用户名: 密码: 验证码:
二氧化锰/活性中间相碳微球超级电容器电极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迫于石油危机和环境保护的压力,各国政府都在大力发展新能源汽车产业。而高能量、高功率储能装置是新能源汽车最关键的技术之一。超级电容器(电化学电容器)是一种很有前景的储能器件,具有充放电性能优异,脉冲功率性能良好、使用寿命长、价格适中和环境友好等优势,在新能源汽车和其他行业用储能装置中占有一席之地。基于目前超级电容器用两大类电极材料――炭材料和金属氧化物各自的优势,本文将理论比容量高、价格适中、资源丰富、环境友好的金属氧化物——二氧化锰(MnO2)和导电性好、比表面积大、球形度良好的中间相碳微球基球形活性炭——活性中间相碳微球(AMCMB)设计成为新型的纳米金属氧化物/球形活性炭(MnO2 /AMCMB)复合材料,研究其制备方法、微观结构和电化学性能,以获得更高性能的超级电容器电极材料,推动高能量、高功率储能装置技术向前发展。
     第一,首次选取具有不同粒径规格的中间相碳微球MCMB作为混合前躯体,应用KOH化学活化法成功制备了粒度分布较广、球形度良好、比表面积和中孔孔容含量高的活性中间相碳微球AMCMB;并对比研究了其在30% KOH水系电解液和1 mol/L LiPF6/(DMC+EC)有机系电解液中的电容性能。结果表明,所制备的AMCMB粒径在5-40μm之间,大小分布相对均匀,比表面积达到3290.4m2 g-1,具有5-20nm的中孔结构,中孔孔容含量高达64.5%;AMCMB电极在1 mol/L LiPF6/(DMC+EC)有机电解液中的能量密度高达68.13 Wh/kg,是30% KOH水系电解液的8倍。为制备性能优异的MnO2 /AMCMB高能量高功率复合电极材料奠定了基础。
     第二,分别采用常温液相氧化还原化学反应法、常温液相化学共沉淀法和低温固相热分解法,成功制备了三种国内外尚未报道的,具有不同形貌的纳米MnO2与球形活性炭AMCMB的新型复合物:MnO2纳米粒/AMCMB(GMAM)复合物,MnO2纳米片/AMCMB(FMAM)复合物和MnO2纳米针/AMCMB(NMAM)复合物。以1 mol/L LiPF6/(DMC+EC)有机溶液为电解液,以MnO2/AMCMB复合物为电极,组装成对称超级电容器,研究了不同形貌的纳米MnO2对MnO2/AMCMB复合物的电容性能的影响。研究结果表明,所制备的GMAM复合物的MnO2粒径为100-200nm,FMAM复合物的MnO2粒径为200×80×20nm,NMAM复合物的MnO2粒径为(2-3)μm×(20-30)nm,其中NMAM的一维MnO2的纳米尺度最小,纳米化程度最高;在保持功率密度高的特性的同时,GMAM、FMAM和NMAM复合物都具有较高的能量密度,分别为98.2 Wh kg-1、106.3 Wh kg-1和127.4 Wh kg-1;三者中NMAM复合物电极具有更加优异的功率特性和更高的库仑效率,所制备的超级电容器具有替代传统二次电池的潜力。而且,使用常温液相氧化还原化学反应法、常温液相化学共沉淀法和低温固相热分解法工艺都简单易行,因此GMAM、FMAM和NMAM等复合电极材料极具产业化前景。
     第三,通过改变MCMB活化条件,在无需外添加商品CNT的条件下,成功制备了AMCMB-CNT新型混合物,并进一步制备了MnO2/(AMCMB-CNT)新型复合物。同时,以该复合物为电极,组装成对称超级电容器研究了其在1 mol/L LiPF6/(DMC+EC)有机电解液中的电容性能。研究结果表明,所制备的MnO2/(AMCMB-CNT)复合物属于二重复合物,即MnO2/AMCMB和MnO2/CNT二重复合物。该复合物中AMCMB上的MnO2粒度分布较广,约在40-160 nm之间,峰值为110nm;而CNT上MnO2粒度分布相对较窄,大多数集中在40-50 nm,且粒径比前者小;MnO2/(AMCMB-CNT)二重复合物的能量密度为113.7Wh kg-1,相比MnO2/AMCMB(GMAM)一重复合物电容器,该二重复合物具有更加优异的电化学性能。
     第四,通过水热合成法成功制备了极为有趣同时具有粒度分布较广和球形度良好的MnO2纳米丝球,并分别以MnO2纳米丝球和球形AMCMB为正负极,组装成不对称电容器,研究了其在1 mol/L的Et4NBF4/AN有机电解液中的电容性能。研究结果表明,所制备的MnO2纳米丝球呈现良好的球状分布,直径在5~20μm,大小分布相对均匀。MnO2球为丝状球体,单丝直径约80nm,长度在3~5μm之间;而且球体并非实心球,而是由无数纳米丝聚集而成的松散球体,其比表面积高达352 m2 g-1; AMCMB||MnO2混合超级电容器具有高达128 Wh kg-1能量密度,该数值已经相当接近锂离子电池的能量密度水平,1200次充放电循环后该混合超级电容器容量保持率在86%以上,而且功率性能十分优异。
     总体研究结果表明,将具有良好纳米结构的MnO2与具有良好球形度的AMCMB相结合,充分利用球形活性炭和纳米金属氧化物各自的优点,以及有机电解液超级电容器高工作电压的优势,达到了同时提高超级电容器的工作电压和能量密度,并保持良好的功率特性的目的,实现了预定的研究目标,为其工业应用奠定了理论和实验基础。
Forced by the pressure of the oil crisis and environmental protection, governments all over the world are seeking to develop new energy automotive industry. The high-energy, high power energy storage device has become one of the most critical technologies in this industry. Supercapacitor (electrochemical capacitor) is a promising energy storage device, with features of excellent charge and discharge performance, good pulsed power performance, long life, affordable and environmentally friendly, which is expected to play the major role in the new energy automotive industry and other industry as energy devices.
