用户名: 密码: 验证码:
CdSe/CdS、ZnSe及其掺杂纳米材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅱ-Ⅳ族纳米晶是一种特殊的半导体纳米微粒,由于量子尺寸效应的影响,可通过调节纳米晶的尺寸、晶体结构和化学组成来调控它的光学性能。因此,通过化学方法合成纳米晶,对其晶体结构、表面结构与材料本身的性能之间的关系加以研究成为研究热点。论文开展了溶胶凝胶法、水热法、微波法制备Ⅱ-Ⅳ族及过渡金属掺杂纳米材料和性能的研究,对纳米材料的形貌、结构以及与光学性能的关系进行了深入研究,并对纳米晶体的形成机理进行了探讨。论文的主要工作和贡献如下:
     论文以α-环糊精为稳定剂,在水相中直接制备CdSe-CdS纳米粒子。与传统的有机荧光材料相比,CdSe纳米晶因其具有的激发光波范围宽、发射光谱宽度窄、荧光强度高、稳定性好等特点而成为最有应用前景的新型生物探针。目前,高效的量子探针都是在有机合成体系(TOP/HAD/TOPO)中制得。由于生物识别和检测的环境是水相的,因此上述方法得到的纳米晶尚需进一步转移至水相。此过程带来了量子探针的发光性能和稳定性的破坏。因此,人们试图探索直接在水溶液中合成纳米CdSe。环糊精的独特的“内疏水、外亲水”的分子结构,可以与范围极其广泛的各类客体通过分子间的相互作用形成主—客体关系。以环糊精为稳定剂,已成功制备了金属如Ag、半导体纳米粒子如ZnS等纳米粒子。论文通过两步法,首先制备核层CdSe,进而在其表面沉积壳层CdS壳层材料,对反应进程中纳米粒子的形貌和光学性能、生长机理进行了研究。结果表明,制备的CdSe-CdS为近球形粒子,平均直径约15 nm,为六方晶系的单晶结构,无明显的晶格缺陷。在核层和壳层的反应过程中,均发现随着反应时间的增加,粒子长大,相应的紫外吸收光谱向长波方向移动;当增加Cd/Se的比例,纳米晶的荧光强度提高,且荧光发射峰逐渐变窄。达到了可通过控制反应时间和前躯体配比制备不同粒径和粒度分布的荧光纳米材料的目的。
     以α-环糊精为稳定剂,水热法一步完成了ZnSe及Mn掺杂ZnSe纳米线的制备,对制得的纳米线的形貌、结构和光学性能进行了研究。CdSe的性质使其成为最有前景的探针材料,但它的生物安全性一直是其生物应用的瓶颈。近年来多个研究小组开展了过渡金属掺杂的半导体材料的研究,有望替代CdSe成为新型的荧光标记物,如Mn、Cu、Co掺杂的ZnS、ZnSe等。研究结果发现,ZnSe及Mn掺杂ZnSe纳米线均属闪锌矿型,Mn掺杂ZnSe的纳米线有微量的纤锌矿型晶体存在。ZnSe纳米线的平均直径约为90 nm;长约在1.5μm~3.5μm之间;Mn掺杂的ZnSe纳米线平均直径约为80 nm;平均长度约在2μm~3μm之间,呈结晶完好的立方晶系单晶结构。Mn植入ZnSe晶格,引起了带隙能的减小,导致紫外吸收的红移。发射谱图上在432nm和580 nm分别有两个发射峰,分别归属于ZnSe缺陷发射和锰的~4T_1→~6A_1发射。掺杂比例的改变对产物的光学性能影响很大。此方面的研究未见报道。
     微波加热是很有前途的体加热方法,具有加热速度快,选择性加热等优点。微波环境下可得到传统的加热方式不同结构和性质的纳米材料。论文研究了利用微波加热法制备ZnSe及Mn、Co掺杂ZnSe纳米材料,并分别对形貌、结构和性能的关系进行了探索。结果表明,制得的ZnSe纳米粒子均为纤锌矿型晶体。选择不同的有机胺配体可调节粒子的粒径大小;随微波功率的变化,粒子可由均匀的球形变成了近似的米粒形状进而生长成为棒状粒子。随着辐照时间的延长,晶体长大或定向生长,相应的荧光光谱和紫外吸收光谱均向长波方向移动。此方面的研究未见报道。
     微波法合成的Mn、Co掺杂的纳米ZnSe粒子的研究结果表明,Mn离子掺杂的纳米ZnSe粒子的颜色显橙色,为200~500 nm的球形粒子,表面平整,为单晶ZnSe的纤锌矿结构,荧光光谱中出现位于433 nm,487 nm,530 nm三个发射峰;Co离子掺杂的纳米ZnSe粒子的颜色显绿色,为约500 nm的球形粒子,表面平整光滑,形成单晶ZnSe的纤锌矿结构,晶体生长过程中有少量的晶格位错。荧光光谱中出现位于486 nm,527 nm的两个发射峰。Co掺杂的ZnSe纳米粒子随可见光下的钝化时间增加而发射峰强度增强。此方面的研究未见报道。
Ⅱ-Ⅳnanocrystals,as a class of special semiconductor nanomaterials, have the similar regularity of atomic arrangement with crystals.As a result of quantum size effects,their optical and electrical properties strongly depend on the size of nanocrystals,the surface structure,crystal structure and the performance of nanocrystals have attracted more attentions.In this paper,Ⅱ-Ⅳsemiconductors and their doped nanomaterials were synthsizied with colloidal method and studied the relationship between the morphology,structure of materials and the optical properties.Main points as follows:
     α-Cyclodextrin modified CdSe/CdS nanoparticles were successfully synthesized with hydrothermal method.Techniques of AFM,TEM,EDS, FTIR,UV-vis absorbance and photoluminescence spectra were used to characterize the morphology,composition and optical characteristic of the synthesized nanoparticles.The effects of precursor ratios,reaction times and the light stability of the nanoparticles were investigated.The results showed that the as-synthesized nanoparticles were dot-shaped and their average size was 15 nm,had hexagonal single crystal structure.The red shift in both absorption and fluorescence emission spectra of CdSe/CdS nanoparticles are resulted from the presence of the CdS shell.The obvious defects in the lattice and the boundary between CdSe and CdS were not observed.The sizes and size distributions can be adjusted by precursor ratios and reation times respectively by the presence ofα-Cyclodextrin.
