tube Heating--Lower Galvanizing Costs With Higher Thermal Efficiency, 59th Annual Convention and 1989 Division Meetings, Wire Association International, ^P.O. Box H, 1570 Boston Post Rd., Guilford, Connecticut 06437, USA, 130-139
    31.曹晓明等,高效金属内加热管的研制及应用,金属制品,Vol.25,No.1,(1999),32
    32. J. E. Draley, J. R. Weeks, Corrosion by Liquid Metal, Plenum Press, New York, (1970), 251, 271, 283, 305, 321, 361, 393, 449, 601
    33.中国腐蚀与保护学会主编,核工业中的腐蚀与保护,北京:化学工业出版社,(1993),133
    34.张承忠,金属的腐蚀与保护,冶金工业出版社,(1985),87
    35. Harding. M A, The Prediction of Useful Kettle Life with Particular Reference to Pulse Fired High Velocity Galvanizing Furnaces, Intergalva 94. Seventeenth International Galvanizing Conference, Paris France, (1994), GC2/1
    36. Bilello. G, Hot Dip Galvanizing of Cast Iron, Metal Casting and Surface Finishing, Vol.41, No. 11-12, (1995), 39
    37.曹晓明,耐锌腐蚀金属间化合物的研究,鉴定文件,冀科鉴字2013号,(1994)
    38. America metal society, Metals Handbook, Vol.18, Metallgraphy Structures and Phase Diagrams,(1973),345
    39. Transportation Research Board, Cost-effectiveness of Hot-dip Galvanizing for Exposed Steel, Transportation Research Board National Research Council 2101 Constitution Avenue, N. W. Washington, D. C. 20418, ISSN 0547-5570, Printed in the United States of America, (1984), 11
    40. M.Guttmann, Diffusive Phase Transformation in Hot Dip Galvanizing, Materials Science Fortum, Vol. 115-156, (1994) pp. 527-548
    41.钱力,铸铁热镀锌的腐蚀问题,河北工学院学报,No.4,(1993),17
    42. Tamas Torok, The Corrosion and Abrasion Attack of Molten Zinc on the Bath Wall During Hot Dipping, 10th International Congress on Metallic Corrosion, Vol.4: Sessions 14-19, Madras India, (1987), 3433
    43. R. Standrinelli, Conditions Determining the Formation of Dross in the Hot Galvanizing of Ferrous Material with Particular Reference to Carbon Steels, 6th International Galvanizing Conference, London, U.K., (1961), 351
    44. D. Horstmann, The Influence of Steel Composition on the Attack by Molten Zinc in the Parabolic Range, 6th International Galvanizing Conference, London, U.K., (1961), 319
    