     Based on the advantages of current two categories of supercapacitor electrode material-- carbon and metal oxides, in this article, manganese dioxide (MnO2), one of the affordable, abundant resources, environmentally friendly and high theoretical specific capacity metal oxide, and activated mesocarbon microbead (AMCMB) with good conductivity and large specific surface area and good sphericity, were designed into a new type of nano-metal oxide/ spherical activated carbon (MnO2/AMCMB) composite materials. The preparation method, microstructure and electrochemical properties of composite materials were demonstrated, in order to obtain high performance supercapacitor electrode materials, and promote the development of high-energy, high-power energy storage technology.
     Firstly, for the first time, a high surface area activated mesocarbon microbead AMCMB with wide size distribution and good sphericity were successfully prepared, by selecting MCMB with different particle sizes as the mixed precursor, using KOH chemical activation. In addition, a comparative performance study was conducted in symmetrical supercapacitor for the AMCMB electrodes in 30% KOH water electrolyte and 1 mol/L LiPF6/(DMC+EC) organic electrolyte. The as-prepared AMCMB has good spherical degree and diameter between 5-40μm, the particle size distribution is relatively uniform, the specific surface is 3290.4 m2g-1, with a 5-20nm of the pore structure as well as a high mesopore content of 64.5%. The energy density of as-prepared AMCMB electrode in 1 mol/L LiPF6/(DMC+EC) organic electrolyte is up to 68.13 Wh/kg, which is 8 times as much as that in 30% KOH electrolyte. This is expected to lay the foundation for excellent performance of MnO2/AMCMB high-energy electrode materials.
     Secondly, three preparation methods with industrial prospects--room-temperature liquid phase redox method, liquid chemical precipitation method and low-temperature solid phase synthesis method, were applied to prepare three novel spherical MnO2/AMCMB composites in different morphologies: granular MnO2/AMCMB(GMAM) composite, flake-like MnO2/AMCMB(FMAM) and needle-like MnO2/AMCMB(NMAM) composite. The effects on capacitive performance of MnO2 morphologies were studied in 1 mol/L LiPF6/(DMC+EC) organic electrolyte in symmetrical supercapacitor. The as-prepared GMAM composite has MnO2 particle size of 100-200nm, FMAM composite has MnO2 particle size of 200×80×20nm, NMAM composite has MnO2 particle size of (2-3)μm×(20-30) nm, in which NMAM one-dimensional MnO2 has the smallest nano-scale and the highest nano-level degree. For the as-prepared MnO2/AMCMB composite electrode, the energy density of GMAM, FMAM, and NMAM are 98.2 Wh kg-1, 106.3 Wh kg-1 and 127.4 Wh kg-1, in which the NMAM composite electrode has more excellent power characteristics and higher coulomb efficiency. Supercapacitors prepared with these composite electrodes are of highly potential alternative to traditional secondary battery. Moreover, the three preparation methods used are simple and easy, so GMAM, FMAM, and NMAM composite electrode materials have great potential for industrialization.
     Thirdly, we successfully prepared a novel AMCMB-CNT compound without adding any CNT product by changing the activation conditions of AMCMB, and further prepared a novel MnO2/(AMCMB-CNT) composite. At the same time, the capacitive performance of the MnO2/(AMCMB-CNT) composite electrode was studied in symmetrical supercapacitor assembled studied in 1 mol/L LiPF6/(DMC + EC) organic electrolyte. The as-prepared MnO2/(AMCMB-CNT) composite is a dual-composite, that is the MnO2/AMCMB and MnO2/CNT double composites. The MnO2 on AMCMB has a wide particle size distribution between 40-160 nm with peak at 110nm. The MnO2 on CNT has a narrow particle size distribution, mostly lied in 40-50 nm that is smaller than the former one. The as-prepared MnO2/(AMCMB-CNT) dual-composite has energy density of 113.7 Wh kg-1, which demonstrated more excellent electrochemical performance compared to MnO2/AMCMB(GMAM).