     ZnSe nanoparticles were prepared using alkylamines as ligating solvent by microwave-irradiation method.The differences of morphologies in the effect of alkylamines and microwave variables were investigated.The results show that there is an inverse relationship between the size of nanoparticles and the length of the alkylamine.The average sizes were increased with the duration of irradiation time. Microwave irradiation power affects the sizes and shapes of ZnSe materials because of the movement and polarization of amine molecules under the rapidly changing electric field of the microwave reactor.
     Mn- Co- doped ZnSe nanoparticles were prepared by microwave-irradiation method.The effects of different doped transition metals and the dope amount on the morphology and optical properties were investigated.The results showed that the Mn- doped ZnSe nanoparticles were orange powder and the average size was 200-500 nm. They had structured surface and single crystal wurtzite structure.Three emission peaks,433 nm,487 nm,530 nm,were detected in the photoluminescence spectrum.Co- doped ZnSe nanoparticles were yellow-green powder and the average size was 500 nm.They had structured surface and single crystal wurtzite structure.Two emission peaks,486 nm,527 nm,were detected in the photoluminescence spectrum.
     Mn-doped ZnSe nanowires were prepared by hydrothermal method usingα-cyclodextrins as stabilizer and zinc acetate,manganese acetate and Na_2SeSO_3 aqueous solution as precursor.The as-prepared Mn-doped ZnSe nanowires were all typically single well-crystallized structure and had zinc blende structure.The average length of the nanowires was about 2-3 um and average diameter was 80 nm.Experimental results showed that a sharp absorption band appeared at 360 nm in the UV-vis absorbance spectra of Mn-doped ZnSe nanowires.The corresponding photoluminescence spectrum with 350 nm excitation showed signs of two distinct emission bands centered at 432 and 580 nm.
引文
[1]Robert F.Small Clusters Hit the Big Time[J].Science,1996,271(16):920-922
    [2]Chunli Bai.Ascent of Nanoscience in China[J].Science,2005,309(1):61-63
    [3]Chang,Y-R,Lee H-Y,Chen,K,et al.Mass production and dynamic imaging of fluorescent nanodiamonds Nature Nanotechnology[J].2008,3(5):284-288
    [4]Hansen P L,Wagner J B,Helveg S,et al.Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals[J].Science,2002,295(15):2053-2055
    [5]Taton T A,Mirkin C A,Letsinger R L.Scanometric DNA Array Detection with Nanoparticle Probes[J].Science,2000,289(8):1757-1760
    [6]Winkler P M,Steiner G,Vrtala A,et al.Heterogeneous Nucleation Experiments Bridging the Scale from Molecular Ion Clusters to Nanopartieles[J].Science,2008,319(7):1374-1377
    [7]Service R F.Nanotechnology Takes Aim at Cancer[J].Science,2005,310(18):1132-1134
    [8]Park H-G,Kim S-H,Kwon S-H,et al.Electrically Driven Single-Cell Photonic Crystal Laser[J].Science,2004,3053:1444-1447
    [9]Szuromi P.Simply Hexagonal Stacks[J].Science,2007,316(20):343-343
    [10]中国科学院化学学部,国家自然科学基金委化学科学部编.展望21世纪的化学[M].北京:化学工业出版社,2001,99-101
    [11]张志焜,崔作林.纳米技术与纳米材料[M],北京:国防工业出版社,,2000,81-82
    [12]Mekis I,Talapin D V,Kornowski A,et al.One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and "Greener" Chemical Approaches[J].J.Phys.Chem.B,2003,107:7454-7462
    [13]Burda C,Chen X,Narayanan R,et al.Chemistry and Properties of Nanocrystals of Different Shapes[J].Chem.Rev.2005,105:1025-1102
    [14]Mitzi D B.Polymorphic One-Dimensional(N_2H_4)_2ZnTe:Soluble Precursors for the Formation of Hexagonal or Cubic Zinc Telluride[J].lnorg.Chem.2005,44: 7086-7086
    [15]Sadhu S,Chowdhury P S,Patra A.Synthesis and time-resolved photoluminescence spectroscopy of capped CdS nanocrystals[J].Journal of Luminescence,2008,128(7):1235-1240
    [16]曹茂盛,蒋成禹,田永君主编.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社,2001,11-12[
    17]丁秉钧.纳米材料[M].北京:机械工业出版社,2004,162-168
    [18]朱屯,王福明,王习东.国外纳米材料技术进展与应用[M].北京:化工出版社,2002,80-82
    [19]Depalo N,Comparelli R,Striccoli M,et al.r-Cyclodextrin Functionalized CdS Nanocrystals for Fabrication of 2/3 D Assemblies[J].J.Phys.Chem.B,2006,110:17388-17399
