用户名: 密码: 验证码:
高压退火磁性非晶合金Nd_9Fe_(85)B_6的纳米结构转变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶双相复合永磁材料是一种引人关注的新型永磁材料,这类材料通过在纳米尺度下的软磁相和硬磁相晶粒之间的磁交换耦合作用获得高的综合磁性能。理论预计,取向排列的纳米晶双相复合磁体的理论磁能积可高达1000 kJ/m3,被称为“兆焦耳永磁体”,高于任何一种单相永磁材料。这类材料还具有稀土含量低,价格便宜,化学稳定性好等特点,具有潜在的开发应用前景,有望发展为新一代高性能永磁材料。然而在块体纳米晶复合永磁材料中,如何获得晶粒均匀细小且取向排列的纳米晶则是一项具有挑战性而又有意义的工作。
     非晶晶化的方法是制备纳米晶材料的一个重要方法,高压退火非晶合金的晶化规律研究也是当前材料科学研究的前沿之一;开展高压下磁性非晶合金晶化过程中纳米晶形成规律的研究,不但有助于开发高性能的磁性材料,而且有助于了解纳米晶在高压下的形成规律。
     本文采用六面顶压机(Six-Side Anvil Cell)、X射线衍射分析(XRD)、透射电子显微分析(TEM)和高分辨电子显微分析(HRTEM)等研究手段针对磁性非晶合金Nd9Fe85B6开展了如下几个方面的研究工作:
     研究了在高压下非晶Nd9Fe85B6合金基体中纳米晶体的形核和生长过程。研究发现:压力可以诱导Nd2Fe14B相纳米晶体的取向生长。分析结果表明:这是由于压力对不同半径原子的扩散抑制程度不同造成的,不同的晶面其含有不同种类原子的比例是不同的,当晶面含有较多压力抑制作用较弱的原子时,其晶面将易于形核和生长。在高压下,多组元的晶体会具有较高的生长各向异性。因此可以通过高压退火非晶粉末或条带的方法,制备出具有一定晶体取向的块体纳米晶合金。在6GPa压力条件下,获得了晶粒尺寸<10 nm,具有强晶体学取向的块体纳米晶合金。
     研究了非晶合金Nd9Fe85B6高压退火过程中,压力对形成的纳米晶的微观组织结构的影响。研究发现:在高压下可以获得比常压条件下晶粒尺寸分布更均匀的纳米晶。分析结果表明:这是由于非晶原子做无规则密堆积排列,其密度低于晶态合金,压力可以通过压缩非晶的体积,促使非晶合金中原子的短程重排,短程原子的重排促使在非晶合金基体中形成一些细小的均匀分布的原子团簇,这些原子团簇成为晶化的优先形核的位置,因而促进了晶粒尺寸的均匀分布。
     而压力对非晶合金Nd9Fe85B6晶化过程的动力学影响主要表现为两个方面:一个方面是压力降低晶化相的临界晶核形成自由能,促进晶化相的形核和生长;另一个方面是压力会使非晶基体的体积压缩,限制原子的运动能力,降低原子的扩散系数,抑制晶化相的长大。对于非晶合金Nd9Fe85B6而言,在较低的压力范围内(0—1GPa),压力降低晶化相的临界晶核形成自由能的因素是主要的影响因素,α-Fe相的晶粒尺寸随压力的增加而增加;在高压的范围内(1-6GPa),压力抑制扩散的因素成为主导因素,晶化相Nd2Fe14B相和α-Fe相的晶粒尺寸随压力的增加而降低。同时,压力对不同晶化相的晶化过程的相对影响程度也是不同的,压力改变了各晶化相之间的自由能关系,因此显著影响晶化相的析出次序,在低压下先析出相为α-Fe相,而在高压下,先析出相为Nd9Fe85B6相。另外,在室温高压(6 GPa)条件下,压力可以使非晶合金Nd9Fe85B6发生纳米晶结构转变。
     研究了高压退火过程中晶化相原子扩散的激活体积。研究结果表明:在晶化的过程中,α-Fe相和Nd2Fe14B相的激活体积分别为10.3立方埃和7.73立方埃;α-Fe相的Fe原子的扩散机制以空位扩散为主;Nd2Fe14B相中的Nd、Fe和B原子以集体的扩散方式(Collective diffusion mechanism)为主,原子的集体扩散方式导致了Nd2Fe14B相形成了一个较小的激活体积。
Nanocomposite permanent magnetic materials consist of both nano-scale hard and soft phase, which get excellent magnetic performance through exchange coupling between their neighboring atomic magnetic moments. If the nanocrystals of the two phase nanocomposite magnets are orientated, their potential upper limit of maximum energy product can exceed 1000 kJ/m3, which is higher than that any single phase permanent magnetic materials. In addition to the high maximum energy product that may be achieved, nanocomposite magnets are of commercial interest because they require less of an expensive rare earth element. However, in the bulk nanomaterials, it is a difficult and significant work to prepare the orientated, ultra-fine and homogeneous nanocrystals.
