用户名: 密码: 验证码:
基于Mn掺杂ZnS量子点的室温磷光传感
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子点(Quantum Dots,QDs)在传感器领域的应用引起了国内外学者的广泛关注,成为当前科学研究的一大热点。量子点表面化学或物理性质的微小变化将会改变量子点的光学性质。据此,量子点已广泛应用于各种分析物的检测。虽然量子点的荧光性质在分析化学中的应用已经十分广泛,但是量子点的室温磷光(Room-Temperature Phosphorescence,RTP)性质及其在分析检测中的应用得到的关注仍然较少。当量子点和其它分子形成纳米复合材料时,该纳米复合物会呈现出新的光、电或磁特性。量子点的纳米复合材料是获取材料新特性的一种有效手段,对于改善现有量子点的光学性能以及促进量子点传感器的发展具有十分重要的意义。本论文旨在探索掺杂量子点和其纳米复合材料的RTP性质及其在化学/生物传感中的应用,主要研究内容和创新点如下:
     (1)基于水溶性L-半胱氨酸包覆的Mn掺杂ZnS量子点的RTP性质,发展了一种简单、快速、经济、灵敏和高选择性的检测生物体液中依诺沙星的方法。该方法能有效避免生物体液的自体荧光和散射光的干扰,并且在检测生物体液中的依诺沙星时不需要加入任何除氧剂和诱导剂。同时,避免了生物体液中的金属离子、生物分子和其它抗生素的干扰。实验测定依诺沙星的线性范围为0.2~7.2μM,检出限(3σ)为58.6 nM,对不含依诺沙星和含0.4μM依诺沙星体系的磷光强度差值连续11次平行测定的相对标准偏差为1.8%。在尿样和血清样品中加标依诺沙星的回收率为94%~104%。将基于Mn掺杂ZnS量子点的室温磷光法用于测定依诺沙星在人体中的代谢曲线,得到的结果和通过其它方法研究的依诺沙星代谢曲线的结果基本一致。研究结果表明掺杂量子点的RTP性质将会促进量子点传感器的进一步发展。
     (2)基于Mn掺杂ZnS量子点和甲基紫(Methyl Viologen,MV)的光诱导电子转移(Photoinduced Electron Transfer,PIET)效应,建立了一种灵敏的定量检测生物体液中DNA的新方法。该方法有效的利用了量子点自身的物理和光学特性,当MV吸附到Mn掺杂ZnS量子点表面时,通过PIET过程,储存了Mn掺杂ZnS量子点的磷光。当DNA加入体系后,DNA和MV结合,MV从Mn掺杂ZnS量子点表面脱附,引起Mn掺杂ZnS量子点的RTP的增强。该方法检测DNA的检出限(3σ)为33.6μg L~(-1),线性范围在0.08~12mg L~(-1),对不含DNA体系的磷光强度连续11次平行测定的相对标准偏差为3.7%。由于该方法是基于量子点磷光性质的检测,所以有效的消除了来自样品自体荧光和散射光的干扰。同时,这种方法能够灵敏、快速的检测生物体液中的DNA,避免了化学修饰和固定化的过程。
     (3)利用静电自组装构建了Mn掺杂Zn量子点/八(γ-氨丙基)倍半硅氧烷(Mn掺杂ZnS QDs/OA-POSS)纳米复合材料,并发展了基于此纳米复合材料的定量检测生物体液中DNA的新方法。带八个氨基的OA-POSS作为立方结构的交联剂通过静电作用将MPA包覆的Mn掺杂ZnS量子点聚集起来,所形成的Mn掺杂ZnS QDs/OA-POSS纳米复合物的RTP强度是Mn掺杂ZnS量子点的RTP强度的7.5倍。带负电荷的DNA能够与带负电荷的3-巯基丙酸(MPA)包覆的Mn掺杂ZnS量子点产生竞争作用,形成了更稳定的DNA/OA-POSS复合物,导致OA-POSS和量子点分开,引起Mn掺杂ZnS量子点/OA-POSS纳米复合物的RTP强度随着DNA浓度的增高而下降。据此,我们建立了定量测定DNA的新方法。该方法的检出限(3σ)为54.9nM,其检出限低于其它纳米粒子非特异性定量测定DNA的方法,但高于序列特异性测定DNA的方法。若能将合适的官能团修饰在Mn掺杂ZnS量子点或POSS上,该方法可拓展用于检测其它的分析物。
The exploration of systems capable of sensing and recognizing based on quantum dots (QDs) is a topic of considerable interest. Subtle change of the surface property of QDs can result in a dramatic change in their optical properties. This feature of QDs offers many opportunities for detecting various specific analytes. While most research works focus on the development of QDs based fluorescence sensors, much less attentions are paid to the room-temperature phosphorescence (RTP) properties of QDs and their potential for phosphorescence detection. When the nanohybrids formed between quantum dots and other molecules, the nanohybrids offer unique optical, electrical or magnetic properties that are not found in the individual components. The controlled nanohybrids based on QDs are high of interest for their fundamental importance as well as the application of sensors. The purpose of this dissertation is to explore the RTP properties of Mn-doped ZnS QDs and their nanohybrids for bio/chemosensing. The main contents are summarized as follows:
     (1) The RTP property of Mn-doped ZnS QDs was explored to develop a novel method for facile, rapid, cost-effective, sensitive and selective detection of enoxacin in biological fluids. The Mn-doped ZnS QDs based RTP method did not need the use of deoxidants and other inducers, and allowed detecting enoxacin in biological fluids without interference from autofluorescence and scattering light of matrix. The Mn-doped ZnS QDs offered excellent selectivity for detecting enoxacin in the presence of main relevant metal ions in biological fluids, biomolecules and other kinds of antibiotics. The precision for eleven replicate detections of 0.4μM enoxacin was 1.8% (RSD). The detection limit (3σ) for enoxacin was 58.6nM. The recovery of spiked enoxacin in human urine and serum samples ranged from 94% to 104%. The developed Mn-doped ZnS QDs based RTP method was employed to monitor the time-dependent concentration of enoxacin in the urine from a healthy volunteer after oral medication of enoxacin. The investigation provides evidences that doped QDs are promising for RTP detection for further applications.
     (2) A sensing system based on the photoinduced electron transfer (PIET) between Mn-doped ZnS QDs and methyl viologen (MV) was established for quantitative detection of DNA in biological fluids. The RTP intensity of Mn-doped ZnS QDs was quenched by MV adsorbed onto the surface of the QDs due to the photoinduced electron-transfer process. Addition of DNA restored the RTP signal of Mn-doped ZnS QDs due to the competitive binding of DNA with MV from the surface of Mn-doped ZnS QDs. Sensitive detection of DNA with the detection limit (3σ) of 33.6μg L~(-1) and a linear detection range of 0.08-12 mg L~(-1) was achieved. The precision for eleven replicate detections of 0.5μM hsDNA was 3.7% (RSD). The interference from autofluorescence and scattering light was avoided due to the phosphorescence nature of the Mn-doped ZnS QDs. The sensitive and rapid detection of DNA as well as the avoidance of modification or immobilization process makes this system suitable and promising for DNA detection.
     (3) We present a simple method to build nanohybrids from the 3-mercaptopropionic acid-capped Mn-doped ZnS QDs (MPA-capped Mn-doped ZnS QDs) and octa(3-aminopropyl)octasilsequioxane octahydrochloride (OA-POSS) via electrostatic self-assembly and to provide a convenient strategy to develop a novel RTP sensor for detecting DNA in biological fluids. OA-POSS with eight amine groups on each comer acting as cubic linkers organized MPA-capped Mn-doped ZnS QDs into well-defined aggregates, which gave the RTP intensity 7.5 times higher than that of the MPA-capped Mn-doped ZnS QDs. High density of negatively charged phosphate groups of the double helix provided the ability of DNA to compete with negatively charged MPA-capped Mn-doped ZnS QDs and to form rather stable complexes with OA-POSS, leading to the decrease of the RTP of the Mn-doped ZnS QDs/OA-POSS nanohybrids with increase of the concentration of DNA. The precision for eleven replicate detections of 0.5μM hsDNA was 4.8% (RSD). The detection limit (3σ) of the present sensor for DNA was 54.9 nM, comparable to or lower than those of some nanocrystal based non-sequence specific methods for quantitative determination of DNA, but much higher than those of some sequence-specific methods. This methodology can be in principle applied to other biological molecules by modifying Mn-doped ZnS QDs and POSS with suitable functional groups that selectively bind target analytes.
