用户名: 密码: 验证码:
稀土氧化物纳米管阵列制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制备纳米阵列结构材料,已成为当前纳米材料领域的研究热点。本论文以多孔阳极氧化铝(AAM)为模板,结合减压抽滤法在AAM模板纳米孔道中构筑一元、二元、三元稀土氧化物纳米管阵列,并对其各种性能进行了研究。其主要研究内容如下:
     1.以0.3M草酸溶液为电解质溶液,采用直流电二次阳极氧化法制备纳米阵列结构多孔阳极氧化铝(AAM)模板。系统地讨论了制备纳米阵列结构AAM模板的理论问题及影响因素。
     2.利用减压抽滤法,在AAM模板孔道中构筑Dy2O3纳米管阵列。以热重分析仪(TGA)研究了前驱体的分解温度;利用扫描电子显微镜(SEM)、透射电子显微镜(TEM、x-射线衍射(XRD)、能谱(EDS)、选区电子衍射(SAED)、荧光分光光度计和振动样品磁强计(VSM)对Dy2O3纳米管形貌、结构、化学组成和性能进行表征。EDS分析结果表明,Dy2O3纳米管的原子百分比Dy:O约为18.75:81.25,质量百分比Dy:O约为97.78:2.22;荧光光谱分析表明,用波长为288nm的光激发Dy2O3纳米管,在587nm处有荧光发射峰;磁性测试结果表明,室温时Dy2O3纳米管阵列具有垂直各向异性,且易磁化方向是平行于纳米管阵列方向。
     3.采用减压抽滤AAM模板法组装了DyCoxOy纳米管阵列。利用热重分析仪(TGA)研究前驱体的分解温度;用SEM、TEM对所得样品的形貌进行表征;纳米管的晶相结构利用SAED和XRD来表征;振动样品磁强计(VSM)用以测试DyCoxOy纳米管的磁性。结果表明,DyCoxOy纳米管为非晶态结构,每根纳米管都是均匀、连续的,管与管之间相互平行;磁性测试结果表明,室温下DyCoxOy纳米管阵列具备软磁铁特征,易磁化方向是平行于纳米管阵列方向。
     4.以AAM为模板,结合减压抽滤法制备了DyCoxZnyOz纳米管阵列。分别用XRD、SEM、TEM、SAED和EDS对DyCoxZnyOz纳米管的形貌和晶相结构进行表征。结果表明,DyCoxZnyOz纳米管阵列为非晶态结构,纳米管元素组成的原子百分比Dy:Co:Zn:O约为4.86:1.67:1.70:91.77。利用振动样品磁强计(VSM)对纳米管的磁性进行了研究。研究结果表明,DyCoxZnyOz纳米管阵列易磁化方向为平行于纳米管阵列方向。DyCoxZnyOz纳米管阵列具备软磁体特征。
     5.利用AAM模板的纳米孔道,在减压抽滤作用下制备出大面积,形状、尺寸均匀一致的SmNixOy纳米管阵列。纳米管的形貌、晶相结构和元素组成由SEM、TEM、SAED、XRD和EDS来表征;SmNixOy纳米管阵列的荧光性能和磁性能分别利用荧光分光光度计和振动样品磁强计来分析。SAED和XRD测试结果表明,SmNixOy:纳米管为非晶态结构;EDS分析表明,SmNixOy纳米管中Sm、Ni和O元素的原子百分比Sm:Ni:O约为5.85:1.62:92.53,质量百分比Sm:Ni:O约为34.83:7.33:57.82;荧光光谱表明,用335nm的光激发纳米管,在383nm处有较强的荧光发射峰;VSM测试表明,SmNixOy;纳米管阵列具有垂直各向异性,易磁化方向为平行于纳米管轴方向。
Fbrication of nanostructure materials have become an hot topic in the field of nanomaterials during the recent years. In this paper, we employed porous anodic alumina (AAM) as template with filtering at subatmospheric to fabricate a series of rare earth oxide nanotube arrays in the AAM template. The main research contents are as follows:
     1. The AAM template has been fabricated via two-step anodization with direct current in 0.3 M oxalic solution. The theoretical and influencing about the nano-array structure of AAM template are discussed.
     2. The Dy2O3 nanotube arrays have been synthesized in the AAM template by filtering at subatmospheric. The decomposition temperature of the precursor has been studied by thermal gravimetric analysis (TGA).The morphology, structure, composition, fluorescence and magnetism of the nanotubes have been investigated by using scanning electron microscopy (SEM)、transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive spectra (EDS), selected area electron diffraction (SAED), fluoroscope and vibrating sample magnetometer (VSM), respectively. The result of EDS showed that the ratio of atomic percentage of Dy:O for Dy2O3 nanotube equals to 18.75:81.25, and the ratio of mass percentage of Dy O for Dy2O3 nanotube is 97.78:2.22. Fluorescence spectrum indicated that there is a fluorescence emission peak for Dy2O3 nanotubes at 587nm with 288nm light excited. The result of VSM showed that there is perpendicular anisotropy for Dy2O3 nanotube arrays at room temperature, and the easy magnetization direction is parallel to the direction of nanotube axis.