     Amorphous crystallization method is an important technique to prepare the nanomaterials; moreover, the research of amorphous crystallization under high pressure is the front edge in the materials sciences. Therefore, to investigate the nanostructure transformation of magnetic amorphous alloy Nd9Fe85B6 under high pressure is not only help to develop the nanocomposite permanent materials, but also help to learn the rule of amorphous crystallization under high pressure.
     By means of X-ray diffraction (XRD), Transmission electron microscopy (TEM), Electron diffraction (ED) and Six-Side Anvil Cell, the nanostructure transformation of amorphous alloy Nd9Fe85B6 under high pressure has been investigated in this paper. The main research contents and results are followed:
     The oriented growth of nanocrystals in the amorphous matrix under high pressure has been investigated. The results show that the pressure can induce the preferential growth of nanocrystals of Nd2Fe14B phase in amorphous matrix. Nd2Fe14B nanocrystals with a strong crystallographic texture along with [410] orientation have been produced under a pressure of 6 GPa at 923 K. This is attributed to that the diffusion of different size atom is discrepant in amorphous matrix under the high pressure. The plane which is mainly composed of the smaller atom is easier to form under the high pressure.
     The effect of high pressure on the microstructure in crystallizing amorphous Nd9Fe85B6 alloy has been studied. It is found that application of high pressure makes the microstructure of crystallized alloy much more homogeneous. This is attributed to the homogeneous distribution of the cluster which is formed under high pressure. There two effects of pressure on the microstructure of crystallized alloy: One is to constrain atomic diffusion, which makes atomic mobility more difficult. The low atomic mobility constrains the growth of crystals during the crystallization process. The other is to decrease the critical free energy required to form a nucleus, which promotes the growth of crystals. The average grain size of Nd2Fe14B phase decreases with the increase of pressure, while the size ofα-Fe phase first increase when a pressure of 1 GPa was applied and then decreases with further increase of pressure. The pressure also change the sequence of crystalliztion. Under the low pressure (1 GPa), theα-Fe phase is the first crystallized phase, while under the high pressure (6 GPa), the Nd2Fe14B phase becomes the first crystallized phase. Furthermore, the amorphous Nd9Fe85B6 alloy can transform into the nanocrystals under high pressure at room temperature.
     The activation volume for nanocrystals growth in amorphous Nd9Fe85B6 alloy has been investigated. The activation volume ofα-Fe and Nd2Fe14B phase areΔV ?= (0.76±0.04) ? and (0.57±0.05) ?, respectively. This indicates the growth ofα-Fe and Nd2Fe14B nanocrystals is dependent on atomic diffusion mediated by vacancy-type thermal defects. The growth of Nd2Fe14B nanocrystals in the amorphous Nd9Fe85B6 may take a collective diffusion mechanism involving Nd, Fe and B atoms, which leads to a relatively small activation.
引文
1 R. Skomski, J.M.D. Coey. Giant energy product in nanostructured two phase magnets. Phys. Rev. B, 1993, 48:15812
    2 R. Skomski, Aligned two phase magnets: permanent magnetism of the feature. J. Appl. Phys., 1994, 76(10):7059
    3周寿增,董清飞.超强永磁体.北京.冶金工业出版社. 2004
    4王震西,沈保根,张洪杰等.我国稀土应用材料前景展望.第十届全国磁学和磁性材料会议论文集.北京. 1999, 1-5
    5张然,刘颖,马毅龙等.纳米晶复合NdFeB永磁材料研究进展.电子元件与材料,2007,26(6):8-12
    6周寿增,董清飞.稀土永磁材料及其应用.北京.冶金工业出版社(1995年重版)
    7 Y. Kaneko, N. Ishigaki. Recent Developments of High-performance Nenomax Magnets. J. Mater. Engin. Perfor., 1994,3(2):228