    
    45. D Horstmann, Influence of Carbon Contents in Steel on Attack by Molten Zinc, Arch. Eisenhuttenw, Vol.27, No. 2, (1956), 85
    46. I. Musatti, Relationship of Silicon Contents in Steel and Attack by Molten Zinc, Metallurgia Italiania, Vol.28, No. 1, (1936), 1
    47. H.J.Wiester, Influence of Manganese Contents in Steel on Attack by Molten Zinc, Arch. Eisenhuttenw, Vol.26, No.4, (1955), 199
    48. Cao xiaoming, Mechanism of Liquid Zinc Corrosion on Metals, Vol. 4, No. 3, (1997), 22
    49.曹晓明,锌液对金属的腐蚀机制,钢铁研究学报,Vol.10,No.4,(1998),54
    50.黄叔菊,金属的腐蚀与防护,西安交通大学出版社,(1984),127
    51.J.C.伍德,普拉塞尔.S.T.技术有限公司,耐熔锌腐蚀合金及其制造方法,CN 1083122A,(1993)
    52.冶金工业部,钢丝生产(中级本)下册,冶金工业出版社,(1973),121
    53. Harding. MA,The Prediction of Useful Kettle Life with Particular Reference to Pulse Fired High Velocity Galvanizing Furnaces, Intergalva 94. Seventeenth International Galvanizing Conference, Paris France,(1994), GC2/1
    54.孙胜等,提高钢制热镀锌锅使用的技术,金属制品,Vol.26,No.2,(2000),40
    55.曹晓铭等,耐熔锌腐蚀涂层及应用,面向21世纪的表面工程-97 上海 国际表面工程学术会议。1997,19
    56.郭难先,防液锌腐蚀耐高温无机涂层的研究与试验,全国第四届热浸镀学术技术交流会,桂林,(1995),153
    57.陆宝山,锌锅表面处理延长使用寿命,全国第四届热浸镀学术技术交流会,桂林,(1995),332
    58. Tomita. T Tani, Durability of Sprayed WC/Co Coatings in Aluminum-Added Zinc Bath, J. Iron Steel Inst., Vol.79, No.9 (1993),1095
    59.水昭,新日本制铁株式会社名古屋制铁所,耐磨耐蚀压线轴,平4-13854,(1992)
    60. D.N.Tsipas, Degradation behavior of boronized carbon and high alloy steels in molten aluminium and zinc, Materials letter,37(1998), 128-131
    61.谷志刚等,渗硼低碳钢在热浸镀锌中的耐蚀性,金属熟处理,No.4,(1998),12
    62.刘金海等,铸铁渗硼层在高温锌液中的耐蚀性,材料保护,Vol.28,No.2,(1995),34
    63.余忠荪,稀土-硼共渗层抗腐蚀性能的研究,理化检验(物理分册),No.2,(1990)26
    64.徐章德,稀土元素对固体渗硼催渗作用的研究,金属热处理,No.6,(1989),21
    65.刘长禄,硼稀土粉末共渗及渗层的性能,金属热处理,No.8,(1989),32
    66.西亮,渗透工业株式会社,镀锌装置材料,特开平7-54127,(1995)
    67. Gerd Borchman, Boronizing with BC13 Gaseous agent, Crystal. Res. Technology, Vol. 20, No. 8, (1985), 1085-1763
    68. Cao Xiaoming, Potential for Industrial Gas Boronizing, Industrial Heating, Vol. 56, No. 11, (1989), 28
    69.赖户,东京株式会社,耐腐蚀性材料,平1-96348,(1989)
    70.J.C.伍德等,普拉塞尔.S.T.技术有限公司,耐熔锌腐蚀合金及其制造方法,CN1083112A,(1993)
    71.刘铭等,我国热镀锌锅的发展,金属制品,Vol.25,No.1(1999),9
    72. Tamas Torok, The Corrosion and Abrasion Attack of Molten Zinc on the Bath Wall During Hot Dipping, 10th International Congress on Metallic Corrosion, Vol.4: Sessions 14-19, Madras India, (1987), 3433
    
    
    73. Draley J.E, Metallic Materials Resistant to molten Zinc, Journal of Metals, No. 7, (1995), 10
    74.彭解,Mo-30W合金材料在热镀锌工艺装备上的应用,金属制品,Vol.14,No.2,(1988),44
    75.日根野,Kubota株式会社,镀锌用压线轴部件的制造方法,特开平10-102176,(1996)
    76.半田,日本铸造株式会社,耐熔锌腐蚀合金,特开平7-278754,(1995)
    77.藤野,Kubota株式会社,耐熔锌腐蚀高强度合金,特开平6-41694,(1994)
    78.藤野,Kubota株式会社,耐熔锌腐蚀合金,特开平6-228711,(1994)
    79.日根野,Kubota株式会社,耐熔锌腐蚀合金,特开平5-125493,(1993)
    80. Draley J.E, Metallic Materials Resistant to Molten Zinc, Journal of Metals, No. 7,(1995), 10
    81. Alfred Grafvon Matuschka, Boronizing, Heyden & Son Inc. Philadelphia, (1980), 14, 54, 63, 66
    82.王国佐,钢的化学热处理,中国铁道出版社,(1980),28
    83.程兰征等,物理化学,上海科技出版社,(1987),235
    84.邓文英,金属工艺学,高等教育出版社,(1991),40
    85.陈思夫等,可锻铸铁生产技术,天津大学机械学院,(2000),211
    86.安阁英,铸件形成理论,机械工业出版社,(1990),220
    87.安阁英,铸件形成理论,机械工业出版社,(1990),172
    88.束德林,金属力学性能,机械工业出版社,(1987),222

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700