     3. The DyCoxOy nanotube arrays have been assembled in the pores of AAM template by the method of filtering at subatmospheric. The decomposition temperature of the precursor has been studied by TGA. The morphology of resulting samples has been characterized by SEM and TEM. The structure of the nanotubes has been characterized by SAED and XRD. The magnetism of DyCoxOy nanotube arrays has been studied by VSM. The results showed that the DyCoxOy nanotubes are amorphous, and the nanotubes are homogeneous, continuous and parallel from each other. The magnetization curve indicated that DyCoxOy nanotube arrays exhibits soft magnetic characteristics, and the easy magnetization direction is parallel to the direction of nanotube axis at room temperature.
     4. DyCoxZnyOz nanotube arrays have been fabricated in AAM by filtering at subatmospheric. The morphology and the crystal structure of DyCoxZnyOz nanotubes have been characterized by SEM、TEM、XRD、SAED and EDS, respectively. The results indicated that the DyCoxZnyOz nanotubes are amorphous, and the ratio of atomic percentage of Dy:Co:Zn:O is 4.86:1.67:1.70:91.77. The hysteresis loops characterized by VSM indicated that the easily magnetized direction of DyCoxZnyOz is parallel to the nanotube arrays and that there is magnetic anisotropy as a result of the shape anisotropy. DyCoxZnyOz nanotube arrays exhibited soft magnetic characteristics.
     5. SmNixOy nanotube arrays have been synthesized by the technique of filtering at subatmospheric assisted with AAM template. The morphology and the crystal structure of SmNixOy nanotubes are characterized by SEM、TEM、XRD、SAED and EDS, respectively. SAED and XRD indicated that the SmNixOy nanotubes are amorphous in structure. EDS showed that each SmNixOy nanotube contains three elements Sm, Ni and O, the ratio of atomic percentage of Sm:Ni:O is 5.85:1.62:92.53, and the ratio of mass percentage of Sm:Ni:O is 34.83:7.33:57.82, and there is a strong fluorescence emission peak for SmNixOy nanotubes at 383nm with 335nm light excited. VSM indicated that SmNixOy nanotube arrays with perpendicular anisotropy at room temperature, and the easy magnetization direction is parallel to the nanotube arrays.
引文
[1] Alexander O. G. Optical and electronic properties of quantum dots with magnetic impurities[J]. Comptes. Rendus. Physique,2008,9:857-873. [2] Ningjie Chu, XinqingWang, Yapi Liu. Magnetic properties of low Mn-doped NiCuZn nanocrystalline ferrites [J]. Journal of Alloys and Compounds,2009, 470:438-442.[3]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:1-18.[4] WenChang Chen, Alex K. Y. J. Synthesis, Nanostructure, Functionality, and Application of Polyfluorene-block-poly(N-isopropylacrylamide)s [J]. Macromolecules,2010,43:282-291. [5] XueLian Yu, JunGuo Song, YingSong Fu,et al. ZnS/ZnO Heteronano-structure as Photoanode to Enhance the Conversion Efficiency of Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2010,114:2380-2384.
    [6]Peng Xu, Xin Ji, Hongmin Yang, et al. Controllable fabrication of carbon nanotubes on catalysts derived from PS-b-P2VP block copolymer template and in situ synthesis of carbon nanotubes/Au nanoparticles composite materials [J]. Materials Chemistry and Physics,2010,119:249-253.
    [7]Masoud S. N., Davar F. Controllable synthesis of thioglycolic acid capped ZnS(Pn)o.5 nanotubes via simple aqueous solution route at low temperatures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor [J]. Journal of Alloys and Compounds,2010,494:199-204.
    [8]Ning Zhang, Xiaohe Liu, Ran Yi, et al. Selective and Controlled Synthesis of Single-Crystalline Yttrium Hydroxide/Oxide Nanosheets and Nanotubes [J]. J. Phys. Chem. C,2008,112:17788-17795.