    8 R. Coehoorn, D.B. Mooij, Duchateau, et al. Novel Permannent Magnetic Materials Made by Rapid Quenching. J. de. Phy.c. 8 Supplement, 1988,49:669
    9 E.F. Kneller, R. Hawig. The Exchange-Spring Magnet: A New Materials Principle Permanent Magnets. IEEE Trans.on Magn. MAG 27(4), 1991:3588
    10 A. Manaf, R.A. Buckley, H.A. Davies. New Nanocrystalline High-remanence NdFeB by Rapid Solidification. J. Magn. Mater., 1993,128:302
    11 J. Ding, P.G. Mccormick, R. Street. Remanence Enhancement in Mechanically Alloyed Isotropic Sm7Fe93 Nitride. J. Magn. Mater., 1993,124:1-4
    12 E.F. Kneller, R. Hawig. The Exchange-Spring Magnet: A New Materials Principle Permanent Magnets. IEEE Trans.on Magn. MAG 27(4), 1991:3588
    13 T. Schrefl, R. Fischer, T. Fidler, et al. Two-and Three-dimensional Calculation of Remanence Enhancement of Rare-earth Based Composite Magnets. J. Appl. Phys., 1994,76(10):7053
    14 R. Skomski, J.M.D. Coey. Giant energy product in nanostructured two phase magnets. Phys. Rev. B, 1993, 48:15812
    15 R. Skomski, Aligned two phase magnets: permanent magnetism of the feature. J. Appl. Phys.,1994, 76(10):7059
    16 A. Manaf, R.A. Buckley, H.A. Davis. Microstructure Analysis of Nanocrystalline Fe-Nd-B Ribbons with Enhanced hard Magnetic Properties. J. Magn. Magn. Mater., 1993, 128:307
    17 R. Coehoorn, D.B. Mooij, Duchateau, et al. Novel Permannent Magnetic Materials Made by Rapid Quenching. J. de. Phy. c. 8 Supplement, 1988,49:669
    18 A. Inoue, A. TaKeuchi. Hard magnetic Properties of Nanocrystalline Fe-rich Fe-Nd-B Alloys Prepared by Partial Crystallisation of Amorphours Phase. Mater. Trans. JIM. 1995, 36:963
    19 GC.HadjiPialayis. Nano-Phase Hard Magllets. J. Magn. Magn Mater., 1999, 200(2):373-931
    20吴文飞,姚可夫.非晶合金纳米晶化的研究进展.稀有金属材料与工程. 2005, 34:505-509
    21杨君友,张同俊,李星国,等.非晶合金的研究进展.材料导报. 1995, (6):32-35
    22黄胜涛.非晶态材料的结构和结构分析.北京:科学出版社. 1987, 211-216
    23郑兆勃.非晶固态材料引论.北京:科学出版社. 1987:1-5
    24张邦维.合金相理论与非晶态合金材料:张邦维论文集.长沙:湖南大学出版扯,2001:76-272
    25王志新,卢金斌,席艳君.大块金属玻璃晶化过程的研究进展.材料导报. 2006, 20(9): 80-82
    26 A. Masuhr, T.A. Waniuk, R. Bush , et al. Time scales for viscous flow , atomic t ransport , and crystallization in the liquid and supercooled liquid states of Zr41.2Ti13.8Cu12.5Ni10Be22.5. Phys. Rev. Lett , 1999 , 82: 290-294
    27 M.X. Pan, JG. Wang, Y.S. Yao, et al. Phase transition of Zr41Ti14Cu12.5Ni10Be22.5 bulk amorphous below glass transition temperature under high pressure. Appl. Phys. Lett , 2001 , 78 (5) : 601-604
    28 Y.X. Zhang, W.K. Wang , Y. Zhang, et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10-xFexBe22.5 bulk metallic glasses. Appl. Phys. Lett , 1999 , 75 : 2392-2394
    29卢柯,王景唐.预退火对Ni-P非晶态合金的晶化动力学的影响.金属学报. 1990, 26(5):11-16
    30卢柯,王景唐.非晶态合金晶化过程中晶化长大速率的数学表达式.金属学报. 1992, 27(4): 28-34
    31黄胜涛.非晶态材料的结构和结构分析.北京:科学出版社. 1987, 211-216
    32 Y. Yoshizawa, S. Oguma, K. Yamauchi. New Fe-based soft magnetic alloys composed ofultrafine grain structure. J. Appl. Phys, 1988, 64:6044
    33 X.Y. Zhang, F.X. Zhang, J.W. Zhang, W. Yu, M. Zhang, J.H. Zhao, R.P. Liu, and Y.F. Xu, W.K. Wang. Influence of pressures on the crystallization process of an amorphous Fe73.5Cu1Nb3Si13.5B9 alloy. J. Appl. Phys., 1998, 84:1981-1923
    34 S.W. Lee. Pd induced lateral crystallization of amorphous Si thin films. Appl. Phys. Lett., 1995, 66 (13), 1671 - 1673.
    35 S.W. Lee. Low temperature poly-Si thin-film transistor fabricated by metal-induced lateral crystallization. Electron Devices Lett. ,1996 ,17 (4) ,160 - 162.
    36 Z.H. Jin. Performance of thin-film transistors with ultrathin Ni-MILC polycrystalline silicon channel layers. IEEE Eletron Device Lett.,1999 ,20 (4) ,167 - 169.