     Fourthly, an interesting MnO2 nanowire-sphere with wide size distribution and good spherical morphology has been prepared by a hydrothermal method. A novel non-aqueous hybrid supercapacitor was fabricated from two spherical materials of spherical activated mesocarbon microbead (AMCMB) and MnO2 nanowire-sphere as the negative and positive electrodes, respectively, using 1 M Et4NBF4 in acetonitrile (AN) as electrolytes. The as-prepared MnO2 nanowire-sphere showed good spherical distribution of diameter 5~20μm and the size distribution is relatively uniform. The MnO2 nanowire-sphere is the filamentous sphere rather than solid sphere, made up of nanowires with diameter of about 80nm and the length between 3~5μm, the specific surface area of the MnO2 nanowire-sphere is up to 352 m2 g-1. The as-prepared AMCMB||MnO2 hybrid supercapacitor has an energy density up to 128 Wh kg-1, which is quite close to the energy density of lithium-ion battery. After 1200 cycles of charge-decharge, the capacity of the hybrid supercapacitor maintain a rate of >86%, and very excellent power performance.
     Overall results showed that, the combination of the good-nanostructured MnO2 and AMCMB with high spherical degree, the full use of advantages for spherical activated carbon and nano-metal oxides, and the advantage of the high voltage of organic electrolyte supercapacitor, contributed the objective of improving the voltage and energy density of superapacitors, while maintaining a good power characteristic. In short, this study has achieved the predetermined target and laid the theoretical and experimental foundation for the industrial application of MnO2/AMCMB electrode material.
引文
[1] D. Qu, Studies of the activated carbons used in double-layer supercapacitors[J]. J. Power Sources, 2002, 109(2): 403-411
    [2] M. Winter and R.J. Brodd, What are batteries, fuel cells, and supercapacitors[J].Chem. Rev., 2004,104(10),4245-4270.
    [3] D. Choi, G.E. Blomgren and P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors[J]. Adv. Mater., 2006, 18(9), 1178-1182.
    [4] R. Kotz, M. Carlen. Principles and applications of electrochemical capacitors[J]. Electrochim. Acta, 2000, 45(15-16): 2483-2498.
    [5] Y. Zhang, H. Feng, X.B. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang. Progress of electrochemical capacitor electrode materials: A review[J]. Int. J. Hydrogen Energy, 2009, 34(11): 4889-4899.
    [6] K.M. Lin, K.H. Chang, C.C. Hua, Y.Y. Li. Mesoporous RuO2 for the next generation supercapacitors with an ultrahigh power density[J]. Electrochim. Acta, 2009, 54(19): 4574-4581.
    [7] I. Bispo-Fonseca, J. Aggar, C. Sarrazin, P. Simon, J. F. Fauvarque. Possible improvements in making carbon electrodes for organic supercapacitors[J]. J. Power Sources, 1999, 79(2): 238-241.
    [8] S.R.S. Prabaharan, R. Vimala, Zulkarnian Zainal Nanostructured mesoporous carbon as electrodes for supercapacitors[J]. J. Power Sources, 2006, 20(1): 730-736.
    [9] A.Burke, R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim. Acta. 2007, 53(3): 1083-1091.
    [10] E. Karden, S. Ploumen, B. Fricke, T .Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles[J]. 2007, 168(1): 2-11.
    [11] P .Thounthong, S.Ra?la , B.Davat, Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle[J]. J. Power Sources, 2006, 158(1): 806-814.
    [12] A. Sripakagorn, N. Limwuthigraijirat, Experimental assessment of fuel cell/supercapacitor hybrid system for scooters[J]. Int J Hydrogen Energy 2009,34(15):6036-6044.
    [13] E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storage of energy incapacitors[J]. Carbon, 2001, 39(6): 937-950.
    [14] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors[J]. J. Power Sources, 2006, 19(1): 11-27.
    [15] T.E. Rufford, D. Hulicova-Jurcakova, E. Fiset, Z.H. Zhu, G.Q. Lu, Double-layer capacitance of waste coffee ground activated carbons in an organic electrolyte[J]. Electrochem. Commun. 2006, 11(5): 974-977.
    [16] F. Pico, E. Morales, J.A. Fernandez, T.A. Centeno, J. Iba?ez, R.M. Rojas, J.M. Amarilla, J.M. Rojo. Ruthenium oxide/carbon composites with microporous or mesoporous carbon as support and prepared by two procedures[J]. Electrochimica Acta, 2009, 54(8): 2239-2245.
