用户名: 密码: 验证码:
无铅压电陶瓷性能和温度稳定性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,全球电子工业的膨胀式发展给社会带来堆积如山的电子垃圾,世界各国纷纷出台应对之策以减少污染。2001年,欧洲议会和欧盟理事会审查并通过了“电子电气设备中限制使用某些有害物质(RoHS)”的指令,并已于2008年实施。RoHS指令禁止电子产品含有超过限量的铅等有害物质。2003年欧盟通过了“关于报废汽车的技术指令(ELV)”。2004年,欧盟又通过了“关于废旧电子电气设备指令(WEEE)”。
     半个多世纪以来,锆钛酸铅(PZT)固溶体由于其优异的压电、介电和机电耦合性能,得到了广泛、深入的研究,在实用的压电陶瓷材料中一直占据主导地位。然而PZT的含铅量高达60%以上,在烧结过程中铅挥发严重,并且在使用和废弃过程中严重污染环境,危害人类的健康。随着欧盟颁布WEEE/RoHS/ELV法案,在世界范围内引发了一场电子产品的无铅化革命。因此,探索无铅化压电陶瓷,研究环境协调性好的压电材料及其制品是电子元器件行业的一项紧迫任务,具有重大的现实意义。
     本论文的工作主要分为以下几个章节:
     在第一章中,首先介绍了压电材料的发展史、性质及其应用,并详细地解释了压电效应的定义和机理。沿着某些晶体的特定方向施加应力时,晶体的极化发生改变,而且该变量与应力成正比,这就是正压电效应。相反,对晶体施加电场导致应变的产生且应变与电场成正比的现象称为逆压电效应。接着,文章回顾了无铅压电陶瓷的发展历程和研究现状,并对目前研究较多的无铅压电陶瓷做了如下分类:(1)钛酸钡基无铅压电陶瓷;(2)钛酸铋钠基无铅压电陶瓷;(3)铋层状结构无铅压电陶瓷;(4)铌酸盐基无铅压电陶瓷;(5)钨青铜结构无铅压电陶瓷。文章简要概括了这五种无铅压电陶材料的优缺点和应用领域。其中碱金属铌酸盐(KNN)系列是最有应用潜力的一类无铅压电陶瓷材料,具有铁电性强、压电性能高和居里温度高等优点。然而碱金属在烧结过程中容易挥发,使得这类材料的烧结非常困难,难以制备出致密的陶瓷样品。若采用热压烧结、冷静压烧结或者等离子火花烧结等特殊制备工艺,虽然可以提高铌酸钠钾基压电陶瓷材料的致密性和压电性能,但生产成本较高,不适合规模化工业生产。为了获得高性能的KNN基无铅压电陶瓷,研究者们向铌酸钾钠中添加Li、Ta和Sb等金属的氧化物以形成新的固溶体,有效地提高了KNN基无铅压电陶瓷的致密度和压电性能。本章的最后,简要介绍了无铅压电陶瓷的制备工艺、主要的压电参数及其计算公式。
     2004年,日本学者报道了添加Li、Ta、Sb的KNN基无铅压电陶瓷,该陶瓷在普通烧结工艺下压电常数(d_(33))高达300pC/N,引起了研究者们对KNN基无铅压电陶瓷的普遍关注。然而,该陶瓷材料的居里温度T_c只有253℃,应用温度区间偏窄。为了获得同时具有高居里温度和高压电常数的无铅压电陶瓷材料,在第二章中,作者采用普通烧结工艺合成了(Na_(0.52)K_(0.44)Li_(0.04))Nb_(0.9-x)Sb_xTa_(0.1)O_3(NKLNST)无铅压电陶瓷材料。研究了Sb的添加对NKLNST陶瓷材料压电和介电性能的影响。实验发现,随着Sb含量的增加,陶瓷样品的居里温度T_c降低,样品的剩余极化强度降低而矫顽场增加。添加3.7m01%Sb的样品具有优异的压电性能:压电常数d_(33)=306pC/N,机电耦合系数k_p=48%、k_t=50%和较高的居里温度T_c=320℃,该压电常数是当时除织构法外KNN基陶瓷中的最高值。研究结果表明,通过向NKLNST无铅压电陶瓷材料中添加适量的Sb,可以明显地改善其压电性能,提高居里温度,制备出性能优异的无铅压电陶瓷材料。
     在第三章中,继续对Li、Ta、Sb掺杂的KNN基无铅压电陶瓷进行系统的研究。本章中保持Na、K比例不变,合成KNN基无铅压电陶瓷材料。鉴于过去所见报道中Li的含量大多都是高于4mol%的KNN基无铅压电陶瓷,低于3mol%的未见有人进行研究,其性能如何不得而知。本章固定Li的含量为2.5mol%,用传统的固相反应方法合成了(Na_(0.5)K_(0.5))_(0.975)Li_(0.025)Nb_(0.93-x)Sb_(0.07)Ta_xO_3(简称NKLNST_x)无铅压电陶瓷,研究了该陶瓷的压电、介电性能随Ta含量的变化规律。实验发现,当Ta的含量为18%mol时,该材料的压电常数d_(33)高达330pC/N,介电损耗tanδ=1.9%,样品的质量密度ρ=4.755g/cm~3,是一种极具应用潜力的KNN基无铅压电陶瓷材料。之后,固定Ta的含量为18mol%,又研究了随Sb添加量的影响,仍采用传统的固相反应方法合成了(Na_(0.5)K_(0.5))_(0.975)Li_(0.025)Nb_(0.82-x)Sb_xTa_(0.18)O_3(简称NKLNS_xT)无铅压电陶瓷。实验发现,随着Sb的添加,NKLNS_xT陶瓷材料的居里温度T_c降低而正交-四方相变温度T_(O-T)始终维持在室温附近,基本保持不变。x=0.06的样品具有非常高的压电常数d_(33)=352pC/N和机电耦合系数k_p=47%、k_t=38%,是一种极具潜力的无铅压电陶瓷材料。本章末,作者分析了该类材料具有高压电性能的原因:室温附近的正交-四方多型相变导致KNN基陶瓷压电性能的提高。
     根据前两章的研究工作,我们得知由于Li~+、Ta~(5+)和Sb~(5+)分别对KNN陶瓷的A位和B位取代,使陶瓷的正交-四方铁电-铁电相变温度(T_(O-T))降低到室温附近,该相变温度处由于具有较高的极化率,陶瓷也具有较高的压电和介电性能,这是掺杂改性的KNN基陶瓷高压电性能产生的重要原因,但是KNN基陶瓷的压电性能对温度有较强的依赖性,当环境温度偏离室温的时候,材料的压电性能显著降低,不利于实际应用。美国宾州州立大学的张树君博士通过向铌锑酸钾钠锂(NKLNS)里面添加CaTiO_3(CT),将陶瓷样品的正交-四方相变温度成功地降低到了室温以下,显著地提高了压电陶瓷的温度稳定性。考虑到Sr与Ca同为碱土元素,并且Sr取代BaTiO_3里的Ba也能降低BaTiO_3陶瓷的正交-四方相变温度,于是可以预见,SrTiO_3的引入也会解决KNN基无铅压电陶瓷温度稳定性差的问题。基于上述考虑,在第四章的研究中仍采用传统的固相反应方法制备了(1-x)(Na_(0.53)K_(0.404)Li_(0.066))Nb_(0.92)Sb_(0.08)O_3-xSrTiO_3[缩写为(1-x)NKLNS-xST]无铅压电陶瓷材料,研究了SrTiO_3的引入对KNN基无铅压电陶瓷的结构和压电、介电性能的影响。实验发现,通过向NKLNS陶瓷中添加SrZiO_3,陶瓷的正交-四方相变温度降到0℃以下,温度稳定性得到了很大的提高。作者从微观结构着手,分析了T_(O-T)降低的物理机制。随后,又制备了(1-x)(Na_(0.53)K_(0.407)Li_(0.063))Nb_(0.937)Sb_(0.063)O_3-xCa_(0.5)Sr_(0.5)TiO_3[缩写为(1-X)NKLNS-xCST]无铅压电陶瓷材料。研究了陶瓷的压电常数d_(33)、介电常数ε_r、介电损耗tanδ、弹性柔顺常数S_(11)~E和横向机电耦合系数k_(31)随温度的变化关系。实验结果表明,随着CST含量的增加,陶瓷的居里温度T_c和正交-四方相变温度T_(O-T)均降低,并且NKLNS陶瓷的四方相区域展宽。相对于未添加CST的样品,添加CST后的样品在-50℃-200℃的温度范围内s_(11)~E和k_(31)的变化量明显减少,陶瓷的热稳定性得到显著提高。添加1.5mol%CST的陶瓷样品,具有很低的正交-四方相变温度和优异的压电介电性能:T_(O-T)=-30℃、d_(33)=202pC/N、k_p=44%、tanδ=2%,是一种具有宽应用温度范围的实用的无铅压电陶瓷材料。
     本文第五章,作者研究了另一种具有高压电性能的PZT陶瓷替代材料-(Bi,Na)_(0.5)TiO_3基无铅压电陶瓷(NBT)。钛酸铋钠是一类钙钛矿型的A位离子复合取代铁电体,其居里温度为320℃,在室温下具有很强的铁电性,被认为是有一定应用价值的无铅压电陶瓷候选材料之一。然而NBT陶瓷的矫顽电场高,铁电相区的电导率高,难以极化,材料所具有的真实压电性能无法充分表现出来。因此,单纯的NBT陶瓷难以实用化。近些年来,国内外学者对NBT基压电陶瓷进行了大量的改性研究,提出了若干NBT基体系,取得了较好的成果。基于前人的研究基础,本章采用传统电子陶瓷制备工艺制备了0.94(Na_(0.5)Bi_(0.5))TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3(NBT-BZT)无铅压电陶瓷,获得了d_(33)高达185pC/N的陶瓷材料。并进行了添加过量Na_2CO_3以补偿烧结过程中Na挥发的实验。实验发现,当过量Na_2CO_3的含量等于0.04mol%时,材料的d_(33)高达195pC/N,不过样品的损耗(tanδ)稍大。为了降低材料的损耗,作者对0.94(Na_(0.5+0.0008)Bi_(0.5))TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3陶瓷进行了(Ce、Mn)掺杂改性的研究。随后,在此研究基础上,对NBT-BZT陶瓷又进行了添加过量Bi_2O_3以补偿烧结过程中Bi挥发的实验。添加0.08mol%过量Bi_2O_3的NBT-BZT压电陶瓷,d_(33)高达218pC/N。该压电性能当时处于国际领先地位。之后,作者研究了Mn的掺杂对0.94(Na_(0.5)Bi_(0.5016))TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3压电陶瓷压电、介电性能的影响,当Mn的掺杂量为0.2wt%时,获得了d_(33)=214pC/N、k_t=44%、tanδ=2.2%的性能优异的钛酸铋钠基压电陶瓷材料。
In recent decades, there is an increasing demand in searching for materials that are benign to the environment and human health. Many government regulations have been enacted in response to this demand. The directive of "the Restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)" issued by the European Parliament and the European Council has been implemented since 2008. The European RoHS directive bans electrical and electronic equipment containing any more than trace amounts of hazardous substances, including lead (Pb). Other related legislative acts passed by the European Union include End-of-life Vehicles (ELV) in 2003 and Waste from Electrical and Electronic Equipment (WEEE) in 2004.