    37金仲和,王跃林.金属诱导非晶硅横向结晶机理研究.电子学报. 2001,29(8): 1079-1082
    38 Zhou Xiaofeng(周效锋) ,Liu Yingkai(刘应开) , Liu Zuoquan (刘佐权) et al. The Study of Nano-Crystallization of Fe73.5Cu1Nb3B9Si13.5 Amorphous Alloy under Shock Wave. Acta Physica Sinica(物理学报), 1999, 48(11): 2098
    39 K. Lu, J.T. Wang, M.L. Sui. A micromechanism for crystallization of amorphous alloys II. Bulk crystallization process. J. Cryst Growth, 1989, 113: 242-250
    40 K. Lu, J.T. Wang. A micromechanism for crystallization of amorphous alloys I. An in situ TEM observation. J. Cryst Growth, 1991, 112: 525-530
    41 K. Lu, J.T. Wang, and W.D. Wei. A new method for synthesizing nanocrystalline alloys. J. Appl. Physi, 1991, 69(1): 522
    42 K. Lu, J.T. Wang, M.L. Sui. Crystal growth during crystallization of amorphous alloys, J. Appl. Physi, 1989, 94: 448-454
    43陈建奇,王伟民,张良,边秀房.二元非晶合金初晶型晶化的Monte-Carlo模拟.金属学报. 2004,40(7):741-744
    44王海龙,王秀喜,王宁,粱海弋,压痕过程中非晶Cu形变诱导晶化行为的原子模拟.金属学报. 2007,43(3):259-263
    45王宇王秀喜王海龙.非晶材料压缩变形中纳米晶化现象的分子动力学模拟.金属学报. 2006,42(10):1071-1074
    46孙民华,边秀房,王艳. Al80Cu20合金液态原子微观结构及其与非晶形成能力的关系.金属功能材料. 2001, 8(4):33-37
    47 V.F. Degtyareva, F. Porsch, E.G. Ponyatovskiian and W.B. Holzapfel. Structural investigations of the amorphous alloy Al30Ge70 under high pressure. Phys. Rev. B, 1996, 53:8337
    48 L.L. Sun, W.K. Wang, D.W. He, W.H. Wang, Q.Wu, X.Y. Zhang and Z.X. Bao, Reversible phase transition between amorphous and crystalline in Zr41.2Ti13.8Cu12.5Ni10Be22.5 under high pressure at room temperature. Appl. Phys. Lett., 2000,76: 2874
    49 H.Iwasaki and T.Masumoto. Effect of high pressure on the crystallization of an amorphous Pd80Si20 alloy. J. Mater. Sci., 1978, 13:2171
    50 W.K. Wang, H.I. wasaki and K.F. wkamachi. Effect of high pressure on the crystallization of an amorphous Fe83B17 alloy. J. Mater. Sci.,1980, 15:2701
    51 W.K. Wang and H.I.wasaki. Crystallization characteristics of an amorphous Nb81Si19 alloy under high pressure and formation of the A15 phase. J. Mater. Sci,1982, 17:1523.
    52 M.Chedergen, G. B?ckstr?m. Crystallization temperature of amorphous Fe80B20 under pressure. J. Non-Cryst.Solids, 1978, 30:69
    53 F.Ye and K.Lu. Pressure effect on crystallization kinetics of an Al–La–Ni amorphous alloy Acta.Mater., 1999, 47:2449
    54 F. Ye and K. Lu. Crystallization kinetics of amorphous solids under pressure Phys. Rev. B., 1999, 60:7018.
    55 Z.Y.Shen, D.J.Shen, Y.Zhang, X.J.Yin and H.Q.Wu. The influence of pressure on crystallization of amorphous Zr70Cu30 alloy—I. Crystallization temperature and the crystallization phases. Acta. Metall. Mater., 1992, 40:2185
    56 J.Z. Jiang, J.S. Olsen, L. Gerward, et al. Pressure effect on crystallization of metallic glass Fe72P11C6Al5B4Ga2 alloy with wide supercooled liquid region. J. Appl. Phys., 2000, 87:2664
    57 X.Y. Zhang, J.W. Zhang and W.K. Wang. Effect of pressure on the microstructure ofα-Fe/Sm2(Fe, Si)17Cx nanocomposite magnets. J. Appl. Phys., 2001, 89:477
    58 A. Inoue, A. TaKeuchi. Hard magnetic Properties of Nanocrystalline Fe-rich Fe-Nd-B Alloys Prepared by Partial Crystallisation of Amorphours Phase. Mater.Trans. JIM. 1995,36:963
    59 Shen Bao-gen, Zhong Jun-xian, Yang Li yuan, et al. Magnetic properties and Phase Components in Amorphours Nd-Fe-B alloy after crystallization. J. Magn. Magn. Mater., 1990,89:195
    60 J.M. Yao, T.S. Chin, J.S. Fang. Coercivity of Melt-Spun Nd-Fe-B-Ti Alloys with Large Volume Fraction. J. Appl. Phys., 1994,33:3443
    61 A. Manaf, R.A. Buckley, H.A. Davis. Microstructure Analysis of Nanocrystalline Fe-Nd-B Ribbons with Enhanced hard Magnetic Properties. J. Magn. Magn. Mater., 1993,128:307
    62 G.C. Hadjipanayis, L. Withanawasam. Nanocomposite R2Fe14B/α-Fe Permanent Magnets. IEEE Magn. Mag., 1995,33:3596
    63 J. Kramer, C.P. Li, K.W. Dennis. Effect of TiC Additions to the Microstructure and Magnetic Properties of Nd9.5Fe84.6B6 Melt-Spun Ribbons. J. Appl. Phys.,1 998, 83: 6631
    64祝要民,杨森,宋晓平,等.添加Tb对双相NdFeB磁学性能的影响.电子显微学报, 2005, 24(4): 338.
    65 J.I. Betancout, H.A. Davies. Magnetic properties of nanocrystalline didymium (Nd-Pr)-Fe-B alloys. J. Appl. Phys., 1999, 85(8): 5911-5915.
    66潘树明,马如璋,李国保,等. Nd-Fe(Co,Al,Ga)-B合金的磁性及Al,Co,Ga原子的晶位占据研究.中国科学A辑, 1991, 5: 538-545.
    67 S. Hirosawa, H. Kanekiyo, M. Uehara. High-coercivity iron-rich rare-earth permanent magnet material based on (Fe, Co)3B-Nd-M (M=Al, Si, Cu, Ga, Ag, Au). Appl. Phys., 1993, 73(10): 6488-6492.