    [20]Xu J,Zhou J,Yao Y,et al.Enhanced electron field emission from dense Si nano-dots prepared by laser crystallization of ultrathin amorphous Si films[J].Solid State Communications,2008,145(9-10):443-446
    [21]Wu J-Y,Kuo C-T,Liu T-L.Structures and properties of the SiNC films on Si wafer at different deposition stages[J].Thin Solid Films,2001,398-399:413-418
    [22]Lu T,Dun S,Hu Q,et al.Ge nano-layer fabricated by high-fluence low-energy ion implantation[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2006,250(1-2):183-187
    [23]Fukumi K,Chayahara A,Kageyama H,et al.Formation process of CuCl nano-particles in silica glass by ion implantation[J].Journal of Non-Crystalline Solids,1999,259(1-3):93-99
    [24]Errico V,Stomeo T,Salhi A,et al.Quantum dot nano-cavity emission tuned by a circular photonic crystal lattice[J].Microelectronic Engineering,2007,84(5-8):1570-1573
    [25]Savchuk A I,Gritsyuk B M,Galochkin O V,et al.Electrical,photoelectrical properties and crystal structure of A~2B~6 films,grown by laser sputtering[J].Thin Solid Films,2006,511-512(26):478-482
    [26]Iwasaki K,Ito T,Yoshino M,et al.Power factor of La_(1-x)Sr_xFeO_3 and LaFe_(1-y)Ni_yO_3.[J]. Journal of Alloys and Compounds,2007,430(1-2):297-301
    [27]Daniel M-C,Astruc D.Gold Nanoparticles:Assembly,Supramolecular Chemistry,Quantum-Size-Related Properties,and Applications toward Biology,Catalysis,and Nanotechnology[J].Chem.Rev.2004,104:293-346
    [28]Guo H -Q,Kronm(u|¨)ller H,Moser N.Influence of the induced anisotropy on the magnetic after-effect in amorphous Co_(58)Ni_(10)Fe_5Si_(11)B_(16) alloy[J].Materials Science and Engineering,1988,97:519-522
    [29]Vojtanik P,Bo(?)kovi(?)ova M,Kisdi-Koszo E,et al.Relaxation processes in Co_(75)B_(25)amorphous alloy[J],Journal of Magnetism and Magnetic Materials,1984,41(1-3):385-387
    [30]Blasse G,Grabmaier B C.Luminescent materials[M].Spring-Verlag,Utreche,1999:60-64
    [31]Rosenthal S J.Coding biomolecules with fluorescent nanocrystals[J].Nat.Biotechnol,2001,19:621-622
    [32]Alivisatos A P.Semiconductor clusters,nanocrystals,and quantum dots[J].Science,1996,271:933-937
    [33]Guo W,Li J J,Wang Y A,et al.Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes:Superior Chemical,Photochemical and Thermal Stability[J].J.Am.Chem.Soc.,2003,125:3901-3909
    [34]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化工出版社,2002,61-111
    [35]Gleiter H.Nanostructured Materials[J].Adv.Mater.,1992,4:474-481
    [36]Haubold T,Bohn R,Birringer R,et al.Nanocrystalline intermetallic compounds—structure and mechanical properties[J].Materials Science and Engineering A,1992,153(1-2):679-683
    [37]Fievet,F,Lagier J P.Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles[J].Solid State Ionics,1989,32/33:198
    [38]Woo K,Hong J,Choi S,et al.Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles[J].Chem.Mater.,2004,16(14):2814-2818
    [39]Boutonnet M,Kizling J,Stenius P,et al.The preparation of monodisperse colloidal metal particles from microemulsions[J].Colloids and Sulfates,1982,5(4),209-225
    [40]沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报,1995,11:6-10
    [41]王大鸷,崔励,曹传宝等.微乳液法制备不同形貌低维硒化锌纳米晶[J].人工晶体学报,2006,35(3):470-473
    [42]Karanikolos G N,Alexandridis P,ltskos G,et at.Synthesis and Size Control of Luminescent ZnSe Nanocrystals by a Microemulsion-Gas Contacting Technique[J].Langmuir 2004,20,550-553
    [43]Lianos P,Thomas J K.Small CdS particles in inverted micelles[J].J.Colloid Interface Sci.,1987,117,505-512
    [44]Nagy J B.Multinuclear NMR characterization of microemulsions:Preparation of monodisperse colloidal metal boride particles[J].Colloids and Surfaces,1989,35,201-220.
    [45]Jeunieau L,Verbouwe W,Rousseau E,et al.Interaction of an Oxa- and Thiacarbocyanine Dye and Silver Halide Nanoparticles Synthesized in a Microemulsion System[J].Langmuir 2000,16,1602-1611.
    [46]Dvolaitzky M,Ober R,Taupin C,et al.Silver Chloride Microcrystals Suspensions In Microemusion Media[J].J.Dispersion Sci.Tech.,1983,4,29-45.