     For the past 50 years, Pb(Zr_(1-x)Ti_x)O_3 (PZT) and related compositions have been the mainstay for high performance actuators and transducers because of their excellent piezoelectric and dielectric properties. However, the content of PbO in PZT is as high as 60wt%. The environmental and health hazards of lead are well known and recycling and disposal of devices containing lead-based piezoelectric materials is of great concern, especially those used in consumer products such as cars, mobile phones, sound systems and medical devices. With the EU's issuing of the WEEE/RoHS/ELV, a lead-free revolution in electronic products is pushed throughout the world. Thus, it is urgent to develop environmental friendly lead-free piezoelectric materials and products to replace PZT-based ceramics and products.
     This thesis work will be divided into the following chapters:
     In chapter 1, the author first introduced the history, the characteristics and the applications of piezoelectric materials, and described the mechanism of piezoelectric effect in details. The article then reviewed the development of lead-free piezoelectric ceramics and classified them into the following five classifications: barium titanate based lead-free piezoceramics, sodium bismuth titanate system lead-free piezoceramics, bismuth-layered structure lead-free piezoceramics, niobate system lead-free piezoceramics and tungsten bronze structure system lead-free piezoceramics. The article briefly summed up their advantages, disadvantages and fields of applications. Among these systems, K_(0.5)Na_(0.5)NbO_3 (KNN) based system, attracted wide attention for its high Curie temperature and enhanced piezoelectric response. However, pure KNN ceramics had low piezoelectric activity due to its poor densification induced by high volatilization of potassium during sintering, moreover it would deliquesce once exposed to humidity. Sintering aids as well as hot pressing, cold isostatic pressing and spark plasma sintering had been used as alternatives to obtain high electrical properties. However, such techniques were not suitable for industrial use for their high costs. With traditional solid-state sintering process, Li, Ta and Sb were added into the KNN compositions to form new solid solutions which exhibited properties comparable to those of PZT. Researchers had done a lot of research work in this aspect and confirmed that the KNN based ceramics had the potential of practical application as substitues for lead-based piezoceramics. Finally, the preparation methods of lead-free piezoceramics were described and the formulas of piezoelectric factors were given.
     Over the past few years, significant attention had been paid to the KNN family since the report of (Li, Ta, Sb) modified KNN ceramics with a high d_(33) values of 300pC/N and a Curie temperature (T_c) of 253℃. However, the low T_c (253℃) limits the applications of this system to a narrow temperature range. In chapter 2, lead-free system (Na_(0.52)K_(0.44)Li_(0.04))Nb_(0.9-x)Sb_xTa_(0.1)O_3 (NKLNST) were prepared by a solid-state method. The effects of Sb content on piezoelectric and dielectric properties of NKLNST ceramics were investigated. The experimental studies showed that the substitution of Sb~(5+) for B-site ion Nb~(5+) and Ta~(5+) decreased the paraelectric cubic-ferroelectric tetragonal phase transition temperature (T_c). The polarization-electric field hysteresis behaviors for NKLNST ceramics were also studied in this chapter. It was found that the remnant polarization (P_r) decreased and coercive electric field (E_c) increased with increasing antimony amount. High performances with d_(33)=306pC/N, k_p=48%, k_t=50%, and a relatively high Curie temperature T_c=320℃were obtained for the 3.7mol% Sb doped composition. This was the best result for the ceramics prepared by the solid-state sintering techniques at that time. The results showed that adding an appropriate amount of Sb into NKLNT, both the piezoelectric properties and T_c were greatly improved. The appearance of tetragonal polymorphic phase around room temperature may be responsible for the improved piezoelectric properties.
     Considering the doping amount of Li was usually higher than 4mol% in previous reports about Li, Ta or Sb modified KNN-based piezoceramics, there have been few investigations on low Li substituted KNN-based one. In chapter 3, the composition (Na_(0.5)K_(0.5))_(0.975)Li_(0.025)Nb_(0.93-x)Sb_(0.07)Ta_xO_3 (NKLNST_x) were prepared with traditional solid-state process to study the effect of Ta doping on phase transition behavior, dielectric and piezoelectric properties of the low Li modified KNN-based ceramics. The experiment results showed that NKLNS doped with 18mol% Ta had excellent performances with d_(33)=330pC/N, mass densityρ=4.755g/cm~3, dielectric losstanδ=1.9%. Excellent piezoelectric properties showed that the NKLNST_(0.18) lead-free piezoelectric material was another potential substitute of PZT piezoceramics. Subsequently, the effects of Sb doping on the piezoelectric and dielectric properties of (Na_(0.5)K_(0.5))_(0.975)Li_(0.025)Nb_(0.82-x)Sb_xTa_(0.18)O_3(NKLNS_xT) lead-free piezoceramics had been investigated. It was found that T_c shifted toward lower temperature region while T_(O-T) changed little with increasing Sb content. The composition of NKLNS_(0.06)T possessed excellent piezoelectric properties with d_(33) as high as 352pC/N. In addition to its high d_(33) value, the ceramics also maintained desirable electromechanical coupling factors of k_p=47% and k_t=38%. In the end, the author analyzed the reasons for the high piezoelectric activity of the NKLNS_(0.06)T ceramics and pointed out that the NKLNS_(0.06)T ceramics was a promising candidate for lead-free piezoceramics.