    [17] M.A. Anderson, S.C. Pang, T.W.Chapman. Novel electrode material for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodedeposided manganese dioxide[J]. J. Electrochem. Soc., 2000,147(2): 444-450.
    [18] H.Y. Lee, J.B. Goodenough. Ideal Supercapacitor Behavior of Amorphous V2O5·nH2O in Potassium Chloride (KCl) Aqueous Solution [J]. J. Solid State Chemistry, 2000,147(2): 444-450.
    [19] C. Lin, J.A. Ritter, B.N.Popov. Characterization of sol-gel-derived cobalt oxide aerogels as electrochemical capacitors [J]. J. Electrochem. Soc. 1998, 145(12): 4097-4101.
    [20] J. Li, X. Wang, Q. Huang, S. Gamboa, P.J. Sebastian A new type of MnO2·xH2O/CRF composite electrode for supercapacitors [J]. J. Power Sources, 2006,160(2): 1501-1505.
    [21] C. Portet, P.L. Taberna, P. Simon, E. Flahaut. Influence of carbon nanotubes addition on carbon-carbon supercapacitor performances in organic electrolyte[J]. J. Power Sources, 2005,139(1-2): 371-378.
    [22] X. Wang, D. Ruan, P. Wang, Y. Lu. Pseudo-capacitance of ruthenium oxide/carbon black composites for electrochemical capacitors[J]. J. University of Science and Technology Beijing Mineral Metallurgy Material, 2008,15(6): 816-821.
    [23] Q. Huang, X. Wang, J. Li, Chunling Dai, Sergio Gamboa, P.J. Sebastian Nickel hydroxide/activated carbon composite electrodes for electrochemical capacitors[J]. J. Power Sources,164 (2007) 425-429.
    [24] Li. Zhang, T. Wei, W. Wang, X.S. Zhao. Manganese oxide-carbon composite assupercapacitor electrode materials [J]. Microporous and Mesoporous Materials, 2009,123(1-3): 260-267.
    [25] X. Xie, L. Gao. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method [J]. Carbon, 2007,45(12): 2365-2373.
    [26] P. Simon, Y. Gogotsi. Materials for electrochemical capacitors[J]. Nat Mater 2008,7: 845-854.
    [27] K.W. Nama, C.W. Lee, X.Q. Yang, B.W. Cho,W.S. Yoond, K.B. Kim, Electrodeposited manganese oxides on three-dimensional carbon nanotube substrate: Supercapacitive behaviour in aqueous and organic electrolytes[J]. J. Power Sources, 2009, 188(1): 323-331.
    [28] K.W. Nama, S.B. Mab, W.S. Yoon, X.Q. Yang, K.B. Kim. Novel concept of pseudocapacitor using stabilized lithium metal powder and non-lithiated metal oxide electrodes in organic electrolyte[J]. Electrochem. Commun. 2009, 11(6): 1166-1169.
    [29] W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao. Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte[J]. Carbon, 2007, 45(9): 1757-1763.
    [30] T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet and Y. Scudeller, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor[J]. J. Power Sources, 2007, 173(1): 633-641.
    [31] Y. Xue, Y. Chen, M.L. Zhang, Y.D. Yan, A new asymmetric supercapacitor based onλ-MnO2 and activated carbon electrodes[J]. Mater. Lett., 2008, 62(23): 3884-3886.
    [32] H. Kim, H. Kim, W. Cho, B. Cho, J. Ju. Discharge characteristics of chemically prepared MnO2 and electrolytic MnO2 in non-aqueous electrolytes[J]. J. Power Sources, 2002, 112(2): 660-664.
    [33] B. Ammundsen, J. Paulsen, Novel Lithium-Ion Cathode Materials Based on Layered Manganese Oxides[J]. Adv. Mater. 2001,13(12-13): 943-956.
    [34] E. Machefaux, T. Brousse, D. Bélanger, D. Guyomard, Supercapacitor behavior of new substituted manganese dioxides[J]. J. Power Sources, 2007, 165(2): 651-655.
    [35] M. Toupin, T. Brousee, D. Belanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chem. Mater. 2004, 16(16): 3184-1390.
    [36] X. Yang, Y. Wang, H. Xiong, Y. Xia. Interfacial synthesis of porous MnO2 and its application in electrochemical capacitor[J]. Electrochim. Acta, 2007, 53(2): 752-757.
    [37] J. WeiI, N. Ngarajan, I. Zhitomirsky. Manganese oxide films for electrochemical supercapacitors[J]. Journal of Materials Processing Technology. 2007, 186 (1-3): 356-361.