    [9]Feifei Liu, Xinyong Li, Qidong Zhao, et al. Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile sol-gel template method [J]. Acta Materialia,2009,57:2684-2690. [10] Qian Zhao, Mei Li, Jinyu Chu, et al. Preparation, characterization of Au (orPt)-loaded titania nanotubes and their photocatalytic activities for
    degradation of methyl orange [J].Applied Surface Science,2009,255:3773-3778. [11] Fen Zhang, Wong S. S. Ambient Large-Scale Template-Mediated Synthesis of High-Aspect Ratio Single-Crystalline, Chemically Doped Rare-Earth Phosphate Nanowires for Bioimaging [J].ACS Nano,2010,4(1):99-112. [12] Choudhary K. K, Prasad D, Kaurav N, et al. Interpretation of thermoelectric power behaviour of Zinc nano wire composites:Phonon-scattering mechanism[J]. Journal of Physics and Chemistry of Solids,2010,71:47-50. [13] Daqiang Gao, Junli Fu, Xu Yan, et al. Preparation and magnetic properties of Nd5Fe95-xBx nanowire arrays [J]. Materials Letters,2008,62:3070-3072.[14]陈敬中.纳米材料科学导论[M].武汉:高等教育出版社,2006:6-7.[15] M.Y.Cui, X.Q.Yao, W.J.Dong. Template-free synthesis of CuO-CeO2 nanowires by hydrothermal technology [J]. Journal of Crystal Growth,2010, 312:287-293. [16] Shahab Ansari Amin, Mohammad Pazouki, Azarmidokht Hosseinnia. Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its Antibacterial activity against E. coli [J]. Powder Technology,2009,196:241-245. [17] Zhiyong Jia, Yiwen Tang, Lijuan Luo et al. Room temperature fabrication of single crystal nanotubes of CaSn(OH)6 through sonochemical precipitation [J]. Journal of Colloid and Interface Science,2009,334:202-207. [18] Tianyou Zhai, Zhanjun Gua, Ying Ma, Wensheng Yang,Synthesis of ordered ZnS nanotube s by MOCVD-template method [J]. Materials Chemistry and Physics,2006,100:281-284. [19] James F. Rohan, Declan P. Casey, Bernadette M. Ahern, Coaxial metal and magnetic alloy nanotubes in polycarbonate templates by electroless deposition [J]. Electrochemistry Communications,2008,10:1419-1422. [20] Yan Xu, Jie Wei, Jinli Yao, et al. Synthesis of CoFe2O4 nanotube arrays through an improved sol-gel template approach [J]. Materials Letters, 2008,62:1403-1405.
    [21]X.M Li., D. S. Wang, L. B. Tang, et al. Controllable synthesis of Ag nanorods using a porous anodic aluminum oxide template [J]. Applied Surface Science,2009,255(17):7529-7531.
    [22]JianQiang Bi, WeiLi Wang, YongXin Qi, Yu-Jun Bai etal.Large-scale synthesis of BN nanotubes using carbon nanotubes as template [J]. Materials Letters,2009,63:1299-1302.
    [23]Jinjun Shi, Yongfa Zhu, Xinrong Zhang, et al. Recent developments in nanomaterial optical sensors[J]. Trends in Analytical Chemistry,2004,23(5): 351-360.
    [24]P. Uthirakumar, H. G. Kim, Changhee Hong. Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs [J]. Chemical Engineering Journal,2009,155:910-915.
    [25]Yuanmei Xu, Xiaoming Fang, Zhengguo Zhang. Formation of single-crystalline TiO2 nanomaterials with controlled phase composition and morphology and the application in dye-sensitized solar cell [J]. Applied Surface Science,2009,255:8743-8749.
    [26]Maowen Xu, Guoyu Gao, Wenjia Zhou,et al. Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution [J]. Journal of Power Sources,2008,175:217-220.
    [27]Bo He, Thomas J. M., Christine D. K. Nanowire sensors for multiplexed detection of biomolecules [J]. Current Opinion in Chemical Biology,2008, 12:522-528.
    [28]Lisa C. du Toit, Viness Pillay, Yahya E. Choonara. Nano-microbicides: Challenges in drug delivery, patient ethics and intellectual property in the war against HIV/AIDS [J]. Advanced Drug Delivery Reviews,2010,62:532-546.
    [29]Zhong Wang, Fuqiang Wang, Hui Chen, et al. Synthesis and characterization of Bi2Te3 nanotubes by a hydrothermal method [J]. Journal of Alloys and
    Compounds,2010,492:L50-L53. [30] Fan Zhang, Dongyuan Zhao. Synthesis of Uniform Rare Earth Fluoride (NaMF4) Nanotubes by In Situ Ion Exchange from Their Hydroxide [M(OH)3] Parents [J]. ACS Nano,2009,3 (1):159-164. [31] Qiang He, Yue Cui, Sufen Ai, et al. Self-assembly of composite nanotubes and their applications [J]. Current Opinion in Colloid & Interface Science, 2009,14:115-125. [32] Sacanell J, Leyva A. G, Bellino M. G, et al. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells [J]. Journal of Power Sources,2010,195(7):1786-1792. [33] Xiangzi Li, Xianwen Wei, Yin Ye. A simple method for forming amorphous rare earth-transition metal alloy nanotube arrays [J]. Journal of Non-Crystalline Solids,2009,355(45-47):2233-2238. [34] Ziwei Tang, Liqun Zhou, Lan Yang, et al. Preparation and luminescence study of Eu(III) titanate nanotubes and nanowires using carbon nanotubes as removable templates [J]. Journal of Luminescence,2010,130(1):45-51. [35] Qin Kuang, Zhiwei Lin, Wei Lian, et al. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates [J]. Journal of Solid State Chemistry,2007,180(4): 1236-1242. [36] Tondare V. N, Balasubramannian C, Shende S. V, et al. Field emission from open ended Aluminium Nitide nanotubes [J]. Appl. Phys. Lett.,2002,80: 4813-4815. [37] Matsouka V, KonsolakisM, Lambert R. M. In situ DRIFTS study of the effect of structure (CeO2-La2O3) and surface (Na) modifiers on the catalytic and surface behaviour of Pt/γ-AI2O3 catalyst under simulated exhaust conditions [J]. Applied Catalysis B:Environmental,2008,84(3-4):715-722. [38] Xiangfeng Guan, Heping Zhou, Yanan Wang.Preparation and properties of Gd3+and Y3+co-doped ceria-based electrolytes for intermediate temper-ature solid oxide fuel cells [J]. Journal of Alloys and compounds,2008,464 (1-2): 310-316.