    68 H.A. Davies, J.F. Liu. Magnetic properties of cobalt substituted Nd2Fe14B/α-Fe nanocomposite magnets processed by overquenching and annealing. J. Magn. Magn. Mater, 1996, 157: 29–30.
    69谢国治,殷士龙,蒋晓龙,等. Mn掺杂对快淬NdFeB永磁材料晶格与磁性能的影响.金属功能材料, 2002, 9(6): 5-7.
    70 B. Gried, K. Fritz. As-cast magnets based on Fe-Nd-C. J Appl Phys, 1991, 70(10): 6447-6450.
    71 Z.M. Chen, Y.Q. Wu, M.J. Kramer, et al. A study on the role of Nb in melt-spun nanocrystalline Nd-Fe-B magnets. J. Magn. Magn. Mater., 2004,268: 105-113.
    72 Zhang Shen-gen, Li Dong-Pei, Ying Qi-ming, et al. High Magnetic Performance Nd-Fe-B Prepared by Mechanical Alloying. J. Material of Science., 2001,36:107-111
    73杨仕清,王豪才,张万里等.纳米晶双相交换耦合永磁体的制备、微结构及磁性能研究.稀土, 1997, 18(5):38-50
    74都有为.磁性材料进展.物理. 2000, 29(6):323-332
    75 Z.C. Wang, S.Z. Zhou, Y. Qiao, et al. Phase transformations and magnetic properties of melt-spun Pr7Fe88B5 ribbons during annealing. J. Alloy Comp., 2000, 299(1): 258
    76 Z.C. Wang, S.Z. Zhou, M.C. Zhang, et al. Effects of as-quenched structures on the phasetransformations and magnetic properties of melt-spun Pr7Fe88B5 ribbons. J. Appl. Phys., 1999, 86(12): 7010.
    77 J.H. Yin, B.G. Shen, D.H. Wang, et al. Magnetic properties and magnetic domain structure of Nd6Dy2Fe82Co4B6 nanocomposite magnets . J. Alloy. Comp., 2001, 316: 296
    78 Z.M. Chen, Y.Q. Wu, M.J. Kramer, et al. A study on the role of Nb in melt-spun nanocrystalline Nd-Fe-B magnets. J. Magn. Magn. Mater., 2004, 268: 105-113.
    79 Tang Wei ,Jin Zhi-qiang ,Zhang Jian-rong. Microstructure and magnetic properties of rapidly quenched Sm2 ( Fe, Al, Zr17C1.5 ribbons with Zr additions. J.Appl.Phys., 199, 82 (12):63512
    80 Chang Zhao-hua, Shen Bao-gen. Magnetism and Phase Composition Hyperfine Fields of Melt-Spin Nd-Fe-B alloys With a few percent of Neofymium. Phys. Rev. B., 1995,52:9427
    81 M. Yu, Y. Liu, S.H. Liou, et al. Nanostructured NdFeB films processed by rapid thermal annealing. J. Appl. Phys., 1998 , 83 (11) :6611
    82 M. Shindo, M. Ishizone, H. Kato. Exchange-Spring Behawior in Sputter-depositedα-Fe/Nd-Fe-B Multilayer Magnets. J. Magn. Magn. Mater., 1996, 161: 1.
    83 M. Shindo, H. Kato, T. Miyazaki. Magnetic Properties of Exchange-Coupledα-Fe/Nd-Fe-B Multilayer Thin-Film Magnets. J. Appl. Phys., 1997 , 81:4444
    84 T. Takeshita, R. Nakayama. Magnetic properties and Microstructures of the Nd-Fe-B Magnet Powder Produced by Hydrogen Treatment, Proc.10th Int. Workshop on RE Magnets and Their Applications. Kyoto Japan: 1989,551
    85 PJ. Mcguiness, X.J. Zhong, H. Forsyth, et al. Disproportionation in Nd16Fe76B8-type Hydrides. J. Less-Comm. Metals., 1989,158:359
    86 J.u. Yang, Zhou Shouzeng, Zhang Maocai, et al. Preparation and Magnetic Properties of Sm2Fe17Nx Compound. J. Materials letters. 1991,12:242
    87 O. Gutfleidch, B. Gebel, M. Kubis, et al. Modified HDDR Procedures Applied to Nd-Fe-B Alloy. J. INTERMAG 1999. IEEE: DD03
    88 Zhang W, Sui M L, Hu K Y, and Li D X J. Formation of Nanophases in a Cu–Zn Alloy under High Current Density Electropulsing. J. Mater. Res., 2000,15(10): 2065-2068
    89 Heebok Lee, Yong-Kook Kim, Kyeong-Jae Lee, et al. A Novel Annealing Technique for the Magneto-Impedance Effect in Amorphous Co66Fe4Ni1B14Si15 Alloy. J. Magn. Magn. Mater., 2000, 215-216.