引文
[1]Klostranec,J.M.;Chan,W.C.W.Quantum dots in biological and biomedical research:recent progress and present challenges.Adv.Mater.2006,18,1953-1964.
    [2]Sapsford,K.E.;Pons,T.;Medintz,I.L.;Mattoussi,H.Biosensing with luminescent semiconductor quantum dots.Sensors 2006,6,925-953.
    [3]Liu W.T.Nanoparticles and their biological and environmental applications.J.Biosci.Bioeng.2006,102,1-7.
    [4]张金中,王中林,刘俊.自组装纳米结构.化学工业出版社 2005.
    [5]Medintz,I.L.;Uyeda,H.T.;Goldman,E.R.;Mattoussi,H.Quantum dot bioconjugates for imaging,labelling and sensing.Nat.Mater.2005,4,435-466.
    [6]李步洪,张镇西,谢树森.量子点在生物学中的研究进展.激光生物学报2006,15,214-220.
    [7]Hu,H.;Zhang,W.H.Synthesis and properties of transition metals and rare-earth metal doped ZnS nanopartivles.Opt.Mater.2006,28,536-550.
    [8]Thakar,R.;Chen,Y.C.;Snee,P.T.Efficient emission from core/(doped)Shell nanoparticles:applications for chemical sensing.Nano Lett.2007,7,3429-3432.
    [9]Norris,D.J.;Efros,A.L.;Erwin,S.C.Doped nanocrystals.Science 2008,319,1776-1779.
    [10]Wang,C.;Wehrenberg,B.L.;Woo,C.Y.;Guyot-Sionnest,P.Light emission and amplification in charged colloidal quantum dots.J.Phys.Chem.B 2004,108,9027-9031.
    [11]Pradhan,N.;Goorskey,D.;Thessing,J.;Peng,X.G.Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters:control of optical performance via greener synthetic chemistry.J.Am.Chem.Soc.2005,127,17586-17587.
    [12]Bryan,J.D.;Gamelin,D.R.Doped semiconductor nanocrystals:synthesis,characterization,physical properties,and applications.Prog.Inorg.Chem.2005,54,47-126.
    [13]Efros,A.L.;Rashba,E.I.;Rosen,M.Paramagnetic ion-doped nanocrystal as a voltage-controlled spin filter.Phys.Rev.Lett.2001,87,206601-4.
    [14]Murray,C.B.;Kagan,C.R.;Bawendi,M.G.Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies.Annu.Rev.Mater.Sci.2000,30,545-610.
    [15]Swihart,M.T.Vapor Phase Synthesis of nanoparticles.Curr.Opin.Colloid Interface Sci.2003,8,127-133.
    [16]Bhargava,R.N.;Gallagher,D.;Hong,X.;Nurmikko,A.Optical properties of manganese-doped nanocrystals of ZnS.Phys.Rev.Lett.1994,72,416-419.
    [17]Hoffman,D.M.;Meyer,B.K.;Ekimov,A.I.;Merkulov,I.A.;Efros,A.L.;Rosen,M.;Couino,G.;Gacoin,T.;Boilot,J.P.Giant internal magnetic fields in Mn doped nanocrystal quantum dots.Solid State Commun.2000,114,547-550.
    [18]Norris,D.J.;Yao,N.;Charnock,F.T.;Kennedy,T.A.High-quality manganese-doped ZnSe nanocrystals.Nano Lett.2001,1,3-7.
    [19]Suyver,J.F.;Wuister,S.F.;Kelly,J.J.;Meijerink,A.Luminescence of nanocrystalline ZnSe:Mn~(2+).Phys.Chem.Chem.Phys.2000,2,5445-5448.
    [20]Radovanovic,P.V.;Gamelin,D.R.Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots:demonstration of an isocrystalline core/shell synthetic method.J.Am.Chem.Soc.2001,123,12207-12214.
    [21]Stowell,C.A.;Wiacek,R.J.;Saunders,A.E.;Korgel,B.A.Synthesis and characterization of dilute magnetic semiconductor manganese-doped indium arsenide nanocrystals.Nano Lett.2003,3,1441-1447.
    [22]Orlinskii S.B.;Schmidt,J.;Baranov,P.G.;Hofmann,D.M.;Donega,C.D.; Meijerink,A.Probing the wave function of shallow Li and Na donors in ZnO nanoparticles.Phys.Rev.Lett.2004,92,047603 1-4.
    [23]Fujii,M.;Yamaguchi,Y.;Takase,Y.;Ninomiya,K.;Hayashi,S.Photoluminescence from impurity codoped and compensated Si nanocrystals.Appl.Phys.Lett.2005,87,211919 1-3.
    [24]Turnbull,D.J.Microscopic observation of the solidification of small metal droplets.Appl.Phys.1950,21,1022-1028.
    [25]Dalpian,G.M.;Chelikowsky,J.R.;Self-purification on semiconductor nanocrystals.Phys.Rev.Lett.2006,96,226802 1-4.
    [26]Son,D.H.;Hughes,S.M.;Yin,Y.;Alivisatos,A.P.Cation exchange reactions-in ionic nanocrystals.Science 2004,306,1009-1012.
    [27]Mokari,T.;Aharoni,A.;Popov,I.;Banin,U.Diffusion of gold in InAs nanocrystals.Angew.Chem.Int.Ed.2006,45,8001-8005.
    [28]Robinson,R.D.;Sadtler,B.;Demchenko,D.;Erdonmez,C.K.;Wang,L.W.;Alivisatos,A.P.Spontaneous superlattice formation in nanorods through partial cation exchange.Science 2007,317,355-358.
    [29]Erwin,S.C.;Zu,L.;Haftel,M.I.;Efros,A.L.;Kennedy,T.A.;Norris,D.J.Doping Semiconductor Nanocrystals.Nature 2005,436,91-94.
    [30]Lin,C.J.;Liedl T.;Sperling,R.A.;Fernandez-Arg(u|¨)elles,M.T.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.;Chang,W.H.;Parak,W.J.Bioanalytics and biolabeling with semiconductomanoparticles(quantum dots).J.Mater Chem.2007,17,1343-1346.
    [31]Xia,Y.S.;Zhu,C.Q.Aqueous synthesis of type-Ⅱ core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(Ⅱ).Analyst 2008,133,928-932.
    [32]Banerjee,S.;Kara S.;Santra S.A simple strategy for quantum dot assisted selective detection of cadmium ions.Chem.Commun.2008,3037-3039.
    [33]Wang,J.H.;Wang,H.Q.;Zhang,H.L.;Li,X.Q.;Hua X.F.;Cao Y.C.;Huang,Z.L.;Zhao,Y.D.Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver(Ⅰ) ions.Anal,Bioanal.Chem.2007,388,969-974.
    [34]Wang,L.;Liang,A.N.;Chen,H.Q.;Liu,Y.;Qian,B.B.;Fu,J.Ultrasensitive determination of silver ion based on synchronous fluorescence spectroscopy with nanoparticles.Anal,Chim.Acta 2008,616,170-176.
    [35]Chen,J.L.;Gao,Y.C.;Guo,C.;Wu,G.H.Chen,Y.C.;Lin,B.W.Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(Ⅱ) in aqueous solution.Spectrochim.Part A 2008,69,572-579.
    [36]Zhang,Y.H.;Zhang,H.S.;Guo,X.F.;Wang,H.L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(Ⅱ) determination.Microchem.J.2008,89,142-147.
    [37]Li,H.B.;Zhang,Y.;Wang X.Q.;Gao,Z.N.A luminescent nanosensor for Hg(Ⅱ) based on functionalized CdSe/ZnS quantum dots.Microchim.Acta 2008,160,119-123.
