用户名: 密码: 验证码:
白藜芦醇对神经元氧糖剥夺/复氧模型基质金属蛋白酶9表达的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、建立氧糖剥夺/复氧离体神经元模型
     目的原代培养获得纯化的小鼠脑皮层神经元,在细胞水平建立一种可靠的、简便易行的离体神经元氧糖剥夺/复氧(OGD/R)模型,为研究神经元缺血性损伤机制及进行药物筛选奠定基础。
     方法选择14-15 d Balb/c胎鼠作为大脑皮层神经元的来源,采用酶消化法获得脑皮层神经元。首先在含20%胎牛血清的DMEM中,于37℃、5%CO2孵箱中体外培养,24 h后换为含有神经元培养添加剂B27 (2%)的无血清DMEM继续培养,以促进神经元的分化及抑制神经胶质细胞的增生。倒置显微镜观察细胞形态。10 d时采用免疫荧光染色法进行β-tubulin染色,鉴定神经元纯度。体外培养10 d左右即可用于OGD/R试验。OGD 4 h后复氧20 h,然后进行细胞活力测定。采用台盼蓝(TB)染色检测细胞存活率,通过检测培养液中乳酸脱氢酶(LDH)的漏出率评估细胞膜通透性改变,反映细胞的损伤程度,从病理生理学角度阐明神经元损伤的状况。
     结果神经元体外培养10 d,光镜下可见成熟神经元特征,如细胞核饱满、清晰、透亮,核仁明显,核膜清晰可见,胞体呈多形性,胞质透亮,细胞具有折光性,自胞体伸出较多突起,神经元突起间相互联系,形成复杂的网络结构。β-tubulin免疫荧光染色细胞阳性率达70%。TB染色结果显示,OGD 4 h可引起明显的神经元死亡,且稳定性较好。LDH漏出率结果与TB染色结果相一致。
     结论采用酶消化法可分离获得小鼠大脑皮层神经元,B27不但可诱导神经元体外分化,还可有效抑制胶质细胞的增生。OGD 4 h/R 20 h可引起明显的神经元损伤,死亡率达50%,且较稳定,适宜作为脑缺血再灌注损伤的体外研究对照模型。
     二、短暂性OGD/R致神经元损伤时白藜芦醇(Res)的保护作用及对基质金属蛋白酶9(MMP-9)表达的影响
     目的在体外验证Res对短暂性OGD/R神经元损伤的保护作用,进一步在细胞水平探讨Res对脑缺血再灌注损伤的保护作用机制,即其对原代皮层神经元MMP-9表达的影响。
     方法以小鼠大脑皮层原代神经元OGD 4 h/R 20 h模型为研究对照。Res溶于DMSO,储液浓度为0.1 M。实验时用PBS将储液稀释到所需浓度后加入培养基,终浓度分别为2.5μM、5μM和10μM,对照组加入等体积DMSO(0.1%),治疗时间从缺氧开始,直至试验结束。TB染色法计算细胞存活率,LDH漏出率评估细胞的损伤程度。提取培养细胞总蛋白,采用Western blot分析过氧化物增殖活化剂受体(PPAR)α、γ和MMP-9的蛋白表达,提取培养细胞总RNA,采用反转录聚合酶链反应(RT-PCR)检测MMP-9 mRNA水平。
     结果TB染色结果显示,OGD 4 h/R 20 h可引起约50%神经元死亡,0.1% DMSO并没有加重神经元的损害。而Res干预治疗可减少这种条件下神经元的死亡,而且这种保护作用具有明显的剂量依赖效应,5μM、10μM的Res对于离体神经元OGD/R损伤具有良好保护作用,没有发现明显的副作用。Western blot和RT-PCR结果显示,正常神经元MMP-9的表达水平很低,PPAR-α和PPAR-γ的表达水平也很低。OGD 4 h/R 20 h可显著提高神经元MMP-9的转录和翻译,同时也明显激活PPAR-α和PPAR-γ的表达。加用Res后,MMP-9的转录和翻译被明显抑制,同时,PPAR-α和PPAR-γ的表达水平进一步上调,而且Res的上述作用随其浓度的增加而增强。
     结论Res可以抑制OGD/R模型神经元MMP-9的转录和翻译,同时激活PPAR-α和PPAR-γ的表达,而且Res的上述作用随其浓度的增加而增强。
     三、Res对OGD/R神经元损伤的保护作用机理探讨
     目的体外研究探讨Res对OGD/R神经元损伤的保护作用机理。
     方法以小鼠大脑皮层原代神经元OGD 4 h/R 20 h模型为研究对照。将神经元分成不同的治疗组,分别加入不同的药物进行治疗。药物分别溶于DMSO制成母液,-20℃保存。然后按照不同的剂量和组合加入培养基。包括Res(10μM)、选择性PPAR-γ激动剂troglitazone(5μM)、选择性PPAR-α激动剂wy14643(5μM)、选择性PPAR-γ抑制剂GW9662(10μM)和选择性PPAR-α抑制剂MK886(10μM)。TB染色法计算细胞存活率,LDH漏出率评估细胞的损伤程度。提取培养细胞总蛋白,采用Western blot分析PPAR-α、PPAR-γ和MMP-9的蛋白表达,提取培养细胞总RNA,采用RT-PCR检测MMP-9 mRNA含量。
     结果TB染色结果显示,OGD 4 h/R 20 h可引起约50%神经元死亡,0.1% DMSO并没有加重神经元的损害。Res、troglitazone和wy14643干预治疗可减少这种条件下神经元的死亡。Western blot和RT-PCR结果显示,Res、troglitazone和和wy14643都能不同程度的抑制OGD/R条件下增高的MMP-9的表达。但是加入GW9662或MK886与上述激动剂共培养后,troglitazone和wy14643对MMP-9的抑制作用及对神经元的保护作用被不同程度的阻断。Res对MMP-9的抑制作用及对神经元的保护也被MK886部分阻断,但是GW9662对Res的上述作用基本没有影响。