     From the previous chapters, we had learnt that (Li, Ta, Sb) modified KNN based ceramics exhibited excellent piezoelectric properties comparable to those of PZT. The enhancement in piezoelectric properties of the modified KNN-based ceramics was generally attributed to the T_(O-T) near or at room temperature. However, the sharp decrease of piezoelectric and dielectric properties on both sides of T_(O-T) around room temperature was disadvantageous for usage. That is to say, the performance stability of the KNN-based ceramics with T_(O-T) around room temperature would become a "bottleneck" for their practical applications. Thereupon the key approach to enhance the temperature stability was to lower the T_(O-T) below room temperature. To enhance the thermal stability of KNN based ceramics, Zhang et al have prepared CaTiO_3 modified KNN based ceramics with high performances and a broad temperature usage range. Considering that SrTiO_3 is similar to CaTiO_3 in phase structure, it is expected that the addition of SrTiO_3 into KNN could be able to shift the T_(O-T) well down. In chapter 4, (1-x)(Na_(0.53)K_(0.404)Li_(0.066))Nb_(0.92)Sb_(0.08)O_3-xSrTiO_3 [ abbreviated as (1-x)NKLNS-xST] ceramics with single perovskite phase had been synthesized by conventional solid-state sintering technique. Compared to the unmodified ceramics, the T_(O-T) of the ST modified ceramics was shifted to below room temperature. Meanwhile, relatively high piezoelectric properties were obtained. The author did a detailed analysis for the physical mechanism of the enhanced thermal stability of the ST modified ceramics. Subsequently, Ca_(0.5)Sr_(0.5)TiO_3 (CST) was doped into (Na_(0.53)K_(0.407)Li_(0.063))Nb_(0.937)Sb_(0.063)O_3 (NKLNS) ceramics. The temperature dependences of piezoelectric constant d_(33), dielectric constantε_r, dielectric loss tanδ, elastic compliance constant s_(11)~E and electromechanical coupling factor k_(31) had beeninvestigated. It was found that the T_(O-T) and T_c decreased monotonously with increasing CST content, and the tetragonal phase regions were expended by the addition of CST. The changes of s_(11)~E and k_(31) of CST doped NKLNS in thetemperature range of -50℃to 200℃were much less than that of the pure NKLNS ceramics, indicating the temperature stability of CST doped NKLNS ceramics was better than that of the undoped NKLNS ceramics. The ceramics with 1.5mol% CST exhibited high piezoelectric performances (d_(33)=202pC/N, k_p=44%) and low dielectric loss (tanδ=2%) at room temperature. The improved temperature stability associated with the excellent piezoelectric properties comparable to conventional PZT ceramics indicated that these ceramics could be applied over a wide temperature usage range.
     In chapter 5, another kind of promising lead-free candidate material Bi_(0.5)Na_(0.5)TiO_3 (NBT) was studied. NBT has been considered to be a promising candidate material for lead-free piezoelectric ceramics for its strong ferroelectrics at room temperature. However, pure NBT is hard to be poled for its relatively large conductivity and large coercive field. To solve the problems, some solid solutions have been added into NBT ceramics and remarkable results have been achieved. Based on the achievement in the past, lead-free piezoelectric ceramics 0.94(Na_(0.5)Bi_(0.5))TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3 with d_(33) as high as 185pC/N were successfully fabricated using the traditional solid-state process. By means of compensating the volatilization of Na, extra Na_2CO_3 was added into the above composition of NBT based ceramics. In order to reduce the dielectric loss, the effect of (Ce,Mn) dopants on the properties of0.94(Na_(0.5+0.0008)Bi_(0.5))TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3 were studied. Subsequently, extra Bi_2O_3 was added into the above 0.94(Na_(0.5)Bi_(0.5))TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3 composition to compensate the volatilization of Bi. The piezoelectric constant d_(33) of the samples doped with extra 0.08mol% Bi_2O_3 wasas high as 218pC/N. Furthermore, the effects of Mn dopant on the piezoelectric and dielectric properties of 0.94(Na_(0.5)Bi_(0.5016))TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3 were investigated, and one optimal composition, 0.2wt% Mn doped NBT-based piezoceramics with d_(33)=214pC/N, k_t=44%, tanδ=2.2% was obtained.
引文
[1] Jaffe B., Cook W. and Jaffe H. [J]. Piezoeletric Ceramics, 1971, 92.
    [2] Yu C. S. and Hsieh H. L. [J]. J. Eur. Ceram. Soc., 2005, 25 (12): 2425-2427.
    [3] Yao X., Chen Z. L. and Cross L. E. [J]. J. Appl. Phys., 1983, 54 (6): 3399-3403.
    [4] Ryu J., Priya S., Sakaki C. and Uchino K. [J]. Jpn. J. Appl. Phys., 2002, 41 (PartⅠ): 6040-6044.
    [5] Hou Y. D., Chang L. M., Zhu M. K., Song X. M. and Yan H. [J]. J. Appl. Phys.,2007,102 (8): 08450-7.
    [6] Galassi C., Roncari E., Capiani C. and Craciun F. [J]. J. Eur. Ceram. Soc., 1999,19(6-7): 1237-1241.
    [7] Noheda B., Cox D. E., Shirane G., Gao J. and Ye Z. G. [J]. Phys. Rev. B, 2002, 66(5): 054104-1-10.
    [8] Noheda B., Gonzalo J. A., Cross L. E., Guo R. Y. and Park S. E. [J]. Phys. Rev. B,2000, 61 (13): 8687-8695.
    [9] Guo Y., Cross L. E., Park S. E., Noheda B., Cox D. E. and Shirane G [J]. Phys.Rev. Lett., 2000, 84 (23): 5423-5426.
    [10] Nakayama H., Hoshi Y., Suzuki S., Ishikawa K., Fu D. and Suzuki H. [J].Ferroelectrics, 2006, 335 (1): 103-111.
    [11] Zhang D. M., Zhong Z. C., Han X. Y., Yan W. S., Sun H. Z., Yang F. X., Zheng K.Y., Wei N. and Li Z. H. [J]. Commun. Theor. Phys., 43 (5): 855-860.
    [12] Kuwata J., Uchino K. and Nomura S. [J]. Jpn. J. Appl. Phys., 1982, 21 (Part Ⅰ):1298-1302.
    [13] Singh G., Bhaumik I., Ganesamoorthy S., Karnal A. K. and Tiwari V. S. [J]. Cryst.Res. Technol, 2007, 42 (4): 378-383.
    [14] Park S. E. and Shrout T. R. [J]. J. Appl. Phys., 1997, 82 (4): 1804-1811.
    [15] Noheda B., Cox D. E., Shirane G., Park S. E., Cross L. E. and Zhong Z. [J]. Phys.Rev. Lett., 2001, 86 (17): 3891-3894.
    [16] Wu Z. G. and Cohen R. E. [J]. Phys. Rev. Lett., 2005,95 (3): 037601-4.
    [17] Kim S. J., Ha J. Y., Choi J. W., Kang C. Y., Kim H. J., Jeong D. Y., Sung M. Y and Yoon S. J. [J]. Jpn. J. Appl. Phys., 2007,46 (Part Ⅰ): 691-694.
    [18] Kuwata J., Uchino K. and Nomura S. [J]. Ferroelectrics, 1981,37 (1-4):579-582.
    [19] Almahmoud E., Navtsenya Y., Kornev I., Fu H. and Bellaiche L. [J]. Phys. Rev. B,2004, 70 (22): 220102-1-4.
    [20] Swartz S. L. and Shrout T. R. [J]. Mater. Res. Bull., 1982,17 (10):1245-1250.
    [21] Noblanc O., Gaucher P. and Calvarin G. [J]. J. Appl. Phys., 1996,79 (8):4291-4297.
    [22] Victor P., Ranjith R. and Krupanidhi [J]. J. Appl. Phys., 2003,94 (12):7702-7709.