    [39]Wanjun Tang, Donghua Chen, Ming Wu. Luminescence studies on SrMgAl10O17:Eu, Dy phosphor crystals [J]. Optics & Laser Technology, 2009,41(1):81-84.
    [40]LinglingXiao, Yijing Wang, Yi Liu. Influence of surface treatments on microstructure and electrochemical properties of La0.7Mgo.3Ni2.4Co0.6 hydrogen-storage alloy [J].International Journal of Hydrogen Energy,2008, 33(14):3925-3929.
    [41]Daqiang Gao, Junli Fu, Desheng Xue, et al. Preparation and magnetic properties of Nd5Fe95-xBx nanowire arrays [J]. Materials Letters,2008, 62:3070-3072.
    [42]Guang Jia, Kai Liu, Yuhua Zheng,et al. Highly Uniform Gd(OH)3 and Gd2O3:Eu3+Nanotubes:Facile Synthesis and Luminescence Properties [J]. J. Phys. Chem. C,2009,113:6050-6055.
    [43]Yu Zhou, Yanfang Gao, Yuchen Liu,et al. High efficiency Pt-CeO2/carbon nanotubes hybrid composite as an anode electrocatalyst for direct methanol fuel cells [J]. Journal of Power Sources,2010,195:1605-1609.
    [44]Wenting Liu, Yuling Xie, Zhuojia Lin,et al. Photoluminescent Metal-Organic Nanotubes via Hydrothermal in Situ Ligand Reactions [J]. Eur. J. Inorg. Chem.,2009:4213-4218.
    [45]Fisher M. J, Wenzhong Wang, Dorhout P. K,et al. Synthesis of LaPO4:Eu Nanostructures Using the Sol-Gel Template Method [J]. J. Phys. Chem. C, 2008,112(6):1901-1907.
    [46]Xinyi Zhang, Dehua Dong, Dan Li, et al. Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities [J]. Electrochemistry Communications,2009,11:190-193.
    [1]Singh G. K, Golovin A. A, Aranson I. S. Formation of self-organized nanoscale porous structures in anodic aluminum oxide [J]. Physical Review B,2006,73: 205422.
    [2]M. T. Wu, Leu I. C, Hon M. H. Growth characteristics of oxide during prolonged anodization of aluminum in preparing ordered nanopore arrays [J]. J Vac Sci Technol B,2004,22 (5):2326-2332.
    [3]Yifeng Shi,Bingkun Guo,Serena A. Corr, YongSheng Hu,Ram Seshadri, Galen D. Stucky, Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity [J].Nano Lett.,2009,9(12):4215-4220.
    [4]Debraj C, Nillohit M, Anup M. Design and Synthesis of Nanostructured Porous SnO2 with High Surface Areas and Their Optical and Dielectric Properties [J]. J. Phys. Chem. C,2008,112:8668-8674.
    [5]Swapan K. Das,Manas K. Bhunia,Anil K. Sinha. Self-Assembled Mesoporous Zirconia and Sulfated Zirconia Nanoparticles Synthesized by Triblock Copolymer as Template [J]. J. Phys. Chem. C,2009,113:8918-8923.
    [6]Wu J B,Zhang H,Ma X Y,et al. Synthesis and characterization of single crystalline MnOOH and MnO2 nanorods by means of the hydrothermal process assisted with CTAB [J]. Mater.Let.,2006,60:3895-38981.
    [7]Mary J. Fisher, Wehzhong Wang, Peter K. Dorhout, Ellen R. Fisher, Synthesis of LaPO4:Eu Nanostructures Using the Sol-Gel Template Method [J]. J. Phys. Chem. C,2008,112:1901-1907.
    [8]Liang Li,Shusheng Pan, Xincun Dou, Yonggang Zhu, Xiaohu Huang, Direct Electrodeposition of ZnO Nanotube Arrays in Anodic Alumina Membranes [J]. J. Phys. Chem. C,2007,111:7288-7291.
    [9]Malandrino G, M. S. Perdicaro,et al. MOCVD Template Approach to the Fabrication of Free-Standing Nickel(Ⅱ)Oxide Nanotube Arrays:Structural, Morphological, and Optical Properties Characterization [J]. J. Phys. Chem. C, 2007,111(8):3211-3215.