    [47]Bandyopadhyaya R,Kumar R,Gandhi K S.Modelling of CaCO_3 Nanoparticle Formation During Overbasing of Lubricating Oil Additives[J].Langmuir,2001,17(4):1015-1029
    [48]吴晓春,汤国庆,张桂兰等.不同制备条件对纳米Bi_2O_3发光的影响[J].化学学报,1996.54:146-149
    [49]Osseo-Asare K,Arriageala F.Preparation of SiO_2 nanoparticles in a non-ionic reverse micellar system[J].Colloids and Surfaces,1990,50:321-339
    [50]Murray C B,Norris D J,Bawendi M G.Synthesis and characterization of nearly monodisperse CdE(E=sulfur,selenium,tellurium) semiconductor nanocrystallites[J].J.Am.Chem.Soc.,1993,115(19):8706-8715.
    [51]Shiang J J,Kadavanich,A V,Grubbs R K,et al.Symmetry of Annealed Wurtzite CdSe Nanocrystals:Assignment to the C_(3v) Point Group[J].J.Phys.Chem.,1996,100(32):13886-13886.
    [52]Peng X,Wickham J,Alivisatos A P.Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions[J].J.Am.Chem.Soc.,1998,120(21):5343-5344.
    [53]Li L-s,Hu J,Yang W,et al.Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods[J].Nano Lett.,2001,1(7):349-351
    [54]Chan E M,Mathies R A,Alivisatos A P.Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors[J].Nano Lett.,2003,3(2):199-201
    [55]Peng Z A,Peng X.Formation of High-Quality CdTe,CdSe,and CdS Nanocrystals Using CdO as Precursor[J].J.Am.Chem.Soc.,2001,123(1):183-184
    [56]Mattoussi H,Mauro J M,Goldman E R,et al.Self-Assembly of CdSe-ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein[J].J.Am.Chem.Soc.,2000,122(49):12142-12150
    [57]Yu W W,Peng X.Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers[J].Angew.Chem.Int.Ed.2002,41,2368-2371
    [58]Yu W W,Wang Y A,Peng X.Formation and Stability of Size-,Shape-,and Structure-Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals[J].Chem.Mater.,2003,15(22):4300-4308
    [59]Battaglia D,Peng X.Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent[J].Nano Lett.2002,2:1027-1030
    [60]Zhong X,Feng Y,Knoll W,et al.Alloyed ZnxCdl-xS Nanocrystals with Highly Narrow Luminescence Spectral Width[J].J.Am.Chem.Soc.2003,125:13559-13563
    [61]Gao X,Nie S.Doping Mesoporous Materials with Multicolor Quantum Dots[J].J.Phys.Chem.B.,2003,107(42):11575-11578
    [62]Wuister S F,Swart I,Van- Driel F,et al.Highly Luminescent Water-Soluble CdTe Quantum Dots[J].Nano Lett.,2003,3(4):503-507
    [63]Wuister S F,Donega de M C,Meijerink A.Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots[J].J.Phys.Chem.B.,2004,108(45):17393-17397
    [64]Xu J,Wang J,Mitchell M,et al.Organic-Inorganic Nanocomposites via Directly Grafting Conjugated Polymers onto Quantum Dots[J].J.Am.Chem.Soc.,2007,129(42):12828-12833
    [65]Medintz I L,Trammell S A,Mattoussi H,et al.Reversible Modulation of Quantum Dot Photoluminescence Using a Protein- Bound Photochromic Fluorescence Resonance Energy Transfer Acceptor[J].J.Am.Chem.Soc.,2004,126(1):30-31 Zhang T, Stilwell J L, Gerion D, et al. Cellular Effect of High Doses of Silica-Coated
    [66] Quantum Dot Profiled with High Throughput Gene Expression Analysis and High Content Cellomics Measurements [J]. Nano Lett., 2006, 6(4): 800-808
    [67] Zhelev Z, Ohba H, Bakalova R. Single Quantum Dot-Micelles Coated with Silica Shell as Potentially Non-Cytotoxic Fluorescent Cell Tracers [J]. J. Am. Chem. Soc., 2006, 128(19): 6324-6325
    [68] Mandal S K, Lequeux N, Rotenberg B, et al. Encapsulation of Magnetic and Fluorescent Nanoparticles in Emulsion Droplets [J]. Langmuir, 2005, 21(9): 4175-4179
    [69] Wang C-W, Moffitt M G. Nonlithographic Hierarchical Patterning of Semiconducting Nanoparticles via Polymer [J]. Polymer Phase Separation, 2005, 17(15): 3871-3878
    [70] Gao X, Nie S. Quantum Dot-Encoded Mesoporous Beads with High Brightness and Uniformity: Rapid Readout Using Flow Cytometry [J]. Anal. Chem., 2004, 76(8): 2406-2410