    [38]Wu,H.M.;Liang,J.G.;Han,H.Y.A novel method for the determination of Pb~(2+) based on the quenching of the fluorescence of CdTe quantum dots.Microchim.Acta 2008,161,81-86.
    [39]Li,H.B.;Zhang,Y.;Wang,X.Q.;Xiong,D.J.;Bai,Y.Q.Calixarene capped quantum dots as luminescent probes for Hg~(2+) ions.Mater.Lett.2007,61,1474-1477.
    [40]Isarov,A.V.;Chrysochoos,J.Optical and photochemical properties of nonstoichiometric cadmium sulfide nanoparticles:surface modification with copper(Ⅱ) ions.Langmuir 1997,13,3142-3149.
    [41]Chen,Y.;Rosenzweig,Z.Luminescent CdS quantum dots as selective ion probes.Anal.Chem.2002,74,5132-5138.
    [42]Gatas-Asfura,K.M.;Leblanc,R.M.Peptide-coated CdS quantum dots for the optical detection of copper(Ⅱ) and silver(Ⅰ).Chem.Commun.2003,2684-2685.
    [43]Xia,Y.S.;Zhu,C.Q.Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury(Ⅱ).Talanta 2008,75,215-221.
    [44]Cai,Z.X.;Yang,H.;Zhang,Y.;Yan,X.P.Preparation,characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(Ⅱ) in aqueous solution.Anal.Chim.Acta 2006,559,234-239.
    [45]Ali,E.M.;Zheng,Y.G.;Yu,H.H.;Ying,J.Y.Ultrasensitive Pb~(2+) detection by glutathione-capped quantum dots.Anal.Chem.2007,79,9452-9458.
    [46]Chen,J.L.;Zhu,C.Q.Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination.Anal.Chim.Acta 2005,546,147-153.
    [47]Li,H.B.;Zhang,Y.;Wang X.Q.L-Carnitine capped quantum dots as luminescent probes for cadmium ions.Sensor Actuat.B 2007,127,593-597.
    [48]Jin,W.J.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Surface-modified CdSe quantum dots as luminescent probes for cyanide determination.Anal.Chim.Acta 2004,522,1-8.
    [49]Jin,W.J.;Fernandez-Arg(u|¨)elles,M.T.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions.Chem.Commun.2005,883-885.
    [50]Touceda-Varela,A.;Stevenson,E.I.;Galve-Gasion,J.A.;Dryden,D.T.F.;Mareque-Rivas,J.C.Selective turn-on fluorescence detection of cyanide in water using hydrophobic CdSe quantum dots.Chem.Commun.2008,1998-2000.
    [51]Shang,Li;Zhang,L.H.;Dong,S.J.Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots.Analyst 2009,134,107-113.
    [52]Lakowicz,J.R.;Gryczynski,I.;Gryczynski,Z.;Murphy,C.J.Luminescence Spectral Properties of CdS Nanoparticles.J.Phys.Chem.B 1999,103,7613-7620.
    [53]Li,H.B.;Han,C.P.;Zhang,L.Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions.J.Mater.Chem.2008,18,4543-4548.
    [54]Liang,J.G.;Huang,S.;Zeng,D.Y.;He,Z.K.;Ji,X.H.;Ai,X.P.;Yang,H.X.CdSe quantum dots as luminescent probes for spironolaetone determination.Talanta 2006,69,126-130.
    [55]Li,D.;Yan,Z.Y.;Cheng,W.Q.Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe.Spectrochim.Part A 2008,71,1204-1211.
    [56]Chen,J.X.;Xu,F.;Jiang,H.Y.;Hou,Y.L.;Rao,Q.X.;Guo,P.J.;Ding,S.Y.A novel quantum dot-based fluoroimmunoassay method for detection of enrofloxacin residue in chicken muscle tissue.Food Chem.2009,113,1197-1201.
    [57]Yuan,J.P.;Guo,W.W.;Yang,X.R.;Wang,E.K.Anticancer drug-DNA interactions measured using a photoindueed electron-transfer mechanism based on luminescent quantum dots.Anal.Chem.2009,81,362-368.
    [58] Li, H. B.; Qu, F. G Synthesis of CdTe quantum dots in sol-gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides. Chem. Mater. 2007,19, 4148-4154.
    [59] Li, H. B.; Han, C. P. Sonochemical synthesis of cyclodextrin-coated quantum dots for optical detection of pollutant phenols in water. Chem. Mater. 2008,20, 6053-6059.
    [60] Yuan, J. P.; Guo, W. W.; Wang, E. K. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal. Chem. 2008, 80,1141-1145.
    [61] Tu, R. Y.; Liu, B.; Wang, Z. Y; Gao, D.; Wang, F.; Fang, Q. L.; Zhang, Z. P.;Amine-capped ZnS-Mn~(2+) nanocrystals for fluorescence detection of trace TNT explosive. Anal. Chem. 2008, 80, 3458-3465.
    [62] Shi, G. H.; Shang, Z. B.; Wang, Y; Jin, W. J.; Zhang, T. C. Fluorescence quenching of CdSe quantum dots by nitroaromatic explosives and their relative compounds. Spectrochim. Part A 2008, 70,247-252.
    [63] Tao, S. Y; Li, Y; Li, G. T; Yu, C. L. A facile and efficient method for rapid detection of trace nitroaromatics in aqueous solution. J. Mater. Chem. 2008,18,4426-4432.
    [64] Gordes, D. B.; Gamsey, S.; Singaram, B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew. Chem. Int. Ed. 2006, 45, 3829-3832.
    [65] Gill, R.; Bahshi, L.; Freeman, R.; Willner, I. Optical detection of glucose and acetylcholine esterase inhibitors by H_2O_2-sensitive CdSe/ZnS quantum dots.Angew. Chem. Int. Ed. 2008, 47,1676-1679.
    [66] Sun, J. F.; Liu, L. H.; Ren, C. L.; Chen, X. G.; Hu, Z. D. A feasible method for the sensitive and selective determination of vitamin B with CdSe quantum dots.Microchim.Acta 2008,163,271-276.
    [67]Negi,D.P.S.;Chanu,T.I.Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine.Nanotechnology 2008,19,465503-465507.
    [68]Chen,X.D.;Dong,Y.P.;Yang,D.C.Fluorescence for the ultrasensitive detection of peptides with functionalized nano-ZnS.Anal.Chim.Acta 2007,582,281-287.
    [69]Huang,C.P.;Li,Y.K.;Chen,T.M.A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots.Biosens.Bioelectron.2007,22,1835-1838.
    [70]Callan,J.F.;Mulrooney,R.C.;Kamila,S.Luminescent Detection of ATP in aqueous solution using positively charged CdSe-ZnS quantum dots.J.Fluoresc.2008,18,1157-1161.
    [71]Yu,Y.;Lai,Y.;Zheng,X.L.;Wu,J.Z.;Long,Z.Y.;Liang,C.S.Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA.Spectrochim.Part A 2007,68,1356-1361.
    [72]Mei,F.;He,X.W.;Li,W.Y.;Zhang,Y.K.Preparation and characterization of CdHgTe nanoparticles and their application on the determination of proteins.J.Fluoresc.2008,18,883-890.
    [73]Zhao,L.L.;Wu,X.;Ding,H.H.;Yang,J.H.Fluorescence enhancement effect of morin-nucleic acid-L-cysteine-capped nano-ZnS system and the determination of nucleic acid.Analyst 2008,133,896-902.
    [74]Xia,Z.Y.;Xing,Y.;So,M.K.;Koh,A.L.;Sinclair,R.;Rao,J.H.Multiplex detection of protease activity with quantum dot nanosensors prepared by intein-mediated specific bioconjugation.Anal.Chem.2008,80,8649-8655.
    [75]邹申.流动注射化学发光及荧光共振能量转移的应用研究.吉林大学博 士学位论文 2008.
    [76]Medintz,I.L.;Clapp,A.R.;Mattoussi,H.;Goldman,E.R.;Fisher,B.;Mauro,J.M.Self-assembled nanoscale biosensors based on quantum dot FRET donors.Nat.Mater.2003,2,630-638.