    90 X.H. Li, Z.S. Gao., W. Li, K.W. Zhang, J.W. Zhang, X.Y. Zhang. Study of the Microstructure ofα-Fe/Nd2Fe14B Nanocomposites Prepared by Electropulsing Heating Amorphous NdFeCoB. J. Materials Letters. 2005, 59: 2782–2785
    91 R. Houssa, V. Franco, A. Conde. Microstructure and Magnetic Properties of a FeSiBCuNb Alloy Submitted to Joule Heating. J. Magn. Magn. Mater., 1999, 203:199-201
    92 Michal Kopcewic and Ewa Jackiewicza. Crystallization and Structural Relaxation of Amorphous FeNiSi5 Alloys due to Rapid Heating. J. Appl. Phys., 1992,71 (8):3997-4001
    93 L. Tsybeskov, K.D. Hirschman, S.P. Duttagupta, et al. Fabrication of Nanocrystalline Silicon Superlattices by Controlled Thermal Recrystallization. J. phys. stat. sol. A., 1998, 165:69-43
    94 Akinori Kojima, Akihiro Makino, Akihisa Inoue. Rapid-Annealing Effect on the Microstructure and Magnetic Properties of the Fe-rich Nanocomposite Magnets. J. Appl. Phys., 2000,87:6576-6581
    95 Fukunaga H, Tokunaga K, Song J M.. Rapid-Annealing Effect on the Microstructure and Magnetic Properties of the Fe-rich Nanocomposite Magnets. J. IEEE. Trans. Magn., 2002, 38(5): 2970-2972.
    96 Sun Shouheng, Murray C B, Weller Dieter,Liesl Folks, Andreas Moser. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. J. SCIENCE. 2000, 287: 1989-1991
    97 Takahashi, T.O. Seki, K. Hono, T. Shima, K. Takanashi. Microstructure and Magnetic Properties of FePt and Fe/FePt Polycrystalline Films with High Coercivity. J. Appl. Phys. Lett., 2004,96:475-481
    98 K.E. Kim, M.K. Lee, Y.M. Sung, T.G. Kim.. Enhanced L10 Chemical Ordering and FePt/Fe3O4 Core / Shell Structure Formation in Zn-doped FePt Nanoparticles. J. Appl. Phys. Lett., 2007,90:173117/1-3
    99 M. H. Hong, K. Hono. Microstructure of FePt/Pt Magnetic Thin Films with High Perpendicular Coercivity. J. Appl. Phys.,1998,84:4403-4409
    100 H. Zeng, S.H. Sun, J. Li, Z.L. Wang, J.P. Liu. Tailoring Magnetic Properties of Core/Shell Nanoparticles. J. Appl. Phys. Lett.,2004,85:792-794
    101 H. Zeng, J. Li and J.P. Liu et al.. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature, 2002,420:395-397
    102 C.J. Yang, E.B. Park. The effect of magnetic field treatment on enhanced exchange coupling of Nd2Fe14B/Fe3B magnet. J. IEEE. Trans. Magn., 1996, 32(5):4428-4430.
    103 C.J. Yang, E.B. Park. Mossbauer study on Nd2Fe14B/Fe3B composite magnet treated by an external magnetic field. J. Magn. Magn. Mater. 1997, 168:2 78-284.
    104 Zhao T M,Nao Y Y, Xu X R, etal. Promotion of crystallization and magnetic property improvement: enhancement of the energy product in Nd-Fe-B by magnetic field heat treatment. J.Appl.Phys. 1999, 85(1):518-521.
    105 X. Y. Zhang, J. W. Zhang and W. K. Wang Crystallization Kinetics and Phase Transition under High-Pressure of Amorphous Sm8Fe85Si2C5 Alloy. Acta mater. 2001, 49:3889–3897
    106 Xiangyi Zhang, Jinwu Zhang, and Wenkui Wang. A Novel Route for the Preparation of Nanocomposite Magnets. Adv. Mater. 2000, 12:1441-1444
    107 Liling Sun, W. K. Wang, D. W. He, W. H. Wang, Q. Wu, X. Y. Zhang, and Z. X. Bao. Reversible phase transition between amorphous and crystalline in Zr41.2Ti13.8Cu12.5Ni10Be22.5 under high pressure at room temperature. Appl. Phys. Lett., 2000, 76:2874-2876
    108 X. Y. Zhang, F. X. Zhang, J. W. Zhang, W. Yu, M. Zhang, J. H. Zhao, R. P. Liu, and Y. F. Xu, W. K. Wang. Influence of pressures on the crystallization process of an amorphous Fe73.5Cu1Nb3Si13.5B9 alloy. J. Appl. Phys., 1998, 84:1981-1923
    109 X.Y. Zhang, J.W. Zhang, and W.K. Wang. Microstructure and magnetic properties of Sm2Fe, Si17Cx /α-Fe nanocomposite magnets prepared under high pressure. Appl. Phys. Lett., 1999, 74:597-599
    110 X.Y. Zhang, J.W. Zhang, W.K. Wang. Crystallization process of an amorphous Sm8Fe85Si2C5 alloy under high pressure. J Magn Magn Mater., 2000, 219:199-205
    111 X.Y. Zhang, J.W. Zhang, and W.K. Wang. Effect of pressure on the microstructure ofα-Fe/Sm2(Fe, Si)17Cx nanocomposite magnets. J. Appl. Phys., 2001, 89:477-481
    112 Z.C. Wang, F.F. Gong, X.L. Yang, et al. Longitudinally driven giant Magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons. J. Appl. Phys. 2000, 87:4819.
