用户名: 密码: 验证码:
氧化锰一维纳米材料的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属氧化物作为良好的准电容器材料成为目前研究热点,MnO2因其成本低廉、制备方法多样、电化学窗口宽、理论比电容比较大、环境友好等特性倍受研究者亲睐。本文以α-,β-,δ-,γ-MnO2和γ-MnOOH纳米材料为研究对象,利用XRD, SEM, TEM, CHI660, Autolab电化学工作站等现代测试手段,对上述纳米材料的结构和性能进行研究,主要的研究内容和结果如下:
     1.采用水热法,在硫酸锰和高锰酸钾反应体系中,通过控制工艺条件,分别制备出α,β,γ,δ四种晶型和不同形态的MnO2纳米材料,在一个反应体系中实现了MnO2纳米材料晶相和形态的控制生长。在碱性条件下,制备出了层状结构的δ相MnO2,其形貌呈片状;而在酸性条件下,易于形成2×2α相,1×1β相,2×1γ相隧道状结构的MnO2,通过改变反应温度、反应时间和添加剂PVP的含量,分别制备出了长度约为1μm、直径约为80 nm的α相纳米线;长度约为1μm,直径为100 nm的β相纳米线;纳米棒和纳米颗粒混合的γ-MnO2,并研究了不同水热条件下物相结构变化的机理。最后对140℃下水热10 h和18 h的a相纳米线进行了恒流充放电测试,其比容量分别为41.3 F/g和13.1 F/g。
     2.结合微乳液法和水热法,利用表面活性剂CTAB形成的软模板,以MnS04和KMnO4为原料制备出了γ-MnOOH纳米线团簇。γ-MnOOH直径约为30 nm,长度约为2-3μm,同时考察了水热反应前后、不同表面活性剂(SA和CTAB)对产物晶型、表面形貌的影响,并分析了γ-MnOOH纳米线团簇的形成机理;通过水热法,利用CTAB在水-乙醇体系中形成软模板,使用无定形MnO2制备出γ-MnOOH纳米线,其长度大于1μm,直径约200-600 nm。并研究了水热温度、水热时间、模板剂CTAB的含量、醇水比例对γ-MnOOH形貌的影响。对γ-MnOOH纳米线进行恒流充放电、循环伏安测试,其电极比容量为:25 F/g。
Transition-oxides have been the focus of good supercapacitor materials, manganese oxide, because of its low cost, various synthesis method, large potential window, theoretical good performance, and environmental friendly, has become most of researchers' target. In this paper,α-,β-,δ-,γ-MnO2 andγ-MnOOH were kept as study focus, by using XRD, SEM, TEM, CHI660, Autolab and other characterization methods, these nanomaterial above have been tested and analyzed. The main study work and results are as follows:
     By using hydrothermal method, based on KMnO4 and MnSO4 reaction system,α-,β-,δ-,γ-types have been synthesized, possessing different morphologies, such as 1D,2D structures. In this unique system, the controllable crystallography and morphology growth have been realized. In the alkaline environment,δ-type manganese oxide was obtained, which is in the form of 2D morphology; on the other hand at the acid environment,2×2α-,1×1β-,2×1γ-types were easy to form, just by adjusting the reaction temperature, reaction time, and the amount of additive PVP.α-type is 80 nm in diameter and 1μm in length nanowire;β-type consists of nanowires with 100 nm in diameter and 1μm in length; lastly,γ-type exists in the compound of nanowires and nanoparticles. Lastly, the mechanism for hydrothermal environment how to influence manganese oxide structure has been studied. Finally, CV analysis has been used to study the Current-Voltage of four types of MnO2. Based on condition of synthesizingα-type, we have studied the relationship between reaction time and its specific capacitance. At different reaction time 10 h and 18 h, the specific capacitance of examples are 41.3 F/g and 13.1 F/g, respectively.
     Also based on KMnO4 and MnSO4 reaction system, microemulsion and hydrothermal method have been combined to synthesisγ-MnOOH ultro-long nanowres clusters, in which surfactant PVP has been used as the soft module to direct the formation of nanowires.γ-MnOOH nanowires are 30 nm in diameter and 2-3μm in length, and at the same time, the effects and hydrothermal treatment, and different surfactants to the formation of crystals and their morphologies have been studied, and the mechanism has been studied; Through water solution self-assembly method, using CTAB as the soft module in the water-ethanol system, the amorphous manganese oxide has been synthesized intoγ-MnOOH 1-dimensional nanomaterial.γ-MnOOH nanowires are 200-600 nm in diameter and over 1μm in length. Different influential factors have also been studied, such as the reaction temperature, reaction time, the amount of addictive CTAB, and different water/ethanol percentage. Finally,γ-MnOOH nanowires have been tested by C-V and constant charging-discharging equipments. As a result, The specific capacitance is test as 25 F/g.