    [77]Medintz,I.L.;Trammell,S.A.;Mattoussi,H.;Mauro,J.M.Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor.J.Am.Chem.Soc.2004,126,30-31.
    [78]Medintz,I.L.;Konnert,J.H.;Clapp,A.R.;Stanish,I.;Twigg,M.E.;Mattoussi,H.;Mauro,J.M.;Deschamps,J.R.A fluorescence resonance energy transfer derived structure of a quantum dot-protein bioconjugate nanoassembly.Proc.Natl.Acad.Sci.U.S.A.2004,101,9612-9617.
    [79]Oh,E.;Hong,M.Y.;Lee,D.;Nam,S.H.;Yoon,H.C.;Kim,H.S.Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles.J.Am.Chem.Soc.2005,127,3270-3271.
    [80]Goldman,E.R.;Medintz,I.L.;Whitley,J.L.;Hayhurst,A.;Clapp,A.R.;Uyeda,H.T.;Deschamps,J.R.;Lassman,M.E.;Mattoussi,H.A hybrid quantum dot-antibody fragment fluorescence-resonance energy transfer-based TNT sensor.J.Am.Chem.Soc.2005,127,6744-6751.
    [81]朱若华,晋卫军.室温磷光分析法原理与应用.北京:科学出版社 2006.
    [82]Wiedemann,E.(U|¨)nber fluorescenz und phosphorescenz I.Ann.Phys.Chem.1888,34,446-463.
    [83]Schmidt,G.C.Ueber die vom thorium und thorverbindungenshende strahlung.Verandt.Deut.Physik Ges.1898,17,14-16.
    [84]Lewis,C.N.;Kasha,M.Phosphorescence and the triplet state.J.Am.Chem. Soc.1944,66,2100-2116.
    [85]Hutchison,C.A.;Mangum,B.W.Paramagnetic resonance absorption in naphthalene in its phosphorescent state.J.Chem.Phys.1958,29,952-953.
    [86]Freed,S.;Salmer,W.Low temperature phosphorescence.Science 1958,128,1341-1344.
    [87]Parker,C.A.;Hatchard,C.G.The possibilities of phosphorescence measurement in chemical analysis:tests with a new instrument.Analyst 1962,87,664-676.
    [88]Winefordner,J.D.;Latz,H.W.Phosphorimetry as a means of chemical analysis.The analysis of aspirin in blood serum and plasma.Anal.Chem.1963,35,1517-1522.
    [89]Roth,M.Phosphorescence a temperature ordinaire:un moyen selectif et non destructif pour la detection de certains composes aromatiques en chroatographie sur papier et sur couche de cellulose.J.Chromatogr.1967,30,276-278.
    [90]Schulman E.M.;Walling,C.Phosphorescence of adsorbed ionic organic molecules at room temperature.Science 1972,178,53-54.
    [91]Schulman,E.M.;Walling,C.Triplet-state phosphorescence of adsorbed ionic organic molecules at room temperature.J.Phys.Chem.1973,77,902-905.
    [92]Bonner,R.B.;DeArmond,M.K.;Wahl,Jr.G.H.Phosphorescence of bridged biphenyls in fluid solution.J.Am.Chem.Soc.1972,94,988-989.
    [93]Donckt,E.V.;Matagne,M.;Sapir,M.Room temperature phosphorescence of aromatics in fluid dimethylmercury.Chem.Phys.Lett.1973,20,81-82.
    [94]Paynter,R.A.;Wellons,S.L.,Winefordner J.D.New method of analysis based on room temperature phosphorescence.Anal.Chem.1974,46, 736-738.
    [95]Wellons,S.L.;Paynter,R.A.;Winefordner,J.D.Room temperature phosphorimetry of biologically-important compounds adsorbed on filter paper.Spectrochim.Part A 1974,30,2133-2136.
    [96]Cline,L.U.;Skrilec,M.;Habarta,J.G.Analysis of micelle-stabilized room temperature phosphorescence solution.Anal.Chem.1980,52,754-759.
    [97]Scypinski,S.;Cline,L.J.Room-temperature phosphorescence of polynuclear aromatic hxdrocarbons in cyclodextrins.Anal.Chem.1984,56,322-327.
    [98]Scypinski,S.;Cline,L.J.Cyclodextrin-induced room-temperature phosphorescence of nitrogen heterocycles and bridged biphenyls.Anal.Chem.1984,56,331-336.
    [99]Femia,R.A.;Cline,L.J.Phosphorescence of polynuclear aromatic hydrocarbons in heptakis(6-bromo-6-deoxy,beta.-cylcodextrin).J.Phys.chem.1985,89,1897-1901.
    [100]Bonkerbroek,J.J.;Gooijer,C.;Velthorst,N.H.Sensitized room temperature phosphorescence in liquid solutions with 1,4-dibrornonaphthalene and biacetyl as acceptors.Anal.Chem.1982,54,891-895.
    [101]黄素梅.室温磷光光度分析.化学通报 1982,3,23-28.
    [102]Ramos,G.R.;Khasawneh,I.M.;Garcia-Alvarez-Coqua,M.L.Room-temperature phosphorescence of polyaromatic hydrocarbons with organized media and paper substrate:A comparative study.Talanta 1988,35,41-44.
    [103]Li,L.D.;Chen,Y.L.;Zhao,Y.Room-temperature phosphorescence of dansyl chloride solution in the absence of protective medium and its medium effect.Anal.Chim.Acta 1997,341,241-249.
    [104]郑用熙,王志刚.几种室温磷光法的回顾和展望.分析化学 1987,15,582-560.
    [105]陈国珍,黄贤智,郑朱梓,许金钩,王尊本.荧光分析法(第二版).北京:科学出版社 1990.
    [106]Yang,P.;Lu,M.K.;Song,C.F.;Zhou,G.J.The photoluminescence characteristics of Tb_2S_3 nanoparticles embedded in sol-gel silica xerogel.Inorg.Chem.Commun.2002,5,187-191.
    [107]Selvan,S.T.;Bullen,C.;Ashokkumar,M.;Mulvaney,P.Synthesis of tunable,highly luminescent QD-glasses through sol-gel processing.Adv.Mater.2001,13,985-988.
    [108]Reisfeld,R.Prospects of sol-gel technology towards luminescent materials.Opt.Mater.2001,16,1-7.
    [109]Lin,C.I.;Joseph,A.K.;Chang,C.K.;Lee,Y.D.Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells.Biosens.Bioelectron.2004,20,127-131.
    [110]Traviesa-Alvarez,J.M.;Sanchez-Barragan,I.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Room temperature phosphorescence optosensing of benzo[a]pyrene in water using halogenated molecularly imprinted polymers.Analyst 2007,132,218-223.
    [1]Lan,G.Y.;Lin,Y.W.;Huang,Y.F.;Chang,H.T.Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution.J.Mater.Chem.2007,17,2661-2666.
    [2]Jin,W.J.;Fernandez-Arg(u|¨)elles,M.T.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions.Chem.Commun.2005,883-885.
    [3]Fernandez-Arg(u|¨)elles,M.T.;Jin,W.J.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Surface-modified CdSe quantum dots for the sensitive and selectivedetermination of Cu(Ⅱ) in aqueous solutions byluminescent measurements.Anal.Chim.Acta 2005,549,20-25.
    [4]Li,H.B.;Zhang,Y.;Wang,X.Q.;Xiong,D.J.;Bai,Y.Q.Calixarene capped quantum dots as luminescent probes for Hg~(2+) ions.Mater.Lett.2007,61,1474-1477.
    [5]Huang,C.P.;Li,Y.K.;Chen,T.M.A highly sensitive system for urea detection by using CdSe/ZnS core-shell quantum dots.Biosens.Bioelectron.2007,22,1835-1838.
    [6]Liang,J.G.;Huang,S.;Zeng,D.Y.;He,Z.K.;Ji,X.H.;Ai,X.P.;Yang,H.X.CdSe quantum dots as luminescent probes for spironolactone determination.Talanta 2006,69,126-130.