     结论Res对MMP-9的抑制作用及对神经元的保护作用与选择性激活PPAR-α有关,阻断PPAR-α的激活可以部分影响Res对MMP-9和神经元的生理作用。虽然Res和troglitazone都能激活PPAR-γ的表达,但是对PPAR-γ的下游靶点产生的生理作用并不完全一致,这可能与PPARs的结构复杂性有关。
1. Establishment of neuron oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro
     Objective To obtain pure mouse cerebral cortex neurons by primary culture, and establish a reliable and easy-conducted OGD/R neuron model in vitro to provide necessary theory for the researches of mechanisms of neuron ischemia and treatment.
     Methods Primary cortex neurons were obtained from embryo (14-15 d) Balb/C mice by the enzyme digestion method. Neurons were firstly cultured in Dulbecco's Modified Eagle's Medium (DMEM) with 20% fetal bovine serum at 37℃in 5% CO2 atmosphere. After 24 h the medium was replaced by DMEM with 2% B27 supplement to facilitate differentiation of neurons and minimize glial growth. Morphology of neurons was observed under microscope. After 10 days of culturing in vitro, immunofluorescence staining ofβ-tubulin was used to identify the purity of neurons. Experiments of OGD/R were performed on cultures at 10 d in vitro. The time of OGD was 4 h followed by 20 h reoxygenation. Then typan Blue (TB) staining was used to detect the cell viability, and lactate dehydrogenase (LDH) leakage ratio in the culture medium was used to evaluate the changes of permeability of cell membrane.
     Results After 10 days of culture in vitro, the primary cortex neurons showed typical morphologic characters of mature neurons. The neuronal nucleus was large and clear with round or elliptical outline. The nucleolus and the membrane of nucleus were easily found. There were pleomorphic neurons in the medium, and the cytoplasm was bright with many dendrites and axons striking out from the cellular body, which connected each other to form a complicated reticular formation. The percent ofβ-tubulin positive neurons was more than 70%. The results of TB staining showed that 4 h OGD could induce neuron death significantly. The results of LDH leakage ratio were consistent with the results of TB staining.
     Conclusion Primary cortex neurons could be successfully obtained from the embryo (14-15 d) Balb/C mice by the enzyme digestion method. B27 Supplement not only facilitated differentiation of neurons, but also minimized glial growth. Neuron ischemia reperfusion model induced by OGD 4 h/R 20 h showed moderate and stable damage to cell viability, and was suitable for control research of cerebral ischemia reperfusion injury in vitro.