    [10]Djinovic P, Batista J, Levec J. Comparison of water-gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods [J]. Applied Catalysis A:General,2009, 364:156-165.
    [11]Zhanhui Zhang, Zhiliang Huang, Hebin Shi, et al. Synthesis and growth mechanism of carbonated hydroxyapatite whisker from natural collophanite via a template-directed homogeneous precipitation method [J]. Journal of Alloys and Compounds,2009,486:415-417.
    [12]Xueming Li, Dingsheng Wang, Libin Tang, et al. Controllable synthesis of Ag nanorods using a porous anodic aluminum oxide template [J]. Applied Surface Science,2009,255:7529-7531.
    [13]Jingjun Liu, Feng Wang, Junyun Zhai, et al. Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays inside AAO template [J]. Journal of Electroanalytical Chemistry, 2010,642:103-108.
    [14]Mingzhe Hu, Yinglin Liu, Haoshuang Gu, et al. A novel controllable synthesis of silica nanotube arrays with ultraviolet photoluminescence [J]. Solid State Sciences,2009,11:1252-1257.
    [15]Qin Kuang, Songfei Li, Zhaoxiong Xie, et al. Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapor deposition [J]. Carbon,2006,44:1166-1172.
    [16]Cheng S, Yan D, Chen J.T, Zhuo R.F,P. X. Yan, Soft-Template Synthesis and Characterization of ZnO2 and ZnO Hollow Spheres [J].J. Phys. Chem. C,2009, 113:13630-13635.
    [17]Jianwei Fu, Xiaobin Huang, Yawen Huang. Preparation of Silver Nanocables Wrapped with Highly Cross-Linked Organic-Inorganic Hybrid Polyphosphazenes via a Hard-Template Approach [J]. J. Phys. Chem. C,2008, 112:16840-16844.
    [18]Feng Wang, Hongbo Huang, Shaoguang Yang, Synthesis of ceramic nanotubes using AAO templates [J]. Journal of the European Ceramic Society,2009,29: 1387-1391.
    [19]Mingzhe Hua, Yinglin Liu, Haoshuang Gu. A novel controllable synthesis of silica nanotube arrays with ultraviolet photoluminescence [J]. Solid State Sciences,2009,11:1252-1257.
    [20]Rumiche F., Wang H.H., Hu W.S. Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection [J]. Sensors and Actuators B,2008,134:869-877.
    [21]Nguyen Duc Hoa, Nguyen Van Quy, Dojin Kim, et al. An ammonia gas sensor based on non-catalytically synthesized carbon nanotubes on an anodic aluminum oxide template [J]. Sensors and Actuators B,2007,127:447-454.
    [22]Changdeuck Bae, Hyunjun Yoo, Sihyeong Kim, et al. Template-Directed Synthesis of Oxide Nanotubes:Fabrication,Characterization, and Applications [J]. Chem. Mater.,2008,20:756-767.
    [23]Sung-Hoon Hong, Byeong-Ju Bae, Heon Lee,et al. Fabrication of high density nano-pillar type phase change memory devices using flexible AAO shaped template [J]. Microelectronic Engineering,2010.
    [24]Dongdong Li, Chuanhai Jiang, Jianhua Jiang, et al. Self-Assembly of Periodic Serrated Nanostructures [J]. Chem. Mater.,2009,21 (2):253-258.
    [25]Luo Zhixun, Fang Yan, Zhou Xiaofang. Synthesis of highly ordered Iron/Cobalt nanowire arrays in AAO templates and their structural properties [J]. Materials Chemistry and Physics,2008,107:91-95.
    [26]Thompson G E, Wood G C. Porous anodic film formation on aluminium[J] Nature,1981,290:230-232.
    [27]付承菊,李杰,郭冬云.多孔阳极氧化铝模板的制备[J].纳米材料与结构,2007,(11):1000-1003.
    [28]Francois Le Coz, Laurent Arurault, Lucien Datas. Chemical analysis of a single basic cell of porous anodic aluminium oxide templates [J]. Materials Characterization,2010,61:283-288.
    [29]孙秀玉,徐法强,李宗木,等.阳极氧化铝模板的结构和性能表征及形成机 [J].中国科学技术大学学报,2006,36(4):432-435.
    [30]Le Coz F, Arurault L, Bes RS. Study of the initial electrical transient during the growth of the anodic porous layers [J]. ATB Metallurgie,2006,45(1-4):489-92.
    [31]胡宁宁,葛世荣,倪自丰.纳米阵列阳极氧化铝模板的制备及其形成机理[J].材料保护,2009,42(6):14-16.
    [32]Keller F, Hunter M.S. Structural features of oxide coatings on aluminum [J]. Journal of Electrochemical Society,1953,100(9):411-419.
    [33]Osulllivan J. P, Wood G. C. The morphology and mechanism of formation of porous anodic films on aluminum [C]//Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1970:511-543.