    [38] S.C. Pang, M.A. Anderson, T.W. Chapman, Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide[J]. J. Electrochem. Soc. 2000,147(2): 444-450.
    [39] W. Xiao, Hui Xia, Y.H. Fu, L. Lu. Growth of single-crystal MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties[J]. J. Power Sources, 2009,193(2): 935-938.
    [40] R.R Jiang, T. Huang, J.L Liu, J H Zhuang, A.s Yu .A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode [J].Electrochimica Acta ,2009,54 (11) :3047-3052
    [41] A. Z. Zolfaghari, F. Ataherian, M. Ghaemi, A Gholami .Capacitive behavior of nanostructured MnO2 prepared by sonochemistry method [J]. Electrochimica Acta , 2007, 52 (8) 2806-2814
    [42] R.K. Sharma, H.S. Oh, Y.G. Shul, H.S Kim . Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor [J]. Journal of Power Sources , 2007, 173 (2) :1024-1028
    [43] S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou .Electrodeposition of MnO2 nanowires on carbon nanotube paperas free-standing, flexible electrode for supercapacitors[J]. Electrochemistry Communications . 2008,10 (11) : 1724-1727
    [44] W.P Tang, X.J Yang, Z.H Liu, K. Ooi. Preparation of b-MnO2 nanocrystal/acetylene black composites for lithium batteries[J]. Mater. Chem., 2003, 13(18):2989-2995.
    [45] X.M. Hou, F. Zhou, W.M Liu . A facile low-cost synthesis of ZnO nanorods via a solid-state reaction at low temperature[J]. Materials Letters. 2006 , 29-30(60): 3786-3788.
    [46] S. Yenisoy-Karakas, A. Aygeun, M. Geunes, E. Tahtasakal. Physical and chemical characteristics of polymer-based spherical activated carbon and its ability to adsorborganics[J]. Carbon, 2004, 42 (3) :477-484
    [47] J.J. Lee, J.K. Suha, J.S. Honga, J.M. Lee,Y.S. Lee, J.W. Park. The synthesis of spherical activated carbons containingzinc and their photochemical activity[J]. CARBON , 2008, 46(13) :1648-1655.
    [48] S.I. Lee, S. Mitani, S.H. Yoon, Y. Korai, I. Mochida. Preparation of spherical activated carbon with high electric double-layer capacitance[J]. Carbon . 2004, 42(11) :2332-2334.
    [49] S. Nomoto, H. Nakata, K. Yoshioka. Advanced capacitors and their application[J]. J. Power Sources. 2001, 97-98 : 807-811.
    [50] S.B. Lee, S.I. Pyun. Mechanism of lithium transport through an MCMB heat-treated at 800-1200°C[J]. Electrochimica Acta. 2002,48(4): 419-430.
    [51] G. Q. Zhang, X. G. Zhang .MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells [J]. Electrochimica Acta. 2004,49(6) :873-877.
    [52] Y. Korai, S. Ishida, S. -H. Yoon, Y. -G. Wang, I. Mochida, Y. Nakagawa, Y. Matsumura, Y. Sakai, M. Komatu . Efficient preparation of meso-carbon microbeads from synthetic isotropic pitch derived from naphthalene[J]. Carbon. 1996,34(12) : 1569-1576.
    [53] Y.C. Chang, H.J. Sohn, C.H. Ku, Y.G.Wang, Y.Z. Korai, I. Mochida. Anodic performances of mesocarbon microbeads (MCMB) prepared from synthetic naphthalene isotropic pitch[J]. Carbon. 1999, 37(8): 1285-1297.
    [54] F.H. Li, W.D.Chi, Z.M. Shen, Y.X. Wu, Y.F. Liu, H. Liu . Activation of mesocarbon microbeads with different textures and their application for supercapacitor[J]. Fuel Processing Technology. 2010,91(1) :17-24.
    [55] C.J. Zhou, P. J. McGinn. The effect of oxygen on the processing of mesocarbon microbeads to high-density[J]. carbon Carbon. 2006, 44(9): 1673-1681.
    [56] X.Y. Cao, J.H. Kim, S. M. Oh. The effects of oxidation on the surface properties of MCMB[J]. Electrochimica Acta. 2002,47(25) : 4085-4089.
    [57] T. Kasuh, G. Morino, U.S. Patent, US 5,143,889, 1992.
    [58] Z.M. Shen, R.S. Xue. Preparation of activated mesocarbon microbeads with high mesopore content [J]. Fuel Processing Technology . 2003, 84 (1-3) :95– 103.
    [59] R.S. Xue, Z.M. Shen. Formation of graphite-potassium intercalation compounds during activation of MCMB with KOH [J]. Carbon. 2003, 41 (11): 1862-1864
    [60] Y.B. Ji, T.H. Li, L. Zhu, X.X. Wang, Q. L. Lin. Preparation of activated carbons by microwave heating KOH activation[J]. Applied Surface Science. 2007,254 (2) :506-512.