     2. Protective effects of Resveratrol (Res) against neuronal injury induced by OGD/R in vitro and effect on matrix metalloproteinase (MMP)-9
     Objective To confirm the protective effects of Res against neuronal injury induced by OGD/R in vitro, and further research the mechanisms of neuroprotection of Res in cell level, namely the relationship between Res and MMP-9 induced by OGD/R in neuron.
     Methods Primary mouse cerebral cortex neuronal ischemia reperfusion model was created by OGD 4 h /R 20 h. Stock solution (0.1M) of Res was prepared in dimethylsulfoxide (DMSO) and stored at -20℃. For treatment, the Res was diluted in PBS and added to cultures to give the desired final concentrations (2.5, 5 and 10μM). Untreated cultures received the same amount of the carrier solvent (0.1 % DMSO). The duration of treatment is from OGD/R to the end of the experiment. Cell viability was evaluated by TB staining and LDH leakage ratio. Total protein extraction of cells was used for detection of expression of Peroxisome proliferators-activated receptor (PPAR)α,γand MMP-9 protein by Western blot. Total RNA isolated from cells was used for evaluation of MMP-9 mRNA levels by reverse transcription polymerase chain reaction (RT-PCR).
     Results The results of TB staining showed that OGD 4 h /R 20 h could induced 50% neuronal death, and 0.1% DMSO did not aggravate neuronal damage. Res treatment could reduce cell death under these conditions, and the neuroprotection of Res for neurons was dose-dependent. These results indicated that treatment with 5μM and 10μM of Res showed better therapeutic outcome, and no harmful effects were found. The results of Western blot and RT-PCR showed that normal neurons only expressed very low level of MMP-9 protein. There were low level of PPAR-αand PPAR-γin normal neurons. OGD 4 h/R 20 h could increase transcription and translation of MMP-9 in neurons. At the same time, expressions of PPAR-αand PPAR-γwere also up-regulated by OGD/R injury. Res could inhibit transcription and translation of MMP-9. Expressions of PPAR-αand PPAR-γalso increased further by Res. Bioactivity of Res on MMP-9, PPAR-αandγwas in concentration-dependent manner.
     Conclusions Res could inhibit transcription and translation of MMP-9 in OGD/R neuron model and activate expressions of PPAR-αand PPAR-γin concentration- dependent manner.
     3. Mechanisms of protective effects of Res against neuronal injury induced by OGD/R in vitro
     Objective To confirm mechanisms of protective effects of Res against neuronal injury induced by OGD/R in vitro
     Methods Primary mouse cerebral cortex neuronal ischemia reperfusion model was created by OGD 4 h /R 20 h. Neurons were grouped according to different reagents. Stock solution of reagents was prepared in DMSO and stored at -20℃. Reagents were added into cultural medium in different dosage and combination, including Res (10μM), activator of PPAR-γtroglitazone (5μM), activator of PPAR-αwy14643 (5μM), antagonist of PPAR-γGW9662 (10μM), and antagonist of PPAR-αMK886 (10μM). Cell viability was evaluated by TB staining and LDH leakage ratio. Total protein extraction of cells was used for detection of expression of PPAR-α, PPAR-γand MMP-9 protein by Western blot. Total RNA isolated from cells was used for evaluation of MMP-9 mRNA levels by RT-PCR
     Results The results of TB staining showed that OGD 4 h/R 20 h could induced 50% neuronal death, and 0.1% DMSO did not aggravate neuronal damage. Res, troglitazone and wy14643 could decrease neuronal injury caused by OGD/R. Western blot and RT-PCR showed that Res, troglitazone and wy14643 could inhibit up-regulated expression of MMP-9 in OGD/R conditioin. When neurons were co-cultured in GW9662 or MK886 with agonist of PPARs, inhibition effects of troglitazone and wy14643 on MMP-9 and protection effect on neurons were antagonized. Inhibition of MMP-9 and protection of neurons by Res was partially antagonized by MK886, but which was not affected by GW9662.
     Conclusions Inhibition effects