    [34]Xu Y, Thompson G E, Wood G C. Mechanism of anodic film growth on aluminum [J]. Tran Inst Met Finish,1985,63:98-103.
    [35]Shimizu K, Kobayashi K, Thompson G E, et al. Development of porous anodic films on aluminium [J]. Philosophical Magazine A,1992,66 (4):300-308.
    [36]黄炎,曾虹燕,屈叶青.纳米阳极氧化铝模板膜孔可控生长规律[J].硅酸盐学报,2009,37(2):198-202.
    [37]尚杰,唐艳艳,刘丽来,等.多孔阳极氧化铝模板的影响因素[J].膜科学与技术,2008,28(5):42-44.
    [38]郝丽娜,刘帅,孙谨,等.多孔阳极氧化铝模板的研究概况[J].化工科技,2009,17(5):74-76.
    [39]Jeong S.Y., An M.C., Cho Y.S. et al. Preparation of anodic aluminum oxide templates on silicon substrates for growth of ordered nano-dot arrays[J]. Current Applied Physics,2009,9:S101-S103.
    [40]杨培霞,安茂忠,田兆清.高度有序多孔阳极氧化铝模板的制备[J].材料科学与工艺,2007,15(1):87-90.
    [41]Xin Wang, Gao-Rong Han. Fabrication and characterization of anodic aluminum oxide[J]. Microelectronic Engineering,2003,66:166-170.
    [42]Singh G.K., Golovin A.A., Aranson I.S. Formation of self-organized nanoscale porous structures in anodic aluminum oxide[J]. Phys. Rev. B,2006,73:205422.
    [43]N.W. Liu, A. Datta, C.Y. Liu, C.Y. Peng, H.H. Wang, Y.L. Wang, Fabrication of Anodic Alumina Film with Custom-Designed Arrays of Nanochannels[J].Adv. Mat.,2005,17:222-225.
    [44]尚杰,刘丽来,闫红丹,等.高度有序多孔阳极氧化铝模板制备工艺研究[J].云南化工,2007,34(3):6-9.
    [45]Myung N.V., Lim J., Fleurial J.P. Alumina nanotemplate fabrication on silicon s ubstrate[J]. Nanotechnology,2004,15:833-838.
    [46]陶敏龙,郭光华,孙李媛,等.高度有序多孔氧化铝模板的制备工艺与生长机制的研究[J].中国材料科技与设备,2006,2:40-42.
    [47]付琳捷,李美亚,汪晶,等.制备工艺对多孔阳极氧化铝模板的影响[J].显微、测量、微细加工技术与设备,2008,45(2):109-113.
    [1]刘光华,等.稀土材料学[M].北京:化学工业出版社,2007:1-3.
    [2]Wanjun, Tang, Donghua Chen, Ming Wu. Luminescence studies on SrMgAl10-O17:Eu, Dy phosphor crystals[J]. Optics & Laser Technology,2009,41(1):81-84.
    [3]Xiangfeng Guan, Heping Zhou, Yanan Wang,et al. Preparation and properties of Gd3+and Y3+co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells[J]. Journal of Alloys and compounds,2008,464 (1-2):310-316.
    [4]Matsouka V,Konsolakis M,Lambert R M,et al. In situ DRIFTS study of the effect of structure (CeO2-La2O3) and surface (Na) modifiers on the catalytic and surface behaviour of Pt/g-Al2CO3 catalyst under simulated exhaust conditions [J]. Applied Catalysis B:Environmental,2008,84(3-4):715-722.
    [5]Lingling Xiao,Yijing Wang,Yi, Liu et al. Influence of surface treatments on microstructure and electrochemical properties of Lao.7Mgo.3Ni2.4Coo.6 h ydrogen-storage alloy[J]. International Journal of Hydrogen Energy,2008,33(14): 3925-3929.
    [6]Kaidong Han, Youjin Zhang, Tao Cheng, et al. Self-assembled synthesis and photoluminescence properties of uniform Dy2O3 microspheres and tripod-like structures [J]. Materials Chemistry and Physics,2008.
    [7]A.I.Y. Tok, F.Y.C. Boey, Z. Dong. Hydrothermal synthesis of CeO2 nano-particles[J]. Journal of Materials Processing Technology,2007,190:217-222.
    [8]Thammanoon Sreethawong, Sumaeth Chavadej,Supachai Ngamsinlapa-sathian,et al. Solegel synthesis of mesoporous assembly of Nd2O3 nanocrystals with the aid of structure-directing surfactant[J]. Solid State Sciences,2008,10:20-25.
    [9]Tingting Yan, Dengsong Zhanga, Liyi Shi,et al. Facile synthesis, characterization, formation mechanism and photoluminescence property of Eu2O3 nanorods[J]. Journal of Alloys and Compounds,2009,487:483-488.
    [10]YenPo Chang, KunHo Liu, ChihShin Chao,et al. Synthesis and characterizati-on of mesoporous Gd2O3 nanotube and its use as a drug-carrying vehicle[J]. Acta Biomaterialia,2010.