    [71] Chen Y, Rosenzweig Z. Luminescent CdSe Quantum Dot Doped Stabilized Micelles [J]. Nano Lett., 2002, 2(11): 1299-1302
    [72] Rajh T, Micic O I, Nozik A.J. Synthesis and characterization of surface-modified colloidal cadmium telluride quantum dots [J]. J. Phys. Chem. 1993, 97: 11999-12003
    [73] Gaponik N, Talapin D V, Rogach A L, et al. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes [J]. J. Phys. Chem. B 2002, 106: 7177-7185
    [74] Rogach A L, Kornowski A, Gao M, et al. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals [J]. J. Phys. Chem. B., 1999, 103(16): 3065-3069
    [75] Lu N, Chen X, Molenda D, et al. Lateral Patterning of Luminescent CdSe Nanocrystals by Selective Dewetting from Self-Assembled Organic Templates [J]. Nano Lett., 2004, 4(5): 885-888
    
    [76] Cai E, Zhang H, Yang B, et al. Preparation of Luminescent Polyelectrolyte/Cu-Doped ZnSe Nanoparticle Multilayer Composite Films [J]. J. Colloid and Interface Sci. 2001, 238: 285-290
    
    [77] Harrison M T, Kershaw S V, Rogach A L, et al. Wet Chemical Synthesis of Highly Luminescent HgTe/CdS Core/Shell Nanocrystals [J]. Adv. Mater. 2000, 12: 123-126
    
    [78] Harrison M T, Kershaw S V, Burt M G, et al. Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence [J]. Mater. Sci. Eng. B 2000, 69-70: 355-360
    [79] Peng Q, Dong Y, Deng Z, et al. Selective Synthesis and Characterization of CdSe Nanorods and Fractal Nanocrystals [J]. Inorg. Chem., 2002, 41(20): 5249-5254
    [80] Li Y, Liao H, Ding Y, et al. Solvothermat Elemental Direct Reaction to CdE (E = S, Se, Te) Semiconductor Nanorod [J]. Inorg. Chem., 1999, 38(7): 1382-1387
    [81] Yang Q, Tang K, Wang C, et al. PVA-Assisted Synthesis and Characterization of CdSe and CdTe Nanowires [J].J. Phys. Chem. B., 2002, 106(36): 9227-9230
    [82] Wang X, Zhuang J, Peng Q, et al. Synthesis and Characterization of Sulfide and Selenide Colloidal Semiconductor Nanocrystals [J]. Langmuir, 2006, 22(17): 7364-7368
    [83] Xu D. Shi X, Guo G, et al. Electrochemical Preparation of CdSe Nanowire Arrays [J]. J. Phys. Chem. B., 2000, 104(21): 5061-5063
    [84] Lee Y-C, Kuo T-J, Hsu C-J, et al. Fabrication of 3D Macroporous Structures of II-VI and III-V Semiconductors Using Electrochemical Deposition [J]. Langmuir, 2002, 18(25): 9942-9946
    [85] Hu J, Li L, Yang W, et al. Linearly polarized emission from colloidal semiconductor quantum rods [J]. Science,2001, 292(15):2060-2063
    
    [86] Yu W W, Qu L, Guo W, et al. Experimental Determination of the Extinction Coefficient of CdTe, CdSe and CdS Nanocrystals [J]. Chem. Mater. (Addition/Correction), 2004, 16(3):560-560
    [87] Gerion D, Pinaud F, Williams S C, et al. J. Phys. Chem. B. 2001, 105: 8861-8871
    [88] Parak W J, Gerion D, Zanchet D,et al. Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots [J].Chem. Mater. 2002, 14: 2113-211
    [89] Warren C W C, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J].Science 1998, 281: 2016-2018
    [90] Han M Y, Gao X H, Su J Z, et al. Nature 2001, 19: 631-635
    [91] Koole R, Liljeroth P, Mello Donega de C, et al. Electronic Coupling and Exciton Energy Transfer in CdTe Quantum-Dot Molecules [J]. J. Am. Chem. Soc., 2006, 128: 10436-10441.
    [92] Garrett M D, Bowers M J, McBride J R, et al. Band Edge Dynamics in CdSe Nanocrystals Observed by Ultrafast Fluorescence Upconversion [J]. J. Phys. Chem. C., 2008, 112(15): 6212-6212.
    [93] Gray J L, Atha S. Hull R, et al. Hierarchical Self-Assembly of Epitaxial Semiconductor Nanostructures [J]. Nano Lett., 2004, 4(12): 2447-2450.
    [94] Lind J, Merenyi G, Eriksen T E. Chemiluminescence mechanism of cyclic hydrazides such as luminol in aqueous solutions [J]. J. Am. Chem. Soc., 1983, 105(26): 7655-7661.