引文
[1]Bao S J, He B L, Liang Y Y, et al. Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor. Materials Science and Engineering A, 2005.397 (1):305~309
    [2]Wu N L. Nanocrystalline oxide supercapacitors. Material Chemistry and Physics,2002.75 (1): 6-11
    [3]Wang Y G, Zhang X G. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites. Electrochimica. Acta.,2004.49 (12):1957~1962
    [4]Hu C C, Tsou T W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition. Electrochimica. Acta.,2002.47 (21):3523~3532
    [5]Kalakodimi R P, Norio M. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochemistry Communications,2004.6 (10): 1004~1008
    [6]耿新.二氧化锰电化学电容器的研究:[博士学位论文].天津:天津大学,2003
    [7]刘志祥.超级电容器相关技术研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2002
    [8]张克丛.近代晶体学基础.北京:科学出版社,1998.4-5
    [9]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science,2001.291 (5510):1947~1949
    [10]Hong B H, Bae S C, Lee C W, et al. Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 2001.294:348~351
    [11]Thostenson E T, Ren Z F, Chou T W. Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology,2001.61: 1899~1912
    [12]Hu J, Odom T W, Lieber C M. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes. Accounts of Chemical Resesrch,1999.32:435~445
    [13]Gates B, Wu Y, Yin Y, et al. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. Journal of the American Chemical Society, 2001.123:11500~11501
    [14]Mirkin C A, Taton T A. Semiconductors meet biology. Nature,2000.405:626~627
    [15]Ahmadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal platinum nanoparticles. Science,1996.272:1924~1926
    [16]Qian X F, Yin J, Feng S, et al. Preparation and characterization of polyvinylpyrrolidone films containing silver sulfide nanoparticles. Journal of Materials Chemistry,2001.11: 2504~2506
    [17]Vollath D, Sickafus K E. Synthesis of nanosized ceramic nitride powders by microwave supported plasma reactions. Nanostructured Materials,1993.2:451~456
    [18]Zhu Y Q, Hu W B, Hsu W K, et al. SiC-SiOx heterojunctions in nano-wires. Journal of Materials Chemistry,1999.9:3173~3178
    [19]Xia Y, Yin Y, Lu Y, McLellan J. Template-Assisted Self-Assembly of Spherical Colloids into Complex and Controllable Structures. Adv. Funct. Mater.,2003.13:507
    [20]Wang X, Li Y D, Rare earth compounds nanowires, nanotubes and fullerene-like nanoparticles:synthesis, characterization and properties Chem.-Eur. J,2003.9 (22): 5627~5635
    [21]Zhou Y K, He B L, Zhang F B, et al. Hydrous manganese oxide/carbon nanotube composite electrodes for electrochemical capacitors. J. Solid State Electrochem.,2004.8 (7):482~487
    [22]Chen Y S, Hu C C, Wu Y T. Capacitive and textural characteristics of manganese oxide prepared by anodic deposition:effects of manganese precursors and oxide thickness. J. Solid State Electrochem.,2004.8 (7):467~473
    [23]Khomenko V, Raymundo P E, Beguin F. Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium. J. Power Sources, 2006.153 (1):183~190
    [24]Ravinder N R, Ramana G R. Sol-gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources,2003.124 (1):330~337
    [25]夏熙.二氧化锰的物理,化学性质与其电化学活性的相关(1-8).Battery Bimonthly (电池),2005.12
    [26]夏熙.二氧化锰电极电化学(1-7).电池工业,2005.2
    [27]李亚栋,李成韦等.γ-MnO2纳米晶的水热合成及表征CHINESE JOURNAL OF APPLIED CHEMISTRY,1997.9
    [28]孙巍伟,夏熙.γ-MnO2在不同电解质水溶液中的稳定性.Battery Bimonthly(电池), 2000.4
    [29]小柴淳治,西泽茂郎.电解二氧化锰的晶体结构及其结构化学成本.徐国宪译Battery Bimonthly:电池),1978.8(2):40~46
    [30]古泽四郎,竹原善一郎.二氧化锰的电化学.徐国宪译.Battery Bimonthly(电池),1978.8(2):47~76