    [11]AnWu Xu, YuePing Fang, LiPing You, et al. A Simple Method to Synthesize Dy(OH)3 and Dy2O3 Nanotubes[J]. J. AM. CHEM. SOC,2003,125:1494-1495.
    [12]靳正国,戴维迪,苗海龙,等Dy2O3和La2O3掺杂对BaTiO 3铁电陶瓷介电特性的影响[J].2001,29(5):397-401.
    [13]解家英,李国栋,邰显康,等.D y2O3掺杂对纳米锂铁氧体微波吸收特性的影响[J].内蒙古大学学报,2002,33(4):407-410.
    [14]宋杰,陈志钢,许乃岑,等.Dy3+掺杂LiZnMg铁氧体的制备及其电磁性能研究[J].电子元件与材料,2010,29(1):7-10.
    [15]Xiaoyou Yuan, Chunsheng Du, Gang Sun,et al. Electroless synthesis of large scale Co-Zn-P nanowire arrays and the magnetic behaviour [J]. Applied Surface Science,2007,253:4546-4549.
    [1]X. Y. Song, J. X. Zhang, M. Yue, et al. Technique for preparing ultra fine nanocrystalline bulk material of pure rare-earth metals [J]. Advanced Materials, 2006,18:1210-1215.
    [2]Xiaofeng Wu, Wei Zhao, Likai Meng, et al. In-situ dendrite reinforced Dy-based amorphous matrix composites[J]. Trans. Nonferrous Met. Soc. China,2009,19: 72-77.
    [3]Hongbo Guo, Xiaoyan Wang, Ji Li, et al. Effects of Dy on cyclic oxidation resistance of NiAl alloy[J]. Trans. Nonferrous Met. Soc. China,2009,19: 1185-1189.
    [4]Y.H. Zhuang, C.H. Ma, K.F. Li,et al. The isothermal section of the Dy-Fe-Ge ternary system at 773K[J]. Journal of Alloys and Compounds,2009,467: 154-158.
    [5]D. Kaczorowski, M. Konyk, A. Szytula, et al. Magnetic properties of the R2CuGe6 (R= Gd, Tb, Dy, Er)ternary compounds[J]. Solid State Sciences,2008: 1891-1894.
    [6]Ando M., Kobayashi T., Lijima S., et al. Optical recognition of CO and H2 by use of gas-sensitive Au-Co3O4 composite films[J].J.Mater.Chem.,1997,7:1779-1783.
    [7]G. X. Wang. Nanosize cobalt oxides as anode materials for lithium-ion batteries [J]. Journal of Alloy and Compounds,2002,340:5-10.
    [8]AnWu Xu, YuePing Fang, LiPing You,et al. A Simple Method to Synthesize Dy(OH)3 and Dy2O3 Nanotubes[J]. J. AM. CHEM. SOC.,2003,125:1494-1495.
    [10]XiangZi Li, XianWen Wei, Yin Ye. A simple method for forming amorphous rare earth-transition metal alloy nanotube arrays[J]. Journal of Non-Crystalline Solids,2009,355:2233-2238.
    [11]Qiming Zhu, Yinghong Zhuang, Jianlie Liang, et al. Study on stability of RECo5 phases (RE=Dy, Gd) [J]. Journal of Rare Earths,2009,27(1):100-103.
    [12]Daqiang Gao, Junli Fu, Yan Xu,et al. Preparation and magnetic properties of Nd5Fe95-XBX nanowire arrays[J] Materials Letters,2008,62:3070-3072.
    [1]Mingzhe Hua, Yinglin Liu, Haoshuang Gu,et al. A novel controllable synthesis of silica nanotube arrays with ultraviolet photoluminescence [J]. Solid State Sciences, 2009,11:1252-1257.
    [2]Ning Zhang, Xiaohe Liu, Ran Yi, et al. Selective and Controlled Synthesis of Single-Crystalline Yttrium Hydroxide/Oxide Nanosheets and Nanotubes [J]. J. Phys. Chem. C,2008,112:17788-17795.
    [3]Qian Zhao,Mei Li, Jinyu Chu, et al. Preparation, characterization of Au (or Pt)-loaded titania nanotubes and their photocatalytic activities for degradation of methyl orange [J].Applied Surface Science,2009,255:3773-3778.
    [4]Fen Zhang, S S Wong. Ambient Large-Scale Template-Mediated Synthesis of High-Aspect Ratio Single-Crystalline, Chemically Doped Rare-Earth Phosphate Nanowires for Bioimaging [J]. ACS Nano,2010,4(1):99-112.
    [5]K K Choudhary, D Prasad, N Kaurav, et al. Interpretation of thermoelectric power behaviour of Zinc nano wire composites:Phonon-scattering mechanism [J]. Journal of Physics and Chemistry of Solids,2010,71:47-50.