    [61] H.Q. Wang, Z.S Li, J.H Yang, Q.Y. Li, X.X. Zhong. A novel activated mesocarbon microbead(aMCMB)/Mn3O4 composite for electrochemical capacitors in organic electrolyte Journal of Power Sources[J]. 2009, 194(2): 1218-1221.
    [62] K. C. Roh, J. B. Park, C.T. Lee, C. W. Park. Study on synthesis of low surface area activated carbons using multi-step activation for use in electric double layer capacitor[J]. Journal of Industrial and Engineering Chemistry. 200814 (2) :247–251.
    [63] E. Mora, C. Blanco, J.A. Pajares, R. Santamaría, R. Menéndez. Chemical activation of carbon mesophase pitches[J] .Journal of Colloid and Interface Science. 2006,298 (1) :341–347.
    [64] K.T. Nam, D.W.n Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang and A.M. Belcher, Science, 2006, 312, 885.
    [65] X.Z. Fu, Q.C. Xu, R.Z. Hu, B.X. Pan, J.D. Lin, D.W. Liao.β-CoOOH coated sphericalβ-NiOOH as the positive electrode material for alkaline Zn-NiOOH battery[J]. J. Power Sources, 2007, 164(2): 916-920.
    [66] J. Ying, M. Lei, C. Jiang, C. R.Wan, X. He, J. Li, L. Wang, J. Ren. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries[J]. J. Power Sources, 2006, 158(1): 543-549.
    [67] L. Shi, J. F.Yao, J. Jiang, L. L.Zhang, N.P. Xu. Preparation of mesopore-rich carbons using attapulgite as templates and furfuryl alcohol as carbon source through a vapor deposition polymerization method[J]. Microporous and Mesoporous Materials. 2009,122 (1-3) 294.
    [68] B.Xu, F.Wu, R. Chen, G. Cao, S. Chen, Y. Yang. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte[J]. Journal of Power Sources. 2010,195 (7) :2118-2124.
    [69] Q. Y. L, H.Q.Wang, Q. F. Dai, J.H Hong. Y.L. Lan. Novel activated carbons as electrode materials for electrochemical capacitors from a series of starch [J]. Solid StateIonics, 2008,179(7-8):269-273.
    [70] G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, E. Frackowiak. Effect of pore size distribution of coal-based activated carbons on double layer capacitance[J]. Electrochim. Acta, 2005,50 (5): 1197-1206.
    [71] J.H. Kim, T. Ayalasomayajula, V. Gona , D. Choi. Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries[J]. J. Power Sources, 2008, 183(1): 366-369.
    [72] H.Q. Wang, Z.S. Li, Y.G. Huang, Q.Y. Li, X.Y. Wang. A novel hybrid supercapacitor based on spherical activated carbon and spherical MnO2 in a non-aqueous electrolyte[J]. J. Mater. Chem. 2010, 20: 3883-3889.
    [73] Y.G. Wang, Y.Y. Xia. Carbon and lithium-intercalated compounds[J]. Electrochem. Soc. 2006,153: A450-A454.
    [74] P. Liu, M. Verbrugge, S. Soukiazian. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors[J]. J. Power Sources 2006,156 (2):712-718.
    [75] F. Jiao , P. G. Bruce. Mesoporous Crystallineβ-MnO2: a Reversible Positive Electrode for Rechargeable Lithium Batteries[J]. Adv. Mater. 2007, 19(5):657- 660.
    [76] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E.Weber, R. Russo and P.D. Yang, Science 2001, 292, 1897.
    [77] C.Z.Yuan, B. Gao, L.H. Su, X.G. Zhang, NiO loaded on hydrothermally treated mesocarbon microbeads (h-MCMB) and their supercapacitive behaviors[J]. Solid State Ionics 2008,178(35- 36): 1859-1866.
    [78] J.M. Ko, K.M. Kim, Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor[J]. Mater. Chem. Phys. 2009, 114 (2-3): 837- 841.
    [79] C. Xu, S. Bao, L. Kong, H. Li, H. Li, Highly ordered MnO2 nanowire array thin films on Ti/Si substrate as an electrode for electrochemical capacitor[J]. Journal of Solid State Chemistry 2006, 179 (5) : 1351-1355.
    [80] Y. Dong, H. Yang, K. He, S. Song, A. Zhang,β-MnO2 nanowires: A novel ozonationcatalyst for water treatment[J]. Applied Catalysis B 2009, 85: 155-161.
    [81] Fabio H.B. Lima, Marcelo L. Calegaro, Edson A. Ticianelli. Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction[J]. Electrochimica Acta 2007, 52 (11) : 3732-3738.