    [23] Morrison F. D., Sinclair D. C. and West A. R. [J]. J. Appl. Phys., 2003, 86 (11):6355-6366.
    [24] Merz W. J. [J]. Phys. Rev., 1953,91 (3): 513-517.
    [25] Mitsui T. and Westphal W. B. [J]. Phys. Rev., 1961,124 (5): 1354-1359.
    [26] Mazon T. and Hernandes A. C. [J]. J. Appl. Phys., 2005, 97 (10): 104113-104115.
    [27] Jeong J., Lee E. J. and Han Y. H. [J]. Jpn. J. Appl. Phys., 2006,45 (4A):2662-2666.
    [28] Han Y H., Appleby J. B. and Smyth D. M. [J]. J. Am. Ceram. Soc., 1987, 70 (2):96-100.
    [29] Luo Y., Liu X. Y., Li X. Q. and Cheng J. [J]. J. Mater. Sci. -Mater. Electron.,2007,18 (8): 883-886.
    [30] Kuwabara M. and Yanagida H. [J]. Jpn. J. Appl. Phys., 1972,11 (8): 1130-1138.
    [31] Mallick G T., Jr. and Emtage P. R. [J]. J. Appl. Phys., 1968, 39 (7): 3088-3091.
    [32] Jonker G H. and Havinga E. E. [J]. Mater. Res. Bull., 1982,17 (3): 345-350.
    [33] Jonker G H. [J]. Solid-State Electron., 1964, 7 (12): 895-903.
    [34] Samara G A. [J]. Phys. Rev., 151 (2): 1966, 378-386.
    [35] Antonelli E., Silva R. S., Vicente F. S., Zanatta A. R. and Hernandes A. C. [J]. J.Mater. Process. Technol., 2008, 203 (1-3): 526-531.
    [36] Yun S., Wang X. L., Li B. and Xu D. L. [J]. Solid State Commun., 2007,143 (10):461-465.
    [37] Yun S., Wang X. L., Li J. F. and Xu D. L. [J]. Phys. Status Solidi A, 2009, 206 (2): 303-310.
    [38] Deng X. Y., Wang X. H., Wen H., Kang A. G., Gui Z. L. and Li L. T. [J]. J. Am.Ceram. Soc., 2006, 89 (3): 1059-1064.
    [39] Li L. M., Jiang Y. J. and Zeng L. Z. [J]. J. Raman Spectrosc., 1996,27 (7):503-506.
    [40] Wang X. X., Tang X. G. and Chan H. L. W. [J]. Appl. Phys. Lett., 2004, 85 (1):91-93.
    [41] Wada T., Toyoike K., Imanaka Y. and Matsuo Y. [J]. Jpn. J. Appl. Phys., 2001,40 (9B): 5703-5705.
    [42] Takenaka T., Maruyama K. and Sakata K. [J]. Jpn. J. Appl. Phys., 1991,30 (9B):2236-2239.
    [43] Lin D. M., Xiao D. Q., Zhu J. G. and Yu P. [J]. Appl. Phys. Lett., 2006, 88 (6):062901-3.
    [44] Wu M. J., Lu Y. Q. and Li Y. X. [J]. J. Am. Ceram. Soc., 2007, 90 (11):3642-3645.
    [45] Lin D. M., Zheng Q. J., Xu C. G and Kwok K. W. [J]. Appl. Phys. A, 2008, 93(2): 549-558.
    [46] Suchanicz J., Mercurio J. P., Konieczny K. and Kruzina T. V. [J]. Ferroelectrics,2003, 290(1): 161-167.
    [47] Suchanicz J., Kusz J., B(?)hm H., Duda H., Mercurio J. P. and Konieczny K. [J]. J.Eur. Ceram. Soc., 2003, 23 (10): 1559-1564.
    [48] Xu C. G, Lin D. M. and Kwok K. W. [J]. Solid State Sciences, 2008,10 (7):934-940.
    [49] Herabut A. and Safari A. [J]. J. Am. Ceram. Soc., 1997, 80 (11): 2954-2958.
    [50] Yi J. Y., Lee J. -K. and Hong K. S. [J]. Jpn. J. Appl. Phys., 2004, 43 (9A):6188-6192.
    [51] Takenaka T., Nagata H. and Hiruma Y. [J]. Jpn. J Appl. Phys., 2008, 47 (5):3787-3801.
    [52] Takenaka, T., Okuda T., Kondo N. and Sakata K. [J]. Applications of Ferroelectrics, 1996,1 (18-21): 259-262.
    [53] Frit B. and Mercurio J. P. [J]. J. Alloys. Compds., 1992,188 (1-2): 27-35.
    [54] Takenaka T. and Sakata K. [J]. J. Appl. Phys., 1984, 55 (4): 1092-1099.
    [55] Villegas M., Caballero A. C., Moure C., Duran P. and Fernandez J. F. [J]. J. Am.Ceram. Soc., 1999, 82 (9): 2411-2416.
    [56] Megriche A., Lebrun L. and Troccaz M. [J]. Sens. Actuators, 1999,78 (2-3):88-91.
    [57] Takeuchi T., Tani T. and Saito Y. [J]. Jpn. J. Appl. Phys., 1999,38 (9B):5553-5556.
    [58] Takenaka T. and Sakata K. [J]. Jpn. J. Appl. Phys., 1980,19 (1): 31-39.
    [59] Kong L.B., Ma J., ZhuW. andTan O.K. [J].Mater. Lett., 2001,51 (2): 108-114.
    [60] Pardo L., Castro A., Millan P., Alemany C., Jimenez R. and Jimenez B. [J]. Acta Mater., 2000,48 (2): 2421-2428.
    [61] Tellier J., Boullay P., Manier M. and Mercurio D. [J]. J. Solid. Stat. Chem., 2004,177(6): 1829-1837.
    [62] Park B. H., Kang B. S., Bu S. D., Noh T. W., Lee J. and Jo W. [J]. Nature, 1999,401 (14): 682-684.
    [63] Wang X. and Ishiwara H. [J]. Appl. Phys. Lett., 2003, 82 (15): 2479-2481.
    [64] Chon U., Jang H. M., Kim M.G and Chang C. H. [J]. Phys. Rev. left., 2002, 89(8): 087601-1-4.
    [65] Noguchi Y., Miyayama M., Oikawa K. and Kamiyama T. [J]. J. Appl. Phys., 2004,95(8): 4261-4266.
    [66] Wu Y. and Cao G Z. [J].Appl. Phys. Lett., 1999, 75 (17): 2650-2652.
    [67] Shirane G., Newnham R. and Pepinsky R. [J]. Phys. Rev, 1954,96 (3): 581-588.
    [68] Triebwasser S. [J]. Phys. Rev., 1959,114 (1): 63-70.
    [69] Jaeger R. E. and Egerton L. [J]. J. Am. Ceram. Soc., 1962,45 (5): 209-213.
    [70] Dungan R. H. and Golding R. D. [J]. J. Am. Ceram. Soc., 1965,48 (11): 601.
    [71] Fraser D. B. and Warner A. W. [J]. J. Appl. Phys., 1966, 37 (10): 3853-3854.
    [72] Haertling G. H. [J]. J. Am. Ceram. Soc., 1967, 50 (6) 329-330.
    [73] Tennery V. J. and Hang K. W. [J]. J. Appl. Phys., 1968, 39 (10): 4749-4753.
    [74] Smith R. T. and Welsh F. S. [J]. J. Appl. Phys., 1971,42 (6): 2219-2230.
    [75] Okazaki K. and Nagata K. [J]. J. Soc Mater. Sci. Jpn., 1972, 4 (5): 404-410.
    [76] Guo Y. P., Kakimoto K. -I. and Ohsato H. [J]. Jpn J Appl Phys., 2004,43 (9B):6662-6666.
    [77] Guo Y. P, Kakimoto K. -I. and Ohsato H. [J].Appl. Phys. Lett., 2004, 85 (18):4121-4123.
    [78] Guo Y. P., Kakimoto K. -I. and Ohsato H. [J]. Solid State Commun., 2004,129(5): 279-284.