    113 Z.C. Wang, S.Z. Zhou, M.C. Zhang, et al. High performanceα-Fe/Nd2Fe14B-type nanocomposite magnets produced by hot compaction under high pressure. J. Appl. Phys., 2000 ,88:591-593
    114 X.Y. Zhang, Y. Guan, L. Yang, and J.W. Zhang. Crystallographic texture and magneticanisotropy ofα-Fe/Nd2Fe14B nanocomposites prepared by controlled melt spinning. Appl. Phys. Lett., 2001, 79, 2426-2428
    115 Z. Q. Jin, H. Okumura and G. C. Hadjipanayis. Microstructure Refinement and Significant Improvements of Magnetic Properties in Pr2Fe14B/a-Fe Nanocomposites. J. Magn. Magn. Mater., 2002,248(2):216-222
    116 J. Ding, P. G. McCormick, and R. Street, J. Magn. Magn. Mater., 1993,124:1
    117 L. Withanawasam, A. S. Murthy, and G. C. Hadjipanayis, IEEE Trans.Magn., 1995, 31:3608
    118 W.C. Chang, D.Y. Chiou, and S.H. Wu, Appl. Phys. Lett., 1998, 72:121
    119 P.G. McCormick, W.F. Miao, P.A.I. Smith, J. Ding, and R. Street, J. Appl. Phys., 1998, 83: 6256
    120 X.Y. Zhang,Y. Guan, L. Yang, and J.W. Zhang. Crystallographic texture and magnetic anisotropy ofα-Fe/Nd2Fe14B nanocomposites prepared by controlled melt spinning. Appl. Phys., 2001, 79:2426
    121 F. Faupel, W. Frank, M.P. Macht, V. Naundorf, K. Raetzke, H.R. Schober, S.K. Sharma and H. Teichler. Rev..Mod..Phys., 2003, 75: 273
    122 A. Grandjean, P. Blanchard and Y. Limoge. Phys. Rev. Lett., 1997, 78: 697
    123 B.A. Cook, J.L Harringa, F.C. Laabs, K.W. Dennis, A.M. Russell and R. Mccallum. J..Magn..Magn..Mater., 2001,233:136
    124 A.G. Popov., V.S. Gaviko., N.N. Shchegoleva., L.A. Shreder., V.V. Stolyarov., D. V. Gunderov, X.Y..Zhang, W. Li, L.L. Li. High-pressure-torsion deformation of melt-spun Nd9Fe85B6 alloy. The Physics of Metals and Metallography, 2007, 104(3): 238.
    125 F.X. Zhang and W.K. Wang. Appl. Phys. Lett., 1995, 67:617
    126 Z.C. Qin, Y. Liu, Y. Zhang, W. Liu and W.K. Wang. J..Mater..Sci..Lett., 1995, 14:209
    127 D. Porter and K. Easterling. Phase Transformation in Metals and Alloys. New York: Van Nostrand Reinhold Company. 1981, 263-284
    128冯瑞.金属物理学(第二卷,相变).北京:科学出版社. 1990, 111-112
    129王文魁.非晶合金的高压变态.物理学进展. 1984, 4:525
    130余永宁.金属学原理.北京冶金工业出版社. 2000, 223-231
    131 J.Z Jiang. Crystallization of metallic glasses under pressure. Proceedings of the 22nd International symposium on material scince. Editors: Dinesen A R, Eldrap D, Junl Jensen, et al. Roskilde. 2001, 263
    132 X.Y. Zhang, J.W. Zhang, and W.K. Wang. Crystalliztion Kinetics and Phase Transition under High-Pressure of Amorphous Sm8Fe85Si2C5 Alloy. Acta mater., 2001,49:3889–3897
    133 T. Schrefl, R. Fischer, J. Fidler and H. Kronmuller, J. Appl. Phys., 1994, 76: 7035
    134 T. Schrefl, H. Kronmuller, and J. Fidler. J..Magn..Magn..Mater., 1995,31:3602
    135 Y.H. Gao, J.H. Zhu, Y.Q. Weng, B.P. Eon and J.Y. Choong. J. Appl. Phys., 1998, 84: 4388
    136 B.B. Sun, Y.B. Wang, J. Wen, H. Yang , M.L. Sui, L.Q. Wang , E. Ma. J. Scripta.Mater. 2005, 53:805
    137 J.J. Kim, Y. Choi, S. Suresh, A.S. Agron. Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science, 2002, 295(5555): 654?657.
    138闫志杰,李金富,周尧和,仵彦卿.压痕塑性变形诱导非晶合金的晶化.物理学报. 2007, 56:999-1003
    139王海龙,王秀喜,王宇,梁海弋.分子动力学模拟金属玻璃压痕过程的应力晶化行为.中国有色金属学报. 2007, 17:85-91
    140 Pang H, Jin Z H, Lu K. Relaxation, nucleation, and glass transition in super cooled liquid Cu. Phy.Rev.B., 2003, 67(9): 94113
    142 C.A. Schuh, A.C. Lund. Atomistic basis for the plastic yield criterion of metallic glass. Nature Materials, 2003, 2(7):499?452.