    [7]Cordes,D.B.;Gamsey,S.;Singaram,B.Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution.Angew.Chem.Int.Ed.2006,45,3829-3832.
    [8]Wang,L.Y.;Wang,L.;Gao,F.;Yu,Z.Y.;Wu,Z.M.Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids.Analyst 2002,127,977-980.
    [9]Chen,X.D.;Dong,Y.P.;Fan,L.;Yang,D.C.Fluorescence for the ultrasensitive detection of peptides with functionalized nano-ZnS.Anal.Chim.Acta 2007,582,281-287.
    [10]Chen,H.Q.;Wang,L.;Liu,Y.;Wu,W.L.;Liang,A.N.;Zhang,X.L.Preparation of a novel composite particles and its application in the fluorescent detection of proteins.Anal.Bioanal.Chem.2006,385,1457-1461.
    [11]Yao,H.Q.;Zhang,Y.;Xiao,F.;Xia,Z.Y.;Rao,J.H.Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases.Angew.Chem.Int.Ed.2007,46,4346-4349.
    [12]Traviesa-Alvarez,J.M.;Sanchez-Barragan,I.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Room temperature phosphorescence optosensing of benzo[a]pyrene in water using halogenated molecularly imprinted polymers.Analyst 2007,132,218-223.
    [13]de Mello Donega,C.;Bol,A.A.;Meijerink,A.Time-resolved luminescence of ZnS:Mn~(2+) nanocrystals.J.Lumin.2002,96,87-93.
    [14]Chung,J.H.;Ah,C.S.;Jang,D.J.Formation and distinctive decay times of surface- and lattice-bound Mn~(2+) impurity luminescence in ZnS nanoparticles.J.Phys.Chem.B 2001,105,4128-4132.
    [15]Cheng,B.C.;Wang,Z.G.Synthesis and optical properties of europium-doped ZnS long-lasting phosphorescence from aligned nanowires.Adv.Funct.Mater. 2005,15,1883-1890.
    [16]Ozawa,L.;Makimura,M.;Itoh,M.Improved production of ZnS blue phosphor powder.Mater.Chem.Phys.2005,93,481-486.
    [17]Manoharan,S.S.;Goyal,S.;Rao,M.L.;Nair,M.S.;Pradhan,A.Microwave synthesis and characterization of doped ZnS based phosphor materials.Mater.Res.Bull.2001,36,1039-1047.
    [18]Chen,S.H.;Greeff,A.P.;Swart,H.C.A comparative study between the simulated and measured cathodoluminescence generated in ZnS:Cu,Al,Au phosphor powder.J.Lumin.2005,113,191-198.
    [19]Thakar,R.;Chen,Y.C.;Snee,P.T.Efficient emission from core/(doped) Shell nanoparticles:applications for chemical sensing.Nano Lett.2007,7,3429-3432.
    [20]Botsoglou,N.A.;Fletouris,D.J.Handbook of food analysis;Nollet,Leo M.L.Ed.;Marcel Dekker:Ghent,2004;pp.931-1037.
    [21]Ye,Z.Q.;Weinberg,H.S.;Meyer,M.T.Trace analysis of trimethoprim and sulfonamide,macrolide,quinolone,and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry.Anal.Chem.2007,79,1135-1144.
    [22]Golet,E.M.;Alder,A.C.;Hartmann,A.;Terries,T.A.;Giger,W.Trace determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection.Anal.Chem.2001,73,3632-3638.
    [23]Turiel,E.;Bordin,G.;Rodriguez,A.R.Trace enrichment of(fluoro)quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatography-ultraviolet detection.J.Chromatogr.A 2003,1008,145-155.
    [24]Juan-Garcia,A.;Font,G.;Pico,Y.Determination of quinolone residues in chicken and fish by capillary electrophoresis-mass spectrometry.Electrophoresis 2006,27,2240-2249.
    [25]Ocana,J.A.;Callejon,M.;Barragan,F.J.Terbium-sensitized luminescence determination of levofloxacin in tablets and human urine and serum.Analyst 2000,125,1851-1854.
    [26]Ocana,J.A.;Barragan,F.J.;Callejon,M.Spectrofluorimetric determination of moxifloxacin in tablets,human urine and serum.Analyst 2000,125,2322-2325.
    [27]Ocana,J.A.;Barragan,F.J.;Callejon,M.Fluorescence and terbium-sensitised luminescence determination of garenoxacin in human urine and serum.Talanta 2004,63,691-697.
    [28]Xiao,Y.;Wang,J.W.;Feng,X.G.;Wang,H.Y.Study of a fluorescence quenching mechanism of enoxacin and its determination in human serum and urine samples.J.Anal.Chem.2007,62,442-447.
    [29]Vilchez,J.L.;Taoufiki,J.;Ballesteros,O.;Navalon,A.Micelle-enhanced spectrofluorimetric method for the determination of antibacterial trovafloxacin in human urine and serum.Microchim.Acta 2005,150,247-252.
    [30]Kuijt,J.;Ariese,F.;Brinkman,U.A.;Gooijer,C.Room temperature phosphorescence in the liquid state as a tool in analytical chemistry.Anal.Chim.Acta 2003,488,135-171.
    [31]Zhuang,J.Q.;Zhang,X.D.;Wang,G.;Li,D.M.;Yang,W.S.;Li,T.J.Synthesis of water-soluble ZnS:Mn~(2+) nanocrystals by using mercaptopropionic acid as stabilizer.J.Mater.Chem.2003,13,1853-1857.
    [32]Park,H.R.;Chung,K.Y.;Lee,H.C.;Lee,J.K.;Bark,K.M.Ionization and divalent cation complexation of quinolone antibiotics in aqueous solution.Bull.Korean Chem.Soc.2000,21,849-854.
    [33]Park,H.R.;Kim,T.H.;Bark,K.M.Physicochemical properties of quinolone antibiotics in various environments.Eur.J.Med.Chem.2002,37,443-460.
    [34]Sharma,S.N.;Pillai,Z.S.;Kamat,P.V.Photoinduced charge transfer between CdSe quantum dots and p-phenylenediamine.J.Phys.Chem.B 2003,107,10088-10093.
    [35]Sauer,K.;Scheer,H.;Saner,P.F(o|¨)rster transfer calculations based on crystal structure data from Agmenellum quadruplicatum C-phycocyanin.Photochem.Potobiol.1987,46,427-440.
    [36]Lakowicz,J.R.;Weber,G.Quenching of fluorescence by oxygen Probe for structural fluctuations in macromolecules.Biochemistry 1973,12,4161-4170.
    [37]Jones,R.M.;Bergstedt,T.S.;McBranch,D.W.;Whitten,D.G.Tuning of superquenching in layered and mixed fluorescent polyelectrolytes.J.Am.Chem.Soc.2001,123,6726-6727.
    [38]Murphy,C.B.;Zhang,Y.;Troxler,T.;Ferry,V.;Martin,J.J.;Jones,Jr.,W.E.Probing f(o|¨)rster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors.J..Phys.Chem.B 2004,108,1537-1543.
    [39]Baptista,M.S.;Indig,G.L.Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes.J.Phys.Chem.B 1998,102,4678-4688.
    [40]Lakowicz,J.R.Principle of fluorescence spectroscopy;2nd Ed.;Plemum Press:New York,1999,pp.237-259.
    [41]Valeur,B.Molecular fluorescence:principles and applications.Wiley-VCH:Weinheim,2002,pp.84-86.
    [42]Peng,Q.;Jiang,C.Q.A new spectrofluorimetric method for determination of trace amounts 5-hydroxytryptamine in human urine and serum. J. Fluoresc.2007,77,339-343.
    
    [43] Wang, H. J.; Hou, F. J.; Jiang, C. Q. Ethyl substituted β-cyclodextrin enhanced fluorimetric method for the determination of trace amounts of oxytetracycline in urine, serum, feed of chook and milk. J. Lumin. 2005,113, 94-99.
    [1]Klimov,V.I.;Ivanov,S.A.;Nanda,J.;Achermann,M.;Bezel,I.;McGuire,J.A.;Piryatinski,A.Single-exciton optical gain in semiconductor nanocrystals.Nature 2007,447,441-446.