    [79] Ichiki M., Zhang L., Tanaka M. and Maeda R. [J]. J. Eur. Ceram. Soc., 2004, 24 (6): 1693-1697.
    [80] Matsubara M., Yamaguchi T., Kikuta K. and Hirano S.-i. [J]. Jpn. J. Appl. Phys.,2004,43 (10): 7159-7163.
    [81] Birol H., Damjanovic D. and Setter N. [J]. J. Am. Ceram. Soc., 2005, 88 (7):1754-1759.
    [82] Guo Y., Kakimoto K.-i. and Ohsato H. [J]. Mater. Lett., 2005,59 (2-3): 241-244.
    [83] Hollenstein E., Davis M., Damjanovic D. and Setter N. [J]. Appl. Phys. Lett.,2005,87(18): 182905-182903.
    [84] Matsubara M., Kikuta K. and Hirano S. [J]. J. Appl. Phys., 2005, 97 (11):114105-114107.
    [85] Matsubara M., Yamaguchi T., Sakamoto W., Kikuta K., Yogo T. and Hirano S.-i.[J]. J. Am. Ceram. Soc, 2005, 88 (5): 1190-1196.
    [86] Matsubara M., Yamaguchi T., Kikuta K. and Hirano S.-I. [J]. Jpn. J. Appl. Phys.,2005, 44 (9A): 6618-6623.
    [87] Birol H., Damjanovic D. and Setter N. [J]. J. Eur. Ceram. Soc., 2006, 26 (6):861-866.
    [88] Du H., Li Z., Tang F., Qu S., Pei Z. and Zhou W. [J]. Mat. Sci. Eng. B, 2006,131(1-3): 83-87
    [89] Li J.-F, Wang K, Zhang B.-P. and Zhang L.-M. [J]. J. Am. Ceram. Soc., 2006, 89(2): 706-709.
    [90] Liu T., Ding A. L., He X. Y., Zheng X. S., Qiu P. S. and Cheng W. X. [J]. Phys.Stat. Sol, 2006,203 (15): 3861-3867.
    [91] Park H.-Y., Ahn C.-W., Song H.-C., Lee J.-H., Nahm S., Uchino K., Lee H.-G. and Lee H.-J. [J]. Appl. Phys. Lett., 2006, 89 (6): 062906-1-3.
    [92] Yang Z, Chang Y, Liu B. and Wei L. [J]. Mater. Sci. Eng. A, 2006,432 (1-2):292-298.
    [93] Yoo J., Lee K., Chung K, Lee S., Kim K. Hong J., Ryu S. and Lhee C. [J]. Jpn. J.Appl. Phys., 2006,45 (9B): 7444-7448.
    [94] Zang G-Z., Wang J.-F., Chen H.-C., Su W.-B., Wang C.-M., Qi P, Ming B.-Q,Du J, Zheng L.-M., Zhang S. and Shrout T. R. [J]. Appl. Phys. Lett., 2006, 88 (21):212908-212903.
    [95] Zhang B.-P., Li J.-F., Wang K. and Zhang H. [J]. J. Am. Ceram. Soc., 2006, 89 (5):1605-1609.
    [96] Zhang S., Xia R., Shrout T. R., Zang G. and Wang J. [J]. J. Appl. Phys., 2006,100 (10): 104108-104106.
    [97] Zhen Y. and Li J.-F. [J]. J. Am. Ceram. Soc, 2006, 89 (12): 3669-3675.
    [98] Zuo R., Rodel J., Chen R. and Li L. [J]. J. Am. Ceram. Soc., 2006, 89 (6):2010-2015.
    [99] Ahn C.-W., Park H.-Y., Nahm S., Uchino K., Lee H.-G and Lee H.-J. [J]. Sens.Actuators A: Phys., 2007,136 (1): 255-260.
    [100] Bobnar V., Holc J., Hrovat M. and Kosec M. [J]. J. Appl. Phys., 2007,101 (7):074103-1-4.
    [101] Bomlai P., Wichianrat P., Muensit S. and Milne S. J. [J]. J. Am. Ceram. Soc.,2007, 90 (5): 1650-1655.
    [102] Burton B. P. and Nishimatsu T. [J]. Appl. Phys. Lett., 2007, 91 (9): 092907-1-3.
    [103] Chang R. C., Chu S. Y., Lin Y. F., Hong C. S., Kao P. C. and Lu C. H. [J]. Sens.Actuators A: Phys., 2007,138 (2): 355-360.
    [104] Chang R. C., Chu S. Y., Lin Y. F., Hong C. S. and Wong Y. P. [J]. J. Eur.Ceram. Soc., 2007,27 (16): 4453-4460.
    [105] Chang R. C., Chu S. Y., Wong Y. P., Lin Y. F. and Hong C. S. [J]. Sens. Actuators A: Phys., 2007,136 (1): 267-272.
    [106] Chang Y. F., Yang Z. P., Chao X. L., Zhang R. and Li X. R. [J]. Mater. Lett.,2007, 61 (3): 785-789.
    [107] Chang Y. F., Yang Z. P., Hou Y. T., Liu Z. H. and Wang Z. L. [J]. Appl. Phys.Lett., 2007, 90 (23): 232905-1-3.
    [108] Chang Y., Yang Z. and Wei L. [J]. J. Am. Ceram. Soc, 2007, 90 (5): 1656-1658.
    [109] Dai Y. J., Zhang X. W. and Zhou G Y. [J]. Appl. Phys. Lett., 2007, 90 (26):262903-1-3.
    [110] Du H. L., Liu D. J., Tang F. S., Zhu D. M., Zhou W. C. and Qu S. B. [J]. J. Am.Ceram. Soc, 2007, 90 (9): 2824-2829.
    [111] Du H. L., Tang F., Liu D., Zhu D., Zhou W. and Qu S. B. [J]. Mat. Sci. Eng. B,2007,136(2-3): 165-169.
    [112] Du H. L., Tang F., Luo F., Zhou W. C., Qu S. B. and Pei Z. B. [J]. Mater. Sci.Eng. B, 2007,137 (1-3): 175-179.
    [113] Du H., Tang F., Luo F., Zhu D., Qu S., Pei Z. and Zhou W. [J]. Mater. Res. Bull.,2007,42(9): 1594-1601.
    [114] Du H. L., Zhou W. C., Luo F., Zhou D. M., Qu S. and Pei Z. [J]. Appl. Phys.Lett., 2007,91 (18): 182909-1-3.
    [115] Du H. L., Zhou W. C., Luo F., Zhou D. M., Qu S. and Pei Z. [J]. Appl. Phys.Lett., 2007, 91 (20): 202907-1-3.
    [116] Higashide K., Kakimoto K.-i. and Ohsato H. [J]. J. Eur. Ceram. Soc., 2007,27(13-15): 4107-4110.
    [117] Hollenstein E., Damjanovic D. and Setter N. [J]. J. Eur. Ceram. Soc., 2007, 27(13-15): 4093-4097.
    [118] Jiao G. C., Fan H. Q., Liu L. J. and Wang W. [J]. Mater. Lett., 2007, 61 (19-20):4185-4187.
    [119] Kim M. S., Lee D. S., Park E. C., Jeong S. J. and Song J. S. [J]. J. Eur. Ceram.Soc., 2007,27 (13-15): 4121-4124.
    [120] Kim M. S., Jeong S. J. and Song J. S. [J]. J. Am. Ceram. Soc., 2007, 90 (10):3338-3340.
    [121] Li E., Kakemoto H., Wada S. and Tsurumi T. [J]. J. Am. Ceram. Soc., 2007, 90(6): 1787-1791.
    [122] Li H. D., Shih W. Y. and Shih W. H. [J]. J. Am. Ceram. Soc., 2007,90 (10):3070-3072.
    [123] Lin D., Kwok K. W. and Chan H. W. L. [J]. Appl. Phys. Lett., 2007, 91 (14):143513-143513.
    [124] Lin D., Kwok K. W. and Chan H. W. L. [J]. J. Appl. Phys, 2007,102 (7):074113-1-6.
    [125] Lin D., Kwok K. W. and Chan H. W. L. [J]. Appl. Phys. Lett., 2007, 90 (23):232903-1-3.