    143 B.J. Lee, C.S. Lee, J.C. Lee. Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: a molecular dynamics simulation study. Acta. Materialia, 2003, 51(20): 6233?6240.
    144 R. Tarumi, A. Ogura, M. Shimojo, K. Takashima, Y. Higo. Molecular dynamics simulation of crystallization in an amorphous metal during shear deformation. J. Appl. Phys, 2000, 39(6): B1611?1613.
    145 Lu Ke, Wang Jing-tang. Effect of pre-annealing on crystallization kinetics of amorphous Ni-P alloys. Acta Metallurgica Sinica. 1990, 26: B316?320.
    146 LU Ke, WANG Jing-tang, DONG Lin. In situ observation on dynamic crystallization in amorphous Ni-P alloy foil with TEM. Acta Metallurgica Sinica, 1991, 27: B31?B37.
    147 M. Sutton, Y.S. Yang, J. Mainville, J.L. Jordan-Sweet, K.F. Ludwig Jr, G.B. Stephenson. Observation of a precursor during the crystallization of amorphous NiZr. Phys. Rev. Lett, 1989, 62(3): 288?291.
    148 H.R. Schober. Pressure dependence of diffusion in simple glasses and supercooled liquids. Phys Rev Lett, 2002, 88(14): 145901
    149 J. Michael, Aziz. Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms. Appl. Phys. Lett., 1997, 70(21):2810
    150 Yuechao Zhao and Michael J. Aziz. Activation volume for boron diffusion in silicon and implications for strained films. Appl. Phys. Lett., 1999, 74(1):31
    151 U. Breier, V. Schott, and M. Fahnle. Ab initio calculation of formation and migration volumes for vacancies in Li and Na. Phys. Rev. B., 1997, 55:5772
    152 S.K. Wonnell, J.M. Delaye, M. Bibok, and Y. Limoge. Activation volume for the interdiffusion of AS-Au multilayers. J. Appl. Phys., 1992, 72 (11), 5195
    153 Carl Andeen, L.M. Hayden, J. Fontanella. Activation volume for interstitial motion in strontium fluoride. Phys. Rev. B., 1980, 21:794
    154 C.T. Candland, D.C. Deck and Vanfleet. Interstitial Diffusion of Copper in Lead at Pressures up to 56 kbar. Phys. Rev. B. 1972,5:2085
    155 S.G. Fishman and R.N. Jeffery. Effect of High Pressure on Self-Diffusion in Concentrated FeCo Alloys. Phys. Rev. B. 1971,3:4424
    156 S. Flege, H. Hahn, R.S. Averback. Thermal and radiation-enhanced diffusion in the bulk metallic glass Ni23Zr62Al15. Phys. Rev. B. 2004, 69:014303
    157 P. Fielitz, M. Macht, V. Naundorf, and G. Frohberg, J. Non-Cryst. Solids., 1999, 250:252-674
    158 K. Knorr, M.P. Macht, K. Freitag, and H. Mehrer, J. Non-Cryst.Solids., 1999, 669: 250-252
    159 P. Klugkist, K. R?tzke, S. Rehders, P. Troche, and F. Faupel. Activation Volume of 57Co Diffusion in Amorphous Co81Zr19. Phys. Rev. Lett., 1998, 80(15): 3288
    160 F. Faupel, P.W. Hüppe, and K. R?tzke. Pressure dependence and isotope effect of self-diffusion in a metallic glass. Phys. Rev. Lett. 1990,65: 1219
    161 K. R?tzke, P.W. Hüppe, and F. Faupel. Transition from single-jump type to highly cooperative diffusion during structural relaxation of a metallic glass. Phys. Rev. Lett. 1992,68: 2347
    162 A. Grandjean, P. Blanchard, and Y. Limoge. Activation Volume for Zr Diffusion in an Amorphous Ni0.54Zr0.46 Alloy. Phys. Rev. Lett. 1997, 78: 697
    163王文魁,许应凡,黄新明.高压下Pd40Ni40P20过冷熔体的成核及大块金属玻璃形成.中国科学. 1992, 22A:1035
    164 Keren Jacobs, David Zaziski, Erik C. Scher, Amy B. Herhold, A. Paul Alivisatos. Activation Volumes for Solid-Solid Transformations in Nanocrystals. Science. 2001, 293: 1803-1806
    165王秀英,孙力玲,刘日平,姚玉书,张君,王文魁.高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散.物理学报. 2004, 53(11):3845
    166 D. Porter and K. Easterling. Phase Transformation in Metals and Alloys. New York: Van Nostrand Reinhold Company. 1981, 263-284
    167 Andrey Chirkov, Andrei Nazarov. N-body potentials in simulation of point defect properties. Diffusion Fundamentals. 2005, 3:1- 11
    168 Yuechao Zhao, Michael J. Aziz, Hans-J. Gossmann, Salman Mitha, David Schiferl. Activation volume for boron diffusion in silicon and implications for strained films. Appl. Phys. Lett., 1999, 74:31-33
    169 J.A. Michael, Y.C. Zhao, H.J. Gossmann, et al. Pressure and stress effects on the diffusion of B and Sb in Si and Si-Ge alloys. Phys. Rev. Lett., 2006,73: 054101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700