    [2]Michalet,X.;Pinaud,F.F.;Bentolila,L.A.;Tsay,J.M.;Doose,S.;Li,J.J.;Sundaresan,G.;Wu,A.M.;Gambhir,S.S.;Weiss.S.Quantum dots for live cells,in vivo imaging,and diagnostics.Science 2005,307,538-544.
    [3]Gur,I.;Fromer,N.A.;Geier,M.L.;Alivisatos,A.P.Air-stable all-inorganic nanocrystal solar cells processed from solution.Science 2005,310,462-465.
    [4]Tu,R.Y.;Liu,B.H.;Wang,Z.Y.;Gao,D.M.;Wang,F.;Fang,Q.L.;Zhang,Z.P.Amine-capped ZnS-Mn~(2+) nanocrystals for fluorescence detection of trace TNT explosive.Anal.Chem.2008,80,3458-3465.
    [5]He,Y.;Wang,H.F.;Yan.X.P.Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids.Anal.Chem.2008,80,3832-3837.
    [6]Norris,D.J.;Efros,A.L.;Erwin,S.C.Doped nanocrystals.Science 2008,319,1776-1779.
    [7]Thakar,R.;Chen,Y.C.;Snee,P.T.Efficient emission from core/(doped) shell nanoparticles:applications for chemical sensing.Nano Lett.2007,7,3429-3432.
    [8]Traviesa-Alvarez,J.M.;Sanchez-Barragan,I.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Room temperature phosphorescence optosensing of benzo[a]pyrene in water using halogenated molecularly imprinted polymers.Analyst 2007,132,218-223.
    [9]Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.Chemistry and properties of nanocrystals of different shapes.Chem.Rev.2005,105,1025-1102.
    [10]Raymo,F.M.;Yildiz,I.Luminescent chemosensors based on semiconductor quantum dots.Phys.Chem.Chem.Phys.2007,9,2036-2043.
    [11]Yildiz,I.;Tomasulo,M.;Raymo,F.M.A Mechanism to signal receptor-substrate interactions with luminescent quantum dots.Proc.Natl.Acad.Sci.U.S.A.2006,103,11457-11460.
    [12]Medintz,I.L.;Clapp,A.R.;Mattoussi,H.;Goldman,E.R.;Fisher,B.;Mauro,J.M.Self-assembled nanoscale biosensors based on quantum dot FRET donors.Nat.Mater.2003,2,630-638.
    [13]Willard,D.M.;Carillo,L.L.;Jung,J.;Orden,A.V.CdSe-ZnS quantum dots as resonance energy transfer donors in a model protein-protein binding assay.Nano Lett.2001,1,469-474.
    [14]Medintz,I.L.;Konnert,J.H.;Clapp,A.R.;Stanish,I.;Twigg,M.E.;Mattoussi,H.;Mauro,J.M.;Deschamps,J.R.A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly.Proc.Natl.Acad.Sci.U.S.A.2004,101,9612-9617.
    [15] Wang, S.; Mamedova, N.; Kotov, N. A.; Chen, W.; Studer, J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2002, 2,817-822.
    [16] Gill, R.; Willner, I.; Shweky, I.; Banin, U. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA Cleavage. J. Phys. Chem. B 2005,109,23715-23719.
    [17] Peng, H.; Zhang, L. J.; Kjallman, T. H. M; Soeller, C; Travas-Sejdic, J. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. J. Am. Chem. Soc. 2007,129, 3048-3049.
    [18] Shi, L. F.; Rosenzweig, N.; Rosenzweig, Z. Luminescent Quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors. Anal. Chem. 2007, 79, 208-214.
    [19] Sandros, M. G.; Gao, D.; Benson, D. E. A modular nanoparticle-based system for reagentless small molecule biosensing. J. Am. Chem. Soc. 2005, 127,12198-12199.
    [20] Cordes, D. B.; Gamsey, S.; Singaram, B. Fluorescent quantum dots with boronic acid substituted viologens to sense glucose in aqueous solution. Angew.Chem. Int. Ed. 2006, 45, 3829-3832.
    [21] Callan, J. F.; Mulrooney, R. C.; Kamila, S.; McCaughan, B. Luminescent quantum dots - a modular approach based on the photoinduced electron transfer (PET) mechanism. J. Fluoresc. 2008,18, 527-532.
    [22] Ruedas-Rama, M. J.; Hall, E. A. H. Quantum dot-lucigenin probe for Cl~-.Analyst 2008,133,1556-1566.
    [23] Udenfriend, S.; Zaltzman, P. Fluorescence characteristics of purines,pyrimidines, and their derivatives: measurement of guanine in nucleic acid hydrolyzates. Anal. Biochem. 1962,3,49-59.
    [24]Le Pecq,J.B.;Paoletti,C.A new fluorometric method for RNA and DNA determination.Anal.Biochem.1966,17,100-107.
    [25]Ci,Y.X.;Li,Y.Z.;Liu,X.J.Selective determination of DNA by its enhancement effect on the fluorescence of the Eu~(3+)-tetracycline complex.Anal.Chem.1995,67,1785-1788.
    [26]Tong,C.L.;Hu,Z.;Liu,W.P.Enoxacin-Tb~(3+) complex as an environmentally friendly fluorescence probe for DNA and its application.Talanta 2006,71,816-821.
    [27]Wu,X.;Guo,C.Y.;Yang,J.H.;Wang,M.Q.;Chen,Y.J.;Liu,J.The sensitive determination of nucleic acids using fluorescence enhancement of Eu~(3+)-benzoylacetone-cetyltrimethylammonium bromide-nucleic acid system.J.Fluoresc.2005,15,655-660.
    [28]Guan,Y.;Zhou,W.;Yao,X.H.;Li,Y.Z.Determination of nucleic acids based on the fluorescence quenching of Hoechst 33258 at pH 4.5.Anal.Chim.Acta 2006,570,21-28.
    [29]Zhu,C.Q.;Wu,Y.Q.;Zheng,H.;Chen,J.L.;Li,D.H.;Li,S.H.;Xu,J.G.Determination of nucleic acids by near-infrared fluorescence quenching of hydrophobic thiacyanine dye in the presence of Triton X-100.Anal.Sci.2004,20,945-949.
    [30]Zhu,C.Q.;Zhuo,S.J.;Zheng,H.;Chen,J.L.;Li,D.H.;Li,S.H.;Xu,J.G.Fluorescence enhancement method for the determination of nucleic acids using cationic cyanine as a fluorescence probe.Analyst 2004,129,254-258.
    [31]Zhao,L.L.;Wu,X.;Ding,H.H.;Yang,J.H.Fluorescence enhancement effect of morin-nucleic acid-L-cysteine-capped nano-ZnS system and the determination of nucleic acid.Analyst 2008,133,896-902.
    [32]Zhou,Y.Y.;Bian,G.R.;Wang,L.Y.;Dong,L.;Wang,L.;Kan,Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes.J.Spectrochim.Part A 2005,61,1841-1845.
    [33]Wang,L.Y.;Wang,L.;Gao,F.;Yu,Z.Y.;Wu,Z.M.Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids.Analyst 2002,127,977-980.
    [34]Zhuang,J.Q.;Zhang,X.D.;Wang,G.;Li,D.M.;Yang,W.S.;Li,T.Synthesis of water-soluble ZnS:Mn~(2+) nanocrystals by using mercaptopropionic acid as stabilizer.J.Mater.Chem.2003,13,1853-1857.
    [35]Suyver,J.F.;Wuister,S.F.;Kelly,J.J.;Meijerink,A.Synthesis and photoluminescence nanocrystalline ZnS:Mn~(2+).Nano Lett.2001,1,429-433.
    [36]Chung,J.H.;Ah,C.S.;Jang,D.J.Formation and distinctive decay times of surface- and lattice-bound Mn~(2+) impurity luminescence in ZnS nanoparticles.J.Phys.Chem.B 2001,105,4128-4132.
    [37]Henglein,A.Photochemistry of colloidal cadmium sulfide.Effects of adsorbed methyl viologen and of colloidal platinum.J.Phys.Chem.1982,86,2291-2293.