    [126] Lin D., Kwok K. W., Lam K. H. and Chan H. W. L. [J]. J. Appl Phys., 2007,101 (7): 074111-1-6.
    [127] Lin D., Kwok K. W., Lam K. H. and Chan H. W. L. [J]. J. Phys. D: Appl. Phys.,2007, 40 (11): 3500-3505.
    [128] Lin D., Kwok K. W., Tian H. and Chan H. W. L. [J]. J. Am. Ceram. Soc., 2007,90 (5): 1458-1462.
    [129] Ming B. Q., Wang J. F., Qi P. and Zang G. Z. [J]. J. Appl. Phys., 2007,101 (5):054103-1-4.
    [130] Qi P., Wang J. F., Ming B. Q., Wang C. M. and Liang X. H. [J]. Chin. Phys.Lett., 2007, 24 (12): 3475-3478.
    [131] Sakamoto T., Nakamura K., Fujiura K. and Cho Y. [J]. Appl. Phys. Lett., 2007,90 (22): 222908-1-3.
    [132] Song H. C, Cho K. H., Park H. Y., Ahn C. W, Nahm S., Uchino K., Park S. H.and Lee H. G [J]. J. Am. Ceram. Soc, 2007, 90 (6): 1812-1816.
    [133] Tian H. Y., Wang D. Y, Lin D. M., Zeng J. T., Kwok K. W. and Chan H. L. W.[J]. Solid State Commun., 2007,142 (1-2): 10-14.
    [134] Wang K. and Li J. F. [J]. Appl. Phys. Lett, 2007, 91 (26): 262902-262903.
    [135] Wang Y. L, Damjanovic D., Klein N., Hollenstein E. and Setter N. [J]. J. Am.Ceram. Soc, 2007, 90 (11): 3485-3489.
    [136] Wang Y., Wu J, Xiao D., Zhu J., Jin Y., Zhu J., Yu P., Wu L. and Li X. [J]. J.Appl. Phys., 2007,102 (5): 054101-1-5.
    [137] Wu J, Wang Y, Xiao D., Zhu J. and Pu Z. [J]. Appl. Phys. Lett., 2007, 91 (13):132914-132913.
    [138] Wu L., Zhang J. L., Zheng P. and Wang C. L. [J]. J. Phys. D: Appl. Phys., 2007,40 (11): 3527-3530.
    [139] Wu M., Lu Y. and Li Y. [J]. J. Am. Ceram. Soc, 2007, 90 (11): 3642-3645.
    [140] Yang Z. P., Chang Y. F. and Wei L. L. [J]. Appl. Phys. Lett., 2007,90 (4):042911-1-3.
    [141] Zhang S. T., Kounga A. B., Aulbach E., Ehrenberg H. and Rodel J. [J]. Appl.Phys. Lett., 2007,91 (11): 112906-112903.
    [142] Zhang S. T., Xia R. and Shrout T. R. [J]. Appl. Phys. Lett., 2007,91 (13):132913-1-3.
    [143] Zhang S. T., Xia R., Shrout T. R., Zang G. and Wang J. [J]. Solid State Commun., 2007,141 (12): 675-679.
    [144] Zhao P., Zhang B.-P. and Li J.-F. [J]. Appl. Phys. Lett., 2007, 91 (17):172901-172903.
    [145] Zhao P., Zhang B.-P. and Li J.-F. [J]. Appl. Phys. Lett., 2007, 90 (24):242909-1-3.
    [146] Wang K., Li J. F. and Liu N. [J]. Appl. Phys. Lett., 2008, 93 (9): 092904-6.
    [147] Du H. L., Zhou W. C, Lou F., Zhu D. M., Qu S. B., Li Y. and Pei Z. B. [J]. J.Appl. Phys., 2008,104 (4): 044104-1-5.
    [148] Du H. L., Zhou W. C, Lou F., Zhu D. M., Qu S. B., Li Y. and Pei Z. B. [J]. J.Appl. Phys., 2008,104 (3): 034104-1-7.
    [149] Lei C. and Ye Z. G [J]. Appl. Phys. Lett, 2008, 93 (4): 042901-1-3.
    [150] Wu J. G, Xiao D. Q., Wang Y. Y, Wu W. J., Zhang B. and Zhu J. G [J]. J. Appl.Phys., 2008,104 (2): 024102-1-4.
    [151] Park H. Y., Seo I. T., Choi M. K., Nahm S., Lee H. G., Kang H. W. and Choi B.H. [J]. J. Appl. Phys., 2008,104 (3): 034103-1-7.
    [152] Chang Y. F., Yang Z. P., Ma D. F., Liu Z. H. and Wang Z. L. [J]. J. Appl. Phys.,2008,104(2): 024109-1-8.
    [153] Li Z. H., Wei Y and Zhou B. [J]. J. Rare Earth., 2003,21 (6): 697-698.
    [154] Hou Y and Wei Y [J]. J. Rare Earth., 1999,17 (4): 271-275.
    [155] Li Z. H., Wei Y. and Guo Y [J]. J. Rare Earth., 2004, 22 (1): 89-95.
    [156] Gler T. E., Pease D. C., Sleight A. W. and Bither T. A. [J]. Inorg. Chem., 1968, 7(8): 1646-1647.
    [157] Ayyappan S. and Rao C. N. R. [J]. Mater. Res. Bull., 1995,30 (8): 947-951.
    [158] Zakharov N. D., Werner P. and Zibrov I. P. [J]. Cryst. Res. Technol., 2000, 35(6-7): 713-720.
    [159] Zhong Q., Dahn J. R. and Colbow K. [J]. J. Electrochem. Soc., 1992, 139 (9):2406-2409.
    [160] Robin A. I., Prasadar A. V. and Sabasiv A. R. [J]. Ferroelectrics, 1994, 153(1-4): 285-290.
    [161] Xu Y., Chen H. and Cross L. E. [J]. Ferroelectrics, 1984, 54 (1-4): 123-134.
    [162] Umakantham K. and Narayana S. [J]. J. Mater. Sci. Lett., 1987, 6 (6): 565-567.
    [163] Spinolad U. P., Moreira E. N. and Bassora L. A. [J]. IEEE Ultrasonics Symposium, 1996,15 (2): 523-526.
    [164] Yuge N., Hanazawa K. and Hiwasa S. [J]. J. Jpn. Inst. Met., 2003, 67 (10):575-582.
    [165] Khattak C. P., Joyce D. B. and Schmid F. [J]. Sol. Energy Mater. Sol. Cells,2002, 74 (1-4): 77-89.
    [166] Saito Y., Takao H., Tani T., Nonoyama T., Takatori K., Homma T., Nagaya T.and Nakamura M. [J]. Nature, 2004, 432 (7013): 84-87.
    [1] Jaffe B, Roth R. S. and Marzullo S. [J]. J. Appl. Phys, 1954,25 (6):809-810.
    [2] Yamashita Y. [J]. Jpn. J. Appl. Phys., 1994, 33 (Part 1): 4652-4656.
    [3] Wada T., Toyoike K., Imanaka Y. and Matsuo Y. [J]. Jpn. J. Appl. Phys., 2001, 40(9B): 5703-5.
    [4] Ishii H, Nagata H. and Takenaka T. [J]. Jpn. J. Appl Phys., 2001, 40 (9B):5660-3.
    [5] Nagata H. and Takenaka T. [J]. Jpn. J. Appl. Phys., 1998, 37 (9B): 5311-5314.
    [6] Wang X. X., Kwog K. W., Tang X. G, Chan H. L. W. and Choy C. L. [J]. Solid State Commun., 2004,129: 319.
    [7] Xie R.-J., Akimune Y, Wang R., Hirosaki N. and Nishimura T. [J]. Jpn. J. Appl.Phys., 2003,42: 7404-9.
    [8] Suzuki M., Nagata H., Ohara J., Funakubo H. and Takenaka T. [J]. Jpn. J. Appl.Phys., 2003, 42: 6090-3.
    [9] Sawada T, Ando A., Sakabe Y, Damjanovic D.and Setter N. [J]. Jpn. J. Appl.Phys.,2003,42: 6094-8.
    [10] Wada T., Tsuji K., Saito T. and Matsuo Y [J]. Jpn J. Appl. Phys., 2003, 42 (9B):6110-4.