    [82] W. Tang, X. Yang, Z. Liub and K. Ooi, Preparation ofβ-MnO2 nanocrystal/acetylene black composites for lithium batteries J. Mater. Chem., 2003, 13: 2989-2995.
    [83] C. Poinsignon, E. Djurado, H. Klein, P. Strobel, F. Thomas, Electrochemical and surface properties of nanocrystallineβ-MnO2 in aqueous electrolyte[J]. Electrochimica Acta 2006, 51(15): 3076–3085.
    [84] Z. Fan, J. Chen, M. Wang, K. Cui, H. Zhou, Y. Kuang, Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials[J]. Diamond & Related Materials 2006, 15 (9): 1478-1483.
    [85] Beguin F, Szostak K, Lota G, Frackowiak E. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends[J]. Adv Mater 2005, 17:2380-2384.
    [86] Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations[J]. Electrochim Acta 2005, 50: 2499-506.
    [87] Qin X, Durbach S, Wu GT. Electrochemical characterization on RuO2 xH2O/carbon nanotubes composite electrodes for high energy density supercapacitors[J]. Carbon 2004, 42: 423-460.
    [88] Wang G.X, Zhang B.L, Yu Z.L, Qu M.Z. Manganese oxide/MWNTs composite electrodes for supercapacitors[J]. Solid State Ionics 2005, 176: 1169-1174.
    [89] Lee JY, Liang K, Ana KH, Lee YH. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synth Met 2005,50: 153-157.
    [90] Subramanian V, Zhu H.W, Wei B.Q. Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials[J]. Electrochem Commun 2006,8: 827-832.
    [91] Lee C.Y, Tsai H.M, Chuang H.J, Li S.Y, Lin P, Tseng T.Y. Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotubenanocomposite electrodes[J]. J. Electrochem Soc 2005, 152: A716-A720.
    [92] Deng M.G, Yang B.C, Zhang Z.A, Hu Y.D. Studies on CNTs-MnO2 nanocomposite for supercapacitors[J]. J. Mater Sci 2005, 40: 1017-1018.
    [93] P. Taberna, G. Chevallier, P. Simon, D. Plee, T. Aubert. Activated carbon-carbon nanotube composite porous film for supercapacitor applications[J]. Materials Research Bulletin 2006, 41(3): 478-484.
    [94] C.H. Kiang, W.A. Goddard, R. Beyers, D.S. Bethunea, Carbon nanotubes with single-layer walls[J]. Carbon 1995, 33 (7) : 903–914.
    [95] L. Sun, F. Banhart, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, M. Terrones, P.M. Ajayan, Carbon nanotubes as high-pressure cylinders and nanoextruders[J]. Science 2006, 312: 1199-1202.
    [96] D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B. K. Price, J.M. Tour. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature 2009, 458: 872-876.
    [97] E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoros, A. Linares-Solano, F. Beguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon 2005, 43(4): 786-795.
    [98] I.W. Chiang , B.E. Brinson , A.Y. Huang, P.A. Willis, M.J. Bronikowski, J.L. Margrave, et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco Process ) [J]. J Phys Chem B 2001, 105: 8297-8301.
    [99] S. Kishinevsky, S.I. Nikitenko, D.M. Pickup, E.H. Van-Eck, A. Gedanken, Catalytic transformation of carbonblack to carbon nanotubes[J]. Chem. Mater. 2002, 14: 4498-4501.
    [100] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, Growth of single wall carbon nanotubes from carbon monoxid[J]. Chem. Phys. Lett. 1999, 313: 91-97.
    [101] C.M. Yang, K. Kaneko, M. Yudasaka, S. Iijima. Effect of purification on pore structure of HiPco single-walled carbon nanotube aggregates[J]. Nano. Lett. 2002, 2: 385-388.
    [102] W. Seo, E. Couteau, P. Umek, K. Hernadi, P. Marcoux, B. Lukic, Synthesis and manipulation of carbon nanotubes[J]. New J. Phys. 2003, 5 (1) :120.
    [103] A.J. Hart, A.H. Slocum, L. Roye, Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation[J]. Carbon 2006, 44 (2) :348-359.
    [104] T. Gokcen, C.E. Dateo, M. Meyyappan, Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis[J]. J. Nanosci. Nanotechno. 2002, 2: 535-544.
    [105] Z. Zhu, A. Li, L. Yan, F. Liu, Q. Zhang, Preparation and characterizationof highly mesoporous sphericalactivated carbons from divinylbenzene-derived polymer by ZnCl2 activation[J]. J. Colloid Interf. Sci. 2007, 316 (2): 628-634.
    [106] V. Jiménez, P. Sánchez, J.L. Valverde, A. Romero, Influence of the activating agent and the inert gas (type and flow) used in an activation process for the porosity development of carbon nanofibers[J]. J. Colloid Interf. Sci. 2009, 336 (2): 712-722.