    [31]Kozawa A.二氧化锰手册.夏熙编译.成都:四川科技出版社,1994
    [32]李亚栋,李成韦等.不同形状y-Mn02超微粒子的制备.CHINESE JOURNAL OF APPLIED CHEMISTRY,1997.4
    [33]王莉,袁中直,陈秋红等.方形MnOOH单晶的水热法制备.无机材料学报,Jul.,2007
    [34]马扣祥,孟良荣,夏熙.高功率放电的二氧化锰和电池.电源技术,2007.1
    [35]夏熙,刘洪涛.一种正在迅速发展的贮能装置超电容器.电池工业,2004.6
    [36]侯少凡,刘冠姚等.水热法合成超长γ-MnOOH和a-MnO2亚微米/纳米线.稀有金属材料和工程,2007.8
    [37]刘金成,周震涛.λ-MnO2的结构与电性能研究.中国锰业,2003.11
    [38]文建国,周震涛.MnO2超级电容器材料在中性电解质中的电化学特性.中国锰业,2004.5
    [39]张一兵.MnO2的结构与其放电性能的关系.上饶师专学报,1995.6
    [40]胡永达,袁节等.改性纳米氧化锰超级电容器电极材料的研究.2006年中国电子学会第十四届电子元件学术年会论文集
    [41]郭学益,刘海涵等.二氧化锰晶型转变研究.矿冶工程,2007.2
    [42]张治安.基于氧化锰和碳材料的超级电容器研究:[学位论文]
    [43]闪星,董国君等.新型超大容量电容器电极材料—纳米水合MnO2的研究.无机化学学报,2001.9
    [44]房振乾,刘文西,陈玉如.新型氧电极催化剂材料纳米γ型MnO2合成及其电化学性能.电源技术,2003.3
    [45]Feng Q, Kanoh H, Ooi K. Manganese oxide porous crystals. J. Mater. Chem.,1999.9:319
    [46]Thackeray M M. Synthesis of γ-MnO2 from LiMn2O4 for Li/MnO2 battery applications. Solid State Chem.,1997.25:1
    [47]Perner A., Holl K, Ilic D, Wohlfahrt-Mehrens M. A New MnOx Cathode Material for Rechargeable Lithium Batteries. Eur. J. Inorg. Chem.,2002.2002:1108~1114
    [48]Wang L Z, Ebina Y, Takada K, Sasaki T. Ultrathin hollow nanoshells of manganese oxide.
    Chem. Commun.,2004.9:1074~1075
    [49]Muraoka Y, Chiba H, Atou T, Kikuchi M, Hiraga K, Syono Y. Preparation of α-MnO2 with an Open Tunnel. J. Solid. State. Chem.,1999.144:136~142
    [50]Kijima N, Yasuda H, Sato T, Yoshimura Y. Preparation and Characterization of Open Tunnel Oxide α-MnO2 Precipitated by Ozone Oxidation. J. Solid. State. Chem.,2001.159:94
    [51]Xiao T D, Strutt P R, Benaissa M, Chen H, Kear B H. Synthesis of High Active-Site Density Nanofibrous MnO2-Base Materials with Enhanced Permeabilities. Nanostructured Materials with Enhanced Permeabilities. Nanostruct. Mater.,1998.10:1051~1061
    [52]DeGuzman R N, Shen Y F, et al. Synthesis and Characterization of Octahedral Molecular Sieves Having the Hollandite Structure. Chem. Mater.,1994.6:815~821
    [53]Wang X, Li Y D. Selected-control hydrothermal synthesis of alpha-and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc.,2002.124:2880
    [54]Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J.,2003.9:300
    [55]Shen Y F, Suib S L, O'Young C L. Effects of Inorganic Cation Templates on Octahedral Molecular Sieves of Manganese Oxide. J. Am. Chem. Soc.,1994.116:11020~11029
    [56]De Wolff P M. Interpretation of Some γ-MnO2 Diffraction Patterns. Acta. Crystallogr., 1959.12:341
    [57]Ruetschi P. Cation-Vacancy Model for MnO2. J. Electrochem. Soc.,1984.131:2737
    [58]Ruetschi P, Giovanoli R. Cation Vacancies in MnO2 and Their Influence on Electrochemical Reactivity. J. Electrochem. Soc.,1988.35:2663
    [59]Shen X F, Ding Y S, Suib S L. Control of Nanometer-Scale Tunnel Sizes of Porous Manganese Oxide Octahedral Molecular Sieve Nanomaterials. Adv. Mater.,2005.17: 805~809
    [60]Fang Z, Tang K B, Gao L S, Wang D, Zeng S Y, Liu Q C. Facile and large-scale synthesis of single-crystalline manganese oxyhydroxide/oxide nanostructures. Mater. Res. Bull.,2007.42: 1761-1768
    [61]Pileni M P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater.,2003.2:145
    [62]Gourdon D, Yasa M, israelachvili J N. Mechanical and Structural Properties of BaCrO4 Nanorod Films under Confinement and Shear. Adv. Funct. Mater.,2004.14:238
    [63]Pinna N, Willinger M, Weiss K, Urban J, Schlogl R. Local Structure of Nanoscopic Materials: V2O5 Nanorods and Nnowires. Nano Lett.,2003.3:1131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700