    [11] Guo Y, Kakimoto K. and Ohsato H. [J]. Solid State Commun., 2004, 129 (5):279-284.
    [12] Wang R., Xie R., Sekiya T, Shimojo Y, Akimune Y, Hirosaki N. and Ito M. [J].Jpn. J. Appl. Phys., 2002, 41: 7119-7122.
    [13] Egerton L. and Dillon D. M. [J]. J. Am. Ceram. Soc, 1959, 42 (9): 438-42.
    [14] Jaeger R. E. and Egerton L. [J]. J. Am. Ceram. Soc., 1962,45 (5): 209-13.
    [15] Haertling G. H. [J]. J. Am. Ceram. Soc., 1967,50 (6): 329-30.
    [16] Shirane G., Newnham R. and Pepinsky R. [J]. Phys. Rev., 1954,96 (3): 581-588.
    [17] Smith R. T. and Welsh F. S. [J]. J. Appl. Phys., 1971, 42 (6): 2219-2230.
    [18] Park H.-Y., Ahn C.-W., Song H.-C, Lee J.-H, Nahm S., Uchino K., Lee H.-G and Lee H.-J. [J]. Appl. Phys. Lett., 2006, 89 (6): 062906-1-3.
    [19] Ichiki M., Zhang L., Tanaka M. and Maeda R. [J]. J. Eur. Ceram. Soc, 2004, 24(6): 1693-1697.
    [20] Birol H., Damjanovic D. and Setter N. [J]. J. Am. Ceram. Soc, 2005, 88 (7):1754-1759.
    [21] Saito Y., Takao H., Tani T., Nonoyama T., Takatori K., Homma T., Nagaya T.and Nakamura M. [J]. Nature (London), 2004,432 (7013): 84-87.
    [22] Guo Y. P., Kakimoto K. and Ohsato H. [J]. Appl. Phys. Lett., 2004, 85 (18):4121-4123.
    [23] Guo Y. P., Kakimoto K. and Ohsato H. [J]. Mater. Lett., 2005, 59 (2-3): 241-244.
    [24] Hollenstein E., Davis M., Damjanovic D. and Setter N. [J]. Appl. Phys. Lett.,2005, 87 (18): 182905-7.
    [25] Matsubara M., Kikuta K. and Hirano S. [J]. J. Appl. Phys., 2005, 97 (11):114105-1-3.
    [26] Jaffe. H. [J]. J. Am. Ceram. Soc., 1958,41 (11): 494-498.
    [27] Tennery V. J. and Hang K. W. [J]. J. Appl. Phys., 1968,39 (10): 4749-4753.
    [28] Jaffe B., Cook W. and Jaffe H. [J]. Piezoeletric Ceramics, 1971, 92.
    [29] Zhang S. J., Xia R. and Shrout R. T. [J]. J. Appl. Phys., 2006, 100 (10):104108-1-6.
    [30] Zang G. Z., Wang J. F. and Chen H. C. [J]. Appl. Phys. Lett., 2006, 88 (21):212908-1-3.
    [31] Wang R., Xie R., Hanada K., Matsusaki K., Bando H. and Itoh M. [J]. Phys.Stat. Sol. A, 2005, 202 (6): R57-R59.
    [32] Choy S. H., Wang X. X., Chan H. L. W. and Choy C. L. [J]. Appl. Phys. A:Mater. Sci. Process., 2006, 82 (4): 715-718.
    [33] Matsubara M., Yamaguchi T., Sakamoto W., Kikuta K., Yogo T. and Hirano S.[J]. J. Am. Ceram. Soc., 2005, 88 (5): 1190-6.
    [34] Saito Y. and Takao H., 12th US-Japan Seminar on Dielectric and Piezoelectric Ceramics, Annapolis, Maryland, edited by Wu C., Kishi H., Randall C., Pinceloup P. and Funakubo H.,2005,p.103.
    [35] Yang Z., Chang Y., Liu B. and Wei L. [J]. Mater. Sci. Eng. A, 2006,432 (1-2):292-298.
    [36] Yoo J., Lee K., Chung K, Lee S., Kim K. Hong J., Ryu S. and Lhee C. [J]. Jpn. J.Appl. Phys., 2006,45 (9B): 7444-7448.
    [1] Tennery V. J. and Hang K. W. [J]. J. Appl. Phys., 1968, 39 (10): 4749-4753.
    [2] Okazaki K. and Nagata K. [J]. J. Soc. Mater. Sci. Jpn., 1972, 4 (5): 404-410.
    [3] Zang G. Z.,Wang J. F., Chen H. C, et al. [J]. Appl. Phys. Lett., 2006, 88 (21):212908-1-3.
    [4] Egerton L. and Dillon D. M. [J]. J. Am. Ceram. Soc, 1959,42 (9): 438-442.
    [5] Ringgaard E. and Wurlitzer T. [J]. J. Eur. Ceram. Soc, 2005, 25 (12): 2701-2706.
    [6] Maeder M. D., Damjanovic D. and Setter N. [J]. J. Electroceram., 2004,13 (1):385-392.
    [7] Matsubara M., Kikuta K. and Hirano S. [J]. J. Appl. Phys., 2005, 97 (11): 114105.
    [8] Matsubara M., Yamaguchi T., Sakamoto W., Kikuta K., Yogo T. and Hirano S.-I.[J]. J. Am. Ceram. Soc, 2005, 88 (5): 1190-1196.
    [9] Jaeger R. E. and Egerton L. [J]. J. Am. Ceram. Soc, 1962,45 (5): 209-213.
    [10] Wang R., Xie R., Sekiya T., et al. [J]. Jpn. J. Appl. Phys., 2002, 41 (1 1B):7119-7122.
    [11] Zhang B.-R, Li J.-R, Wang K. and Zhang H. [J]. J. Am. Ceram. Soc, 2006, 89 (5):1605-1609.
    [12] Ahn Z. S. and Schulze W. A. [J]. J. Am. Ceram. Soc, 1987, 70 (1): C18-C21.
    [13] Guo Y., Kakimoto K. and Ohsato H. [J]. Jpn. J Appl. Phys., 2004,43 (9B):6662-6666.
    [14] Guo Y., Kakimoto K. and Ohsato H. [J]. Solid. State. Commun., 2004,129(5):279-284.
    [15] Guo Y., Kakimoto K. and Ohsato H. [J]. Mater. Lett., 2004, 59 (2-3): 241-244.
    [16] 高峰,张惠君,刘向春,等[J].压电与声光,2006,28(1):60-63.
    [17] Guo Y, Kakimoto K.-i. and Ohsato H. [J]. Appl. Phys. Lett., 2004, 85 (18):4121-4123
    [18] Amin A. and Viehland D. [J]. J. Appl. Phys., 2004,96 (9): 5140-5143.
    [19] Budimir M, Damjanovic D. and Setter N. [J]. J. Appl Phys., 2003, 94 (10):6753-6761.
    [20] Hollenstein E., Davis M., Damjanovic D. and Setter N. [J]. Appl. Phys. Lett.,2005,87(18): 182905-182903.
    [21] Yoo J., Lee K., Chung K., Lee S., Kim K., Hong J., Ryu S. and Lhee C. [J]. Jpn.J. Appl. Phys., 2006,45 (9B): 7444-7448.
    [22] Zhang S., Xia R., Shrout T. R., Zang G and Wang J. [J]. J Appl. Phys., 2006,100(10): 104108-104106.
    [23] Chang Y. F., Yang Z. P., Hou Y. T., Liu Z. H. and Wang Z. L. [J]. Appl. Phys.Lett., 2007, 90 (23): 232905-7.
    [24] Chang Y, Yang Z. and Wei L. [J]. J. Am. Ceram. Soc, 2007, 90 (5): 1656-1658.
    [25] Dai Y. J., Zhang X. W. and Zhou G. Y. [J]. Appl. Phys. Lett., 2007, 90 (26):262903-5.
    [26] Ming B. Q., Wang J. F, Qi P. and Zang G Z. [J]. J. Appl. Phys., 2007,101 (5):054103-1-4.
    [27] Lin D. M., Kwok K. W., Lam K. H. and Chan H. L. W. [J]. J. Phys. D: Appl.Phys., 2007,40 (11): 3500-3505.