    [107] J. Wang, E.J. Anthony, J. C. Abanades. Clean and efficient use of petroleum coke for combustion and power generation. Fuel 2004, 83 (10) :1341–1348.
    [108] T.D. Tran, D. J. Derwin, P. Zaleski, X. Song, K. Kinoshita, Lithium intercalation studies of petroleum cokes of different morphologies. J. Power Sources 1999,81-82: 296-299.
    [109] H. Zhanga, J. Chen, Shaohui Guo, Preparation of natural gas adsorbents from high-sulfur petroleum coke[J]. Fuel 2008, 87 (3): 304-311.
    [110] X.G. Zhang, C.M. Shen, H.L. Li, Preparation ofγ-MnO2/carbon composite material by a wet chemical method[J]. Mater. Res. Bull. 2001, 36: 541-546.
    [111] Y. Zhao, X. Yang, J. Tian, F. Wang, L. Zhan, A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electro-oxidation[J]. Journal of Power Sources 2010, 195 (15): 4634-4640
    [112] Q. Wang, Z. Wen, J. Li, Adv. Funct. Mater., A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode[J]. 2006, 16, 2141-2146.
    [113] T. Brousse, R. Marchand, P.L. Taberna and P. Simonb, TiO2 (B)/activated carbon non-aqueous hybrid system for energy storage[J]. J. Power Sources, 2006, 158(1)571-577.
    [114] V. Ganesh , S. Pitchumani and V. Lakshminarayanan, New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon[J]. J. Power Sources, 2006, 158, 1523-1532.
    [115] F. Estaline Amitha, A. Leela Mohana Reddy, S. Ramaprabhu, A non-aqueous electrolyte based asymmetric supercapacitor with polymer and metal oxide/multiwalled carbon nanotube electrodes [J]. J. Nanopart. Res. 2009, 11: 725-729.
    [116] A. Laforgue, P. Simon, J.F. Fauvarque, M. Mastragostino, F. Soavi, J.F.Sarrau, P. Lailler,M. Conte, E. Rossi and S. Saguatti, Activated Carbon/Conducting Ploymer Hybrid Supercapacitors[J]. J. Electrochem. Soc. 2003, 150(5) : A645-651.
    [117] M. Mastragostino and F. Soavi, Strategies for high-perfromance supercapacitors for HEV[J]. J. Power Sources, 2007, 174(1): 89-93.
    [118] C. Yuan, B. Gao, L. Su and X. Zhang, Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors[J]. J. Colloid. Interf. Sci. 2008, 322(2): 545-550.
    [119] R.N. Reddy and R.G. Reddy, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material[J]. J. Power Sources, 2004, 132(1-2): 315-320.
    [120] N.A. Dhas, Y. Koltypin and A. Gedanken, Sonochemical preparation and characterization of ultrafine chromium oxide and manganese oxide powders[J]. Chem. Mater. 1997, 9: 3159-3163.
    [121] M. Hibino, H. Zhou and I. Honma, Electrode properties of manganese oxide synthesized by sonochemical method in non-aqueous system[J]. J. Power Sources 2005, 146(1-2): 304-309.
    [122] N. Kijima, H. Yasuda, T. Sato and Y. Yoshimura, Preparation and characterization of open tunnel oxide [alpha]-MnO2 precipitated by ozone oxidation[J]. J. Solid State Chem. 2001, 159(1): 94-102.
    [123] T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet and Y. Scudeller, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor[J]. J. Power Sources, 2007, 173(1): 633-641.
    [124] Y. Xue, Y. Chen, M.L. Zhang and Y.D. Yan, A new asymmetric supercapacitor basedon [lambda]-MnO2 and activated carbon electrodes[J]. Mater. Lett. 2008, 62: 3884-3886.
    [125] A. Yuan and Q. Zhang, A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte[J]. Electrochem. Commun. 2006, 8(7): 1173-1178.
    [126] X.Y. Wang, X. Wang, T. Hou, J. LI and Q. Huang, J. Chem. Indu. Eng. (China), 2006, 57: 442.
    [127] K.S. Ryu, K. M. Kim, Y. J. Park, N.G. Park, M.G. Kang and S.H. Chang, Redox supercapacitor using polyaniline doped with Li salt as electrode[J]. Solid State Ionics, 2002,152-153: 861-866.
    [128] Y.G. Wang, H.Q. Li, Y.Y. Xia, Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance.[J]. Adv. Mater. 2006, 18: 2619-2623.
    [129] J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque and M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors[J]. J. Power Sources, 2001, 101(1): 109-116.
    [130] M. Toupin, D. Bélanger, I.R. Hill and D.Quinn, Performance of experimental carbon blacks in aqueous supercapacitors[J]. J. Power Sources, 2005,140(1): 203-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700