    [95] Ahn J-H, Kim H-S, Lee K J, et al. Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials [J]. Science, 2006, 314: 1754-1757
    [96] Willard D M, Carillo L L, Jung J, et al. CdSe-ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein-Protein Binding Assay [J]. Nano Lett., 2001, 1(10): 581-581
    [97] Patolsky F, Gill R, Weizmann Y, et al. Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots [J]. J. Am. Chem. Soc., 2003, 125(46): 13918-13919
    [98] Reiss P, Bleuse J, Pron A. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion [J]. Nano Lett., 2002, 2(7): 781 -784
    [99] Hao E, Sun H, Zhou Z, et al. Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles [J]. J. Chem. Mater., 1999, 11(11): 3096-3102
    [100] Lifshitz E, Porteanu H, Glozman A, et al. Optically Detected Magnetic Resonance Study of CdS/HgS/CdS Quantum Dot Quantum Wells [J]. J. Phys. Chem. B., 1999, 103(33): 6870-6875
    [101] Borchert H, Dorfs D, McGinley C, et al. Photoemission Study of Onion Like Quantum Dot Quantum Well and Double Quantum Well Nanocrystals of CdS and HgS [J]. J. Phys. Chem. B., 2003, 107(30): 7486-7491
    [102] Tena-Zaera R, Katty A, Bastide S, et al. Annealing Effects on the Physical Properties of Electrodeposited ZnO/CdSe Core-Shell Nanowire Arrays [J]. Chem. Mater., 2007, 19(7): 1626-1632
    [103] Gichuhi A, Boone B E, Shannon C. Electrosynthesized CdS/HgS Heterojunctions [J]. Langmuir, 1999, 15(3): 763-766
    [104] Zhou H S, Sasahara H, Honma I. et al. Coated Semiconductor Nanoparticles: The CdS/PbS System's Photoluminescence Properties [J]. Chem. Mater., 1994, 6(9): 1534-1541
    [105] Demchenko D O, Robinson R D, Sadtler B, et al. Formation Mechanism and Properties of CdS-Ag_2S Nanorod Superlattices [J]. ACS Nano,, 2008, 2 (4): 627-636
    [106] Braun M, Burda C, El-Sayed M A. Variation of the Thickness and Number of Wells in the CdS/HgS/CdS Quantum Dot Quantum Well System [J]. J. Phys. Chem. A., 2001, 105(23): 5548-5551
    [107] Aldana J, Wang Y A, Peng X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols [J]. J. Am. Chem. Soc., 2001, 123(36): 8844-8850
    [108] Jeong S, Achermann M, Nanda J, et al. Effect of the Thiol-Thiolate Equilibrium on the Photophysical Properties of Aqueous CdSe/ZnS Nanocrystai Quantum Dots [J]. J. Am. Chem. Soc., 2005, 127(29): 10126-10127
    [109] Aldana J, Wang Y A, Peng X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols [J]. J. Am. Chem. Soc., 2001, 123(36): 8844-8850
    [110] Guo W, Li J J, Wang Y A, et al. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes: Superior Chemical, Photochemical and Thermal Stability [J]. J. Am. Chem. Soc. 2003, 125: 3901-3909
    [111] He H, Qian H, Dong C, et al. Single Nonblinking CdTe Quantum Dots Synthesized in Aqueous Thiopropionic Acid [J]. Angew. Chem. Int. Ed. 2006, 45, 7588 -7591
    [112] Poznyak S K, Osipovich N P, Shavel A, et al. Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution[J]. J Phys Chem B, 2005, 109: 1094-1100
    [113] Jeong S, Achermann M, Nanda J, et al. Effect of the Thiol-Thiolate Equilibrium on the Photophysical Properties of Aqueous CdSe/ZnS Nanocrystai Quantum Dots[J]. J Am Chem Soc , 2005, 127: 10126-10127
    [114] Palaniappan K, Xue C, Arumugam G, et al. Water-Soluble, Cyclodextrin- Modified CdSe-CdS Core-Shell Structured Quantum Dots[J]. Chem Mater 2006, 18: 1275-1280
    [115] Xia H-B, Yi J, Foo P-S, et al. Facile Fabrication of Water-Soluble Magnetic Nanoparticles and Their Spherical Aggregates[J]. Chem Mater, 2007, 19: 4087-4091
    [116] Feng J, Ding S-Y, Tucker M P, et al. Cyclodextrin driven hydrophobic/hydrophilic transformation of semiconductor nanoparticles[J]. Appl Phys Lett, 2005, 86: 033108-033110
    117 Depalo N, Comparelli R, Striccoli M, et al. α-Cyclodextrin Functionalized CdS Nanocrystals for Fabrication of 2/3 D Assemblies[J]. J Phys Chem B, 2006, 110: 17388-17399
    [118] Zhang W, Qiao X, Chena J. Synthesis of silver nanoparticles—Effects of concerned parameters in water/oil microemulsion [J]. Materials Science and Engineering B, 2007, 142: 1-15
    [119] Yang Y, Liu S, Kimura K. Cyclodextrin as a capturing agent for redundant surfactants on Ag. nanoparticle surface in phase transfer process [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006, 290 : 143-149
    [120] Habib Ullah M, Kim II, Ha C-S. pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence [J]. Materials Letters, 2007, 61 : 4267-4271