    [6]Zhong Wang, Fuqiang Wang,Hui Chen, et al. Synthesis and characterization of Bi2Te3 nanotubes by a hydrothermal method [J]. Journal of Alloys and Compounds,2010,492:L50-L53.
    [7]Fan Zhang, Dongyuan Zhao. Synthesis of Uniform Rare Earth Fluoride (NaMF4) Nanotubes by In Situ Ion Exchange from Their Hydroxide [M(OH)3] Parents [J]. ACS Nano,2009,3 (1):159-164.
    [8]Qiang He, Yue Cui, Sufen Ai, et al. Self-assembly of composite nanotubes and their applications [J]. Current Opinion in Colloid & Interface Science,2009,14: 115-125.
    [9]J Sacanell, A G Leyva, M G Bellino, et al. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells [J]. Journal of Power Sources,2010,195(7):1786-1792.
    [10]Xiangzi Li, Xianwen Wei, Yin Ye. A simple method for forming amorphous rare earth-transition metal alloy nanotube arrays [J]. Journal of Non-Crystalline Solids,2009,355(45-47):2233-2238.
    [11]Guixia Liu, Guangyan Hong, Xiangting Dong, et al. Preparation and characterization of Gd2O3.Eu3+luminescence nanotubes [J]. Journal of Alloys and Compounds,2008,466:512-516.
    [12]Ziwei Tang, Liqun Zhou, Lan Yang, et al. Preparation and luminescence study of Eu(III) titanate nanotubes and nanowires using carbon nanotubes as removable templates [J]. Journal of Luminescence,2010,130(1):45-51.
    [13]Qin Kuang, Zhiwei Lin, Wei Lian, et al. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates [J]. Journal of Solid State Chemistry,2007,180(4):1236-1242.
    [14]A.Cuchilloa, P.Vargasa, P.Levy, et al. Study of magnetic properties of La2/3Sr1/3MnO3 nanotubes by Monte Carlo simulation [J]. Journal of Magnetism and Magnetic Materials,2008,320:e331-e334.
    [1]G. Lucovskya, Yu Zhang, J.L.Whitten, et al. Spectroscopic studies of the electrical structure oftransition metal and rare earth complex oxides [J]. Physica E,2004,21: 712-716.
    [2]S.S. Makridis, M. Konstantakou, Th.A. Steriotis,et al. Structural and magnetic properties of rare earth-transition metal compounds for hydrogen storage materials [J]. Journal of Alloys and Compounds,2005,404-406:216-219.
    [3]J. Heo, T.Miyazawa, J.Kim, et al. Rare earth-transition metal compound-based MOSLM for the visible spectral range [J]. Journal of Magnetism and Magnetic Materials,2010,322:298-300.
    [4]Qin Kuang, Zhiwei Lin, Wei Lian,et al. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates [J]. Journal of Solid State Chemistry,2007,180:1236-1242.
    [5]Guocong Liu, Limiao Chen, Xuechen Duan,et al. Synthesis and characterization of Sm3+-doped CeO2 powders [J]. Trans. Nonferrous Met. Soc. China,2008,18: 888-902.
    [6]Xiangzi Li, Xianwen Wei, Yin Ye. A simple method for forming amorphous rare earth-transition metal alloy nanotube arrays [J]. Journal of Non-Crystalline Solids, 2009,355(45-47):2233-2238.
    [7]潘晶,刘新才,郭鹏举,等Sm(CoFeCuZr),2快淬薄带的晶体织构与磁性能各向异性[J].中国有色金属学报,2008,18(11):2020-2024.
    [8]Jinxia Xu, Yi Xu. Fabrication and magnetic property of binary Co-Ni nanowire array by alternating current electrodeposition[J]. Applied Surface Science,2007, 253:7203-7206.
    [9]Jingjun Liu, Feng Wang, Junyun Zhai, et al. Controllable growth and magnetic characterization of electrodeposited nanocrystalline Ni-P alloy nanotube and nanowire arrays inside AAO template[J]. Journal of Electroanalytical Chemistry, 2010,642:103-108.
    [10]Zhi Yang, Yi Huang, Bin Dong, et al. Template induced sol-gel synthesis of highly ordered LaNiO3 nanowires[J]. Journal of Solid State Chemistry,2005, 178:1157-1164
    [11]Guoying Zhang, Bing Guo, Jun Chen. MCo2O4 (M= Ni, Cu, Zn) nanotubes: Template synthesis and application in gas sensors[J]. Sensors and Actuators B, 2006,114:402-409.
    [12]Shin W, Murayama N. Li-doped nickel oxide as a thermoelectric material [J]. Jpn J Appl Phys,1999,38:L1336-L1338.
    [13]李新贝,张方辉.稀土配合物有机电致发光[J].现代显示,2006,(65):53-59.
    [14]F.E. Atalay, H. Kaya, V. Yagmur,et al. The effect of back electrode on the formation of electrodeposited CoNiFe magnetic nanotubes and nanowires[J]. Applied Surface Science,2010,256:2414-2418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700