    [38]Ishii,D.;Kinbara,K.;Ishida,Y.;Ishii,N.;Okochi,M.;Yohda,M.;Aida,T.Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles.Nature 2003,423,628-632.
    [39]Sauer,K.;Scheer,H.;Sauer,P.F(o|¨)rster transfer calculations based on crystal structure data from Agmenellum quadruplicatum C-phycocyanin.Photochem.Potobiol.1987,46,427-440.
    [40]Lakowicz,J.R.;Weber,G.Quenching of fluorescence by oxygen Probe for structural fluctuations in macromolecules.Biochemistry 1973,12,4161-4170.
    [41]Jones,R.M.;Bergstedt,T.S.;McBranch,D.W.;Whitten,D.G.Tuning of superquenching in layered and mixed fluorescent polyelectrolytes.J.Am.Chem.Soc.2001,123,6726-6727.
    [42]Murphy,C.B.;Zhang,Y.;Troxler,T.;Ferry,V.;Martin,J.J.;Jones,Jr.,W.E.Probing f(o|¨)rster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors.J.Phys.Chem.B 2004,108,1537-1543.
    [43]Baptista,M.S.;Indig,G.L.Effect of BSA binding on photophysical and photochemical properties of triarylmethane dyes.J.Phys.Chem.B 1998,102,4678-4688.
    [44]Lakowicz,J.R.Principle of Fluorescence Spectroscopy;2nd Ed.;Plemum Press:New York,1999,pp.237-259.
    [45]Hurtubise,R.J.;Ackerman,A.H.;Smith,B.W.Mechanistic aspects of the oxgen quenching of the solid-matrix phosphorescence of perdeuterated phenanthrene on partially hydrophobic paper.Appl.Spectrosc.2001,55,490-495.
    [46]Jin,W.J.;Costa-Fernandez,J.M.;Pereiro,R.;Sanz-Medel,A.Surface-modified CdSe quantum dots as luminescent probes for cyanide determination.Anal.Chim.Acta 2004,522,1-8.
    [1]Coe,S.;Woo,W.K.;Bawendi,M.;Bulovic,V.Electroluminescence from single monolayers of nanocrystals in molecular organic devices.Nature 2002,420,800-803.
    [2]Jang,H.S.;Yang,H.;Kim,S.W.;Han,J.Y.;Lee,S.G.;Jeon,D.Y.White light-emitting diodes with excellent color rendering based on organically capped Cdse quantum dots and Sr_3SiO_5:Ce~(3+),Li~+ phosphors.Adv.Mater.2008,20,2696-2702.
    [3] Rizzo, A.; Mazzeo, M.; Palumbo, M.; Lerario, G.; S. D'Amone, R.; Cingolani,G. Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers. Adv.Mater. 2008,20,1886-1891.
    [4] Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002,295, 2425-2427.
    [5] Brown, P.; Kamat, P. V. Quantum dot solar cells. Electrophoretic deposition of CdSe-C_(60) composite films and capture of photogenerated electrons with nC_(60) cluster shell. J. Am. Chem. Soc. 2008,130, 8890-8891.
    [6] Gunes, S.; Neugebauer, H.; Sariciftci, N. S.; Roither, J.; Kovalenko, M.;Pillwein, G.; Heiss, W. Hybrid solar cells using HgTe nanocrystals and nanoporous TiO_2 electrodes. Adv. Fund. Mater. 2006,16,1095-1099.
    [7] Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO_2 films. J. Am. Chem. Soc. 2006,128, 2385-2393.
    [8] Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro,J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors.Nature Mater. 2003,2, 630-638;
    [9] Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson, M. E. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 2001,123, 4103-4104.
    [10] Cui, D. X.; Pan, B. F.; Zhang, H.; Gao, F.; Wu, R.; Wang, J. P.; He, R.; Asahi,T. Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection. Anal. Chem. 2008, 80, 7996-8001.
    [11]Yuan,J.P.;Guo,W.W.;Wang,E.K.Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.Anal.Chem.2008,80,1141-1145.
    [12]Frankamp,B.L.;Uzun,O.;Ilhan,F.;Boal,A.K.;Rotello,V.M.Recognition-mediated assembly of nanoparticles into micellar structures with diblock copolymers.J.Am.Chem.Soc.2002,124,892-893.
    [13]Liu,J.;Alvarez,J.;Kaifer,A.E.Metal Nanoparticles with a knack for molecular recognition.Adv.Mater.2000,12,1381-1383.
    [14]Kim,B.;Tripp,S.L.;Wei,A.Self-organization of large gold nanoparticle arrays.J.Am.Chem.Soc.2001,123,7955-7956.
    [15]Sanchez-Gaytan,B.L.;Cui,W.H.;Kim,Y.J.;Mendez-Polanco,M.A.;Duncan,T.V.;Fryd,M.;Wayland,B.B.;Park,S.J.Interfacial assembly of nanoparticles in discrete block-copolymer aggregates.Angew.Chem.Int.Ed.2007,46,9235-9238.
    [16]Fullam,S.;Rensmo,H.;Rao,S.N.;Fitzmaurice,D.Noncovalent self-assembly of silver and gold nanocrystal aggregates in solution.Chem.Mater.2002,14,3643-3650.
    [17]Zhang,Z.L.;Tang,Z.Y.;Kotov,N.A.;Glotzer,S.C.Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets.Nano Lett.2007,7,1670-1675.
    [18]Luccardini,C.;Tribet,C.;Vial,F.;Marchi-Artzner,V.;Dahan,M.Size,charge and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule.Langmuir 2006,22,2304-2310.
    [19]Howorka,S.Creating regular arrays of nanoparticles with self-assembling protein building blocks.J.Mater.Chem.2007,17,2049-2053.
    [20]Tan,W.B.;Huang,N.;Zhang,Y.Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications.J.Colloid.Interf.Sci.2007,310,464-470.
    [21]Wang,X.H.;Du,Y.M.;Ding,S.;Wang,Q.Q.;Xiong,G.G.;Xie,M.;Shen,X.C.;Pang,D.W.Preparation and third-order optical nonlinearity of self-assembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films,J.Phys.Chem.B 2006,110,1566-1570.
    [22]Sharma,J.;Ke,Y.G.;Lin,C.X.;Chhabra,R.;Wang,Q.B.;Nangreave,J.;Liu,Y.;Yan,H.DNA-tile-directed self-assembly of quantum dots into two-dimensional nanopattems.Angew.Chem.Int.Ed.2008,47,5157-5159.
    [23]Yang,J.;Dave,S.R.;Gao,X.H.Quantum dot nanobarcodes:epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution.J.Am.Chem.Soc.2008,130,5286-5292.
    [24]Blum,A.S.;Soto,C.M.;Wilson,C.D.;Whitley,J.L.;Moore,M.H.;Sapsford,K.E.;Lin,T.W.;Chatterji,A.;Johnson,J.E.;Ratna,B.R.Templated self-assembly of quantum dots from aqueous solution using protein scaffolds.Nanotechnology 2006,17,5073-5079.
    [25]Kannan,R.Y.;Salacinski,H.J.;Butler,P.E.;Seifalian,A.M.Polyhedral oligomeric silsesquioxane nanohybrids:the next generation material for biomedical applications.Acc.Chem.Res.2005,38,879-884.
    [26]Frankamp,B.L.;Fischer,N.O.;Hong,R.;Srivastava,S.;Rotello,V.M.Surface modification using cubic silsesquioxane ligands.Facile synthesis of water-soluble metal oxide nanoparticles.Chem.Mater.2006,18,956-959.
    [27]Etgar,L.;Lifshitz,E.;Tannenbaum,R.Hierarchical conjugate structure of γ-Fe_2O_3 nanoparticles and PbSe quantum dots for biological applications,J.Phys.Chem.C 2007,111,6238-6244.
    [28] Carroll, J. B.; Frankamp, B. L.; Srivastava, S.; Rotello, V. M. Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites. J. Mater. Chem. 2004,14, 690-694.