    [28] Lin D. F., Kwok K. W. and Chan H. L. W. [J]. J. Appl. Phys., 2007, 102 (3):034102-1-7.
    [29] McQuarrie M. C. and Buessem W. R. [J]. Amer. Ceram. Soc. Bull., 1955,34 (12):402-406.
    [1] Saito Y., Takao H., Tani T., Nonoyama T., Takatori K., Homma T., Nagaya T. and Nakamura M. [J]. Nature, 2004,432 (7013): 84-87.
    [2] Guo Y., Kakimoto K.-i. and Ohsato H. [J]. Appl. Phys. Lett., 2004, 85 (18):4121-4123.
    [3] Wang K. and Li J.-F. [J]. Appl. Phys. Lett., 2007,91 (26): 262902-262903.
    [4] Wu J., Xiao D, Wang Y, Zhu J, Wu L. and Jiang Y. [J]. Appl. Phys. Lett., 2007,91 (25): 252907-252903.
    [5] Du H., Tang F., Liu D., Zhu D, Zhou W. and Qu S. [J]. Mat. Sci. Eng. B, 2007,136(2-3): 165-169.
    [6] Du H., Tang R, Luo R, Zhu D., Qu S., Pei Z. and Zhou W. [J]. Mater. Res. Bull,2007,42 (9): 1594-1601.
    [7] Higashide K., Kakimoto K.-i. and Ohsato H. [J]. J. Eur. Ceram. Soc, 2007, 27(13-15): 4107-4110.
    [8] Du H., Zhou W, Luo R, Zhu D, Qu S. and Pei Z. [J]. Appl. Phys. Lett., 2007, 91(20): 202907-202903.
    [9] Chang Y, Yang Z. and Wei L. [J]. J. Am. Ceram. Soc, 2007,90 (5): 1656-1658.
    [10] Rubio-Marcos R, Ochoa P. and Fernandez J. R [J]. J. Eur. Ceram. Soc, 2007, 27(13-15): 4125-4129.
    [11] Wang K, Li J. F. and Liu N. [J]. Appl. Phys. Lett., 2008, 93 (9): 092904-6.
    [12] Hollenstein E., Davis M., Damjanovic D. and Setter N. [J]. Appl. Phys. Lett.,2005,87(18): 182905-182903.
    [13] Wu J, Xiao D. Q, Wang Y. Y, Wu W. J., Zhang B. and Zhu J. G [J]. J. Appl.Phys., 104(2): 024102-1-4.
    [14] Guo Y, Kakimoto K.-i. and Ohsato H. [J]. Mater. Lett., 2005, 59 (2-3): 241-244.
    [15] Hollenstein E., Damjanovic D. and Setter N. [J]. J. Eur. Ceram. Soc, 2007, 27(13-15): 4093-4097.
    [16] Kim M.-S., Lee D.-S., Park E.-C, Jeong S.-J. and Song J.-S. [J]. J. Eur. Ceram.Soc, 2007, 27 (13-15): 4121-4124.
    [17] Zhao P, Zhang B.-P. and Li J.-F. [J]. Appl. Phys. Lett., 2007, 91 (17):172901-172903.
    [18] Zhang B.-P, Li J.-F, Wang K. and Zhang H. [J]. J. Am. Ceram. Soc, 2006, 89 (5):1605-1609.
    [19] Takenaka T. and Nagata H. [J]. J. Eur. Ceram. Soc, 2005, 25 (12): 2693-2700.
    [20] Matsubara M, Yamaguchi T, Kikuta K. and Hirano S.-i. [J]. Jpn. J. Appl. Phys.,2004,43 (10): 7159.
    [21] Zuo R. Z, Ye C. and Fang X. S. [J]. Jpn. J. Appl. Phys., 2007, 46 (10):6733-6736.
    [22] Zang G. Z, Wang J. F. and Chen H. C. [J]. Appl. Phys. Lett., 2006, 88 (21):212908-1-3.
    [23] Lin D. M, Kwok K. W, Lam K. H. and Chan H. L. W. [J]. J. Appl. Phys., 2007,101(7): 074111-1-6
    [24] Lin D. M, Kwok K. W, Lam K. H. and Chan H. L. W. [J]. J. Phys. D: Appl.Phys., 2007,40 (11): 3500-3505.
    [25] Zhang S. J, Xia R, Shrout R. T, Zang G Z. and Wang J. F. [J]. Solid State Commun., 2007,141: 675-679.
    [26] Zhang S. J, Xia R. and Shrout R. T. [J]. J. Appl. Phys., 2006, 100 (10):104108-1-6.
    [27] Jaffe B, Cook W. and Jaffe H. [J]. Piezoeletric Ceramics, 1971,92.
    [28] Kim M.-S, Jeong S.-J. and Song J.-S. [J]. J. Am. Ceram. Soc, 2007, 90 (10):3338-3340.
    [29] Du H. L, Liu D. J, Tang F. S, Zhu D. M. and Zhou W. C. [J]. J. Am. Ceram.Soc, 2007, 90 (9): 2824-2829.
    [30] Du H. L, Zhou W. C, Lou F, Zhu D. M., Qu S. B, Li Y. and Pei Z. B. [J]. J.Appl. Phys., 2008,104 (4): 044104-1-5.
    [1] Takanaka T. and Sakata K. [J]. Ferrtoelectr., 1989, 95: 153-156.
    [2] Takenaka T. and Nafara H. [J]. Key Eng. Mater, 1999,157-158; 57-64.
    [3] 初宝进,李国荣,江向平[J].无机材料学报,2000,15(5):815-821.
    [4] Marima V., Caballero A. and Calos M. [J]. J. Am. Ceram. Soc, 1999, 82 (9):2411-2416.
    [5] Nagata H. and Takenaka T. [J]. Jpn. J. Appl. Phys., 1997, 36 (9B): 6055-6057.
    [6] Ichinose N. and Ugadawa K. [J]. Ferroelectr., 1995,169: 317-325.
    [7] Takenaka T, Sakata K. and Toda K. [J]. Ferroelectr., 1990,106 (1): 375-380.
    [8] Elkechai O., Manier M. and Mercurio J. P. [J]. Phys. Stat. Sol., 1996,157:499-506.
    [9] Takenaka T, Okuda T. and Takegahara K. [J]. Ferroelectr, 1997, 196 (1-4):175-178.
    [10] Sasaki A., Chiba T., Mamiya Y. and Otsuki E. [J]. Jpn. J. Appl. Phys., 1999, 38(9B): 5564-5567.
    [11] Nagata H., Koizumi N. and Kuroda N. [J]. Ferroelectr, 1999, 229 (1-4):273-278.
    [12] Takenaka T. [J]. Ferroelectr, 1999, 230 (1-4): 87-98.
    [13] Herabut A. and Safari A. [J]. J. Amer. Ceram. Soc, 1997, 80 (11): 2954-2958.
    [14] Nagata H., Koizumi N. and Takenaka T. [J]. Key Eng. Mater, 1999, 169-170:37-40.
    [15] Lin D.-M., Xiao D.-Q., Zhu J.-G., Yu P., Yan H.-J., Li L.-Z. and Zhang W. [J]. Cryst. Res. Technol, 2004,39 (1): 30-33.
    [16] Wu Y.-G, Zhang H.-L. and Zhang Y. [J]. J. Mater. Sci., 2003, 38 (5): 987-994.
    [17] Chu B.-J., Chen D.-R., Li G-R. and Yin Q.-R. [J]. J. Eur Ceram. Soc, 2002, 22(13): 2115-2121.
    [18] Wang X.-X, Chan H.-L. and Choy C.-L. [J]. Solid State Commun., 2003, 125(7-8): 395-399.
    [19] Nagata H. and Takenaka T. [J]. J. Appl. Phys., 1998,37 (9B): 5311-5314.
    [20] Zhang P.-L., Zhong W.-L., Zhao H.-S. and Chen H.-C, [J]. Chin. Phys. Lett.,1989,6:526-528.
    [21] Zhao M.-L., Zhong W.-L. and Wang C.-L., [J]. Acta. Phys. Sin., 2002, 51 (8):1856-1860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700