    [121] Batabyala S K, Basua C, Sanyalb G S, et al. Synthesis of Sb_2Se_3 nanorod using h-cyclodextrin[J]. Materials Letters, 2003, 58 : 169- 171
    [122] Xu J-Z, Xu S, Geng J, et al. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-b-cyclodextrin as a template under sonication [J]. Ultrasonics Sonochemistry, 2006, 13 : 451-454
    [123] Liu B, Ren T, Zhang J-R, et al. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water [J]. Electrochemistry Communications, 2007, 9: 551-557
    [124] Peng Z A, Peng X. Mechanisms of the Shape Evolution of CdSe Nanocrystals [J]. J. Am. Chem. Soc., 2001, 123(7): 1389-1395
    [125] Pradhan N, Reifsnyder D, Xie R, et al. Surface Ligand Dynamics in Growth of Nanocrystals [J]. J. Am. Chem. Soc., 2007, 129(30): 9500-9509
    [126] Pradhan N, Xu H, Peng X. Colloidal CdSe Quantum Wires by Oriented Attachment [J]. Nano Lett., 2006, 6(4): 720-724
    [127] Nazzal A Y, Wang X, Qu L, et al. Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films [J]. J. Phys. Chem. B., 2004, 108(18): 5507-5515
    [128] Qu L, Peng X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth [J]. J. Am. Chem. Soc., 2002, 124(9): 2049-2055
    [129] Talapin D V, Nelson J H, Shevchenko E V, et al. Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morphologies[J]. Nano Lett, 2007, 7(10): 2951-2959
    [130] Li J J, Wang Y A, Guo W, et al. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction[J].J.Am.Chem.Soc.,2003,125(41):12567-12575
    [131]Malik M A,O'Brien P,Revaprasadu N.A Simple Route to the Synthesis of Core/Shell Nanoparticles of Chalcogenides[J].Chem.Mater.,2002,14(5):2004-2010
    [132]朱传凤,王琛.扫描探针显微术应用进展[M].北京:化工出版社,2007,193-196
    [133]周兆英,王中林,林立伟.微系统和纳米技术[M].北京:科学出版社,2007,251-252
    [134]Hao E,Sun H,Zhou Z,et al.Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles[J].Chem.Mater.,1999,11(11):3096-3102
    [135]董庆年.红外光谱法[M].北京:石油化工出版社,1977,126-127
    [136]Mackay M E,Tuteja A,Phillip M.et al.General Strategies for Nanoparticle Dispersion [J].Science,2006,311:1740-1744
    [137]Guo W.Li J J,Wang Y A,et al.Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes:Superior Chemical.Photochemical and Thermal Stability[J].J.Am.Chem.Soc.,2003,125(13):3901-3909
    [138]Zhong X,Han M,Dong Z,et al.Composition-Tunable Zn_xCd_(1-x)Se Nanocrystals with High Luminescence and Stability[J].J.Am.Chem.Soc.,2003.125(28):8589-8594
    [139]Chen Z,Xing G.Bio-distribution and metabolic paths of silica coated CdSeS quantum dots[J].Toxicology and Applied Pharmacology,2008,230(3):364-371
    [140]张士晶,ZnO基稀释磁性半导体的制备和性能研究[D],长春:吉林大学,2005
    [141]Mierczyk Z,Majchrowski A,Kityk I V,et al.ZnSe:Co~(2+) nonlinear optical absorber for giant-pulse eye-safe lasers[J].Optics & Technology,2003,35:169-172
    [142]Radovanovic P V,Barrelet C J,Gradecak S,et al.General Synthesis of Manganese-Doped Ⅱ-Ⅵ and Ⅲ-Ⅴ Semiconductor Nanowires[J].Nano Lett.,2005,5(7):1407-1411
    [143]Kim D S,Cho Y J,Park J,et al.(Mn,Zn) Co-Doped CdS Nanowires[J].J.Phys.Chem.C.,2007,111(29):10861-10868
    [144]Mahamuni S,Lad A D,Patole S.Photoluminescence Properties of Manganese-Doped Zinc Selenide Quantum Dots[J].J.Phys.Chem.C.,2008,112(7):2271-2277
    [145]Suyver J F,Wuister S F,Kelly J J,et al.Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn~(2+)[J].Nano Lett.:(Letter);2001,1(8):429-433
    [146]Zu L,Norris D J,Kennedy,T A,et al.hnpact of Ripening on Manganese-Doped ZnSe Nanocrystals[J].Nano Lett.;(Letter),2006,6(2):334-340
    [147]Mahamuni S,Lad AD,Patole S.Photoluminescence Properties of Manganese-Doped Zinc Selenide Quantum Dots[J].J Phys Chem C 2008,112:2271-7
    [148]Chin P T K,Stouwdam J W,Janssen R A J.Highly Luminescent Uttranarrow Mn Doped ZnSe Nanowires[J].Nano Lett 2009,9(2):745-50.
    [149]Norman T J,Magana D J,Wilson T,et al.Optical and Surface Structural Properties of Mn2+-Doped ZnSe Nanoparticles[J].J Phys Chem B 2003,107:6309-17
    [150]Reiss P.ZnSe based colloidal nanocrystals:synthesis,shape control,core/shell,alloy and doped systems[J].New J Chem 2007,31:1843-52.
    [151]Li L S,Pradhan N,Wang Y,et al.High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors[J].Nano Letters,2004,4:112261-2264
    [152]Quinlan F T,Kuther J,Tremel W,et al.Reverse Micelle Synthesis and Characterization of ZnSe Nanoparticles[J].Langmuir,2000,16:4049-4051
    [153]Li Y,Ding Y.Qian Y,et al.A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe[J].Inorg.Chem.,1998.37(12):2844-2845.
    [154]李焕勇,介万奇.一维ZnSe半导体纳米材料的制备与特性[M].半导体学,2003,24(1):58-61.