    [29] Jeoung, E.; Carroll, J. B.; Rotello, V. M. Surface modification via 'lock and key' specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces. Chem. Commun. 2002,1510-1511.
    [30] Naka, K.; Itoh, H.; Chujo, Y. Self-organization of spherical aggregates of palladium nanoparticles with a cubic silsesquioxane. Nano Lett. 2002, 2,1183-1186.
    [31] Naka, K.; Sato, M.; Chujo, Y. Stabilized spherical aggregate of palladium nanoparticles prepared by reduction of palladium acetate in octa(3-aminopropyl)octasilsesquioxane as a rigid template. Langmuir 2008, 24,2719-2726.
    [32] Thakar, R.; Chen, Y. C.; Snee, P. T. Efficient emission from core/(doped) Shell nanoparticles: applications for chemical sensing. Nano Lett. 2007, 7,3429-3432.
    [33] He, Y.; Wang, H. F.; Yan. X. P. Exploring Mn-doped ZnS quantum dots for the room-temperature phosphorescence detection of enoxacin in biological fluids. Anal. Chem. 2008, 80, 3832-3837.
    [34] McCusker, C.; Carroll, J. B.; Rotello, V. M. Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem.Commun. 2005, 996-998.
    [35] Zou, Q. C.; Yan, Q. J.; Song, G. W.; Zhang, S. L.; Wu, L. M. Detection of DNA using cationic polyhedral oligomeric silsesquioxane nanoparticles as the probe by resonance light scattering technique. Biosens. Bioelectron. 2007, 22,1461-1465.
    [36]Kaneshiro,T.L.;Wang,X.L.;Lu,Z.R.Synthesis,characterization,and gene delivery of poly-L-lysine octa(3-aminopropyl)silsesquioxane dendrimers:nanoglobular drug carriers with precisely defined molecular architectures.Mol.Pharmacol.2007,4,759-768.
    [37]Cui,L.;Zhu,L.Lamellar to inverted hexagonal mesophase transition in DNA complexes with calamitic,discotic,and cubic shaped cationic lipids.Langmuir 2006,22,5982-5985.
    [38]Cui,L.;Chen,D.Y.;Zhu,L.Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid.ACS Nano 2008,2,921-927.
    [39]Zhuang,J.Q.;Zhang,X.D.;Wang,G.;Li,D.M.;Yang,W.S.;Li,T.Synthesis of water-soluble ZnS:Mn~(2+) nanocrystals by using mercaptopropionic acid as stabilizer.J.Mater.Chem.2003,13,1853-1857.
    [40]Gravel,M.C.;Zhang,C.;Dinderman,M.;Laine,R.M.Octa(3-chloroammoniumpropyl) octasilsesquioxane.Appl.Organometal Chem.1999,13,329-336.
    [41]Chung,J.H.;Ah,C.S.;Jang,D.J.Formation and distinctive decay times of surface-and lattice-bound Mn~(2+) impurity luminescence in ZnS nanoparticles.J.Phys.Chem.B 2001,105,4128-4132.
    [42]Norris,D.J.;Sacra,A.;Murray,C.B.;Bawendi,M.G.Measurement of the size dependent hole spectrum in CdSe quantum dots.Phys.Rev.Lett.1994,72,2612-2615.
    [43]Klimov,V.I.Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals.J.Phys.Chem.B 2000,104,6112-6123.
    [44]Kulakovich,O.;Strekal,N.;Yaroshevich,A.;Maskevich,S.;Gaponenko,S.;Nabiev,I.;Woggon,U.;Artemyev,M.Enhanced luminescence of CdSe quantum dots on gold colloids.Nano Lett.2002,2,1449-1452.
    [45]Anger,P.;Bharadwaj,P.;Novotny,L.Enhancement and quenching of single-molecule fluorescence.Phys.Rev.Lett.2006,96,113002-1-10.
    [46]Hou,Y.;Ye,J.;Gui,Z.;Zhang,G.Z.Temperature-modulated photoluminescence of quantum dots.Langmuir 2008,24,9682-9685.
    [47]Huang,C.Z.;Li,Y.F.;Liu,X.D.Determination of nucleic acids at nanogram levels with Safranine T by a resonance light-scattering technique.Anal.Chim.Acta 1998,3 75,89-97.
    [48]Long,Y.F.;Huang,C.Z.;Li,Y.F.Hybridization detection of DNA by measuring organic small molecule amplified resonance light scattering signals.J.Phys.Chem.B 2007,111,4535-4538.
    [49]Li,Y.F.;Huang,C.Z.;Huang,X.H.;Li,M.Study of the interaction of Azur B with DNA and the determination of DNA based on resonance light scattering measurements.Anal.Chim.Acta 2001,429,311-319.
    [50]Petrov,I.;Khalil,D.N.;Kazaryan,R.L.;Savintsev,I.V.;Sukhorukov,B.I.Structural and thermodynamic features of complexes formed by DNA and synthetic polynucleotides with dodecylamine and dodecyltrimethylammonium bromide.Bioelectrochemistry 2002,58,75-85.
    [51]Thomas,T.J.;Messner,R.P.Immunological detection of B-DNA to Z-DNA transition of polynucleotides by immobilization of the DNA conformation on a solid support.Anal.Biochem.1988,168,358-366.
    [52]Thomas,T.J.;Messner,R.P.Structural specificity of polyamines in left-handed Z-DNA formation immunological and spectroscopic studies.J.Mol.Biol.1988,201,463-467.
    [53] Thomas, T. J.; Bloomfield, V. A. Toroidal condensation of Z DNA and identification of an intermediate in the B to Z transition of poly(dG-m5dC)poly(dG-m5dC). Biochemistry 1985,24, 713-719.
    [54] Zhou, Y. L.; Li, Y. Z. The interaction of poly(ethylenimine) with nucleic acids and its use in determination of nucleic acids based on light scattering.Spectrochim. Part A 2004, 60, 377-384.
    [55] Pilet, J.; Brahms, J. Investigation of DNA structural change by infrared spectroscopy. Biopolymers. Biopolymers 1973,12, 387-403.
    [56] Fritzsche, H. Infrared spectroscopy and infrared linear dichroism of nucleic acids. J. Mol. Struct. 1991, 242, 245-261.
    [57] Hackl, E. V.; Kornilova, S. V.; Kapinos, L. E.; Andrushchenko, V. V.; Galkin,V. L.; Grigoriev, D. N.; Blagoi, Y. P. Study of Ca~(2+), Mn~(2+) and Cu~(2+) binding to DNA in solution by means of IR spectroscopy. J. Mol. Struct. 1997, 408/409,229-232.
    [58] Ivanov, V. I.; Minchenkova, L. E.; Schyolkina, A. K.; Poletayer, A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymer 1973,12, 89-110.
    [59] Weiskopf, M.; Li, H. J. Poly(L-lysine)-DNA interactions in NaCl solutions. Biopolymer 1977,16, 669-684.
    [60] Zhou, Y. Y.; Bian, G. R.; Wang, L. Y.; Dong, L.; Wang, L.; Kan, Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes.Spectrochim. Part A 2005, 61, 1841-1845.
    [61] Wang, L. Y.; Wang, L.; Gao, F.; Yu, Z. Y.; Wu, Z. M. Application of functionalized CdS nanoparticles as fluorescence probe in the determination of nucleic acids. Analyst 2002,127, 977-980.
    [62]Li,Y.X.;Chen,J.L.;Zhu,C.Q.;Wang,L.;Zhao,D.H.;Zhou,S.J.;Wu,Y.Q.Preparation and application of cysteine-cappeA ZnS nanoparticles as fluorescence probe in the determination of nucleic acids.Spectrochim.Part A 2004,60,1719-1724.
    [63]Du,B.A.;Li,Z.P.;Liu,C.H.Detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique.Angew.Chem.Int.Ed.2006,45,8022-8025.
    [64]Cui,D.X.;Pan,B.F.;Zhang,H.;Gao,F.;Wu,R.;Wang,J.P.;He,R.;Asahi,T.Self-assembly of quantum dots and carbon nanotubes for ultrasensitive DNA and antigen detection.Anal.Chem.2005,80,7996-8001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700