    [155]Peng Q,Dong Y,Deng Z,et al.Low-Temperature Elemental-Direct-Reaction Route to Ⅱ-Ⅵ Semiconductor Nanocrystalline ZnSe and CdSe[J].Inorg.Chem.,2001,40(16):3840-3841
    [156]Derfus A M,Chan W C W,Bhatia S N.Probing the Cytotoxicity of Semiconductor Quantum Dots[J].Nano Lett.,2004,4(1):11-18
    [157]Chin G.All in the Dope[J].SCIENCE 2005,310:9-9
    [158]Ne A,Xia T,M(a|¨)dler L,et al.Toxic Potential of Materials at the Nano level[J].Science,2006,311:622-627
    [159]尤逢永,毕红,周小丽.稀释磁性半导体Zn_(1-x) Co_x O纳米晶的合成[J].安徽大学学报(自然科学版),2006,30(6):75-79
    [160]李莉,许洪胤.微波在合成中的应用[J].有色冶金设计与研究,2007,28(4):20-23
    [161] Komarneni S, Li D, Newalkar B, et al. Microwave-Polyol Process for Pt and Ag Nanoparticles [J]. Langmuir, 2002, 18(15): 5959-5962
    [162] Zhu J-F, Zhu Y-J. Microwave-Assisted One-Step Synthesis of Polyacrylamide-Metal (M. = Ag, Pt, Cu) Nanocomposites in Ethylene Glycol [J]. J. Phys. Chem. B., 2006, 110(17): 8593-8597
    [163] Bhattacharyya S, Gedanken A. Microwave-Assisted Insertion of Silver Nanoparticles into 3-D Mesoporous Zinc Oxide Nanocomposites and Nanorods [J]. J. Phys. Chem. C., 2008, 112(3): 659-665
    [164] Panda A B, Glaspell G, El-Shall M S. Microwave Synthesis of Highly Aligned Ultra Narrow Semiconductor Rods and Wires [J]. J. Am. Chem. Soc. 2006, 128, 2790-2791
    [165] Deng Z-X, Wang C, Sun X-M, et al. Structure-Directing Coordination Template Effect of Ethylenediamine in Formations of ZnS and ZnSe Nanocrystallites via Solvothermal Route [J]. Inorg. Chem., 2002, 41: 869-873
    [166] Schmider M, Muh E, Klee J E, et al. A Versatile Synthetic Route to Phosphonate-Functional Monomers, Oligomers, Silanes, and Hybrid Nanoparticles [J]. Macromolecules, 2005, 38 (23): 9548 -9555
    [167] Kumar A, Mandal S, Selvakannan P R, et al. Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles [J]. Langmuir, 2003, 19 (15): 6277 -6282
    
    [168] Pradhan N, Katz B, Efrima S. Synthesis of High-Quality Metal Sulfide Nanoparticles from Alkyl Xanthate Single Precursors in Alkylamine Solvents [J]. J. Phys. Chem. B, 2003, 107(50): 13843-13854
    [169 Wikander K, Petit C, Holmberg K, et al. Size Control and Growth Process of Alkylamine-Stabilized Platinum Nanocrystals: A Comparison between the Phase Transfer and Reverse Micelles Methods [J]. Langmuir, 2006, 22 (10): 4863 -4868
    [170] Gerbec J A, Magana D, Washington A, et al. Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis [J]. J. Am. Chem. Soc., 2005, 127: 15791-15800
    [171] Firth A V, Tao Y, Wang D, et al. Microwave assisted synthesis of CdSe nanocrystals for straightforward integration into composite photovoltaic devices [J]. J. Mater. Chem., 2005, 15:4367-4372
    [172] Wang J, Yang Q. One-Dimensional Angle-Shaped ZnSe Nanostructures: Synthesis and Formation Mechanism [J]. Cryst. Growth Des., 2008, 8(2): 660-664
    [173]Ma X-D,Qian X-F,Yin J,et al.Preparation and characterization of polyvinyl alcohol-selenide nanocomposites at room temperature[J].J.Mater.Chem.2002,12:663-666
    [174]Devine S K J,Van Vranken D L.Palladium-Catalyzed Carbine Insertion into Vinyl Halides and Trapping with Amines[J].Org.Lett.,2007,9(10):2047-2049
    [160]Suyver J F,Wuister S K Kelly J J,et al.Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn~(2+)[J].Nano Lett.,2001,1(8):429-433
    [161]Zu L,Norris D J,Kennedy T A,et al.Impact of Ripening on Manganese-Doped ZnSe Nanocrystals[J].Nano Lett.,2006,6(2):334-340
    [175]Viswanatha R,Sapra S,Sen Gupta S,et al.Synthesis and Characterization of Mn-Doped ZnO Nanocrystals[J].J.Phys.Chem.B.,2004,108(20):6303-6310
    [176]菅文平,张大巍,王凌凌等.微波辅助合成发光可调ZnS:Cu纳米晶[J].高等学校化学学报,2006,27(12):2340-2343
    [177]陈红升,齐俊杰,黄运华等.Sn掺杂ZnO 半导体纳米带的制备、结构和性能[J].物理化学学报,2007,23(1):55-58
    [178]Lee J Y,Kim D S,Kang J H,et al.Novel Znl-xMnxSe(x)(0.1-0.4) One-Dimensional Nanostructures:Nanowires,Zigzagged Nanobelts,and Toothed Nanosaws[J].J.Phys.Chem.B,2006,110:25869-25874
    [179]Wagner R S,Ellis W C.Vapor-Liguid-Solid Mechanism of Single Crystal Growth.[J].Appl.Phys.Lett.,1964,4:89-98
    [180]Pan Z W,Dai Z R,Wang Z L.Nanobelts of Semiconducting Oxides[J].Science,2001,291:1947-1950
    [181]Pradhan N,Peng X.Efficient and Color-Tunable Mn-Doped ZnSe Nanocrystal Emitters:Control of Optical Performance via Greener Synthetic Chemistry[J].J.Am.Chem.Soc.,2007,129(11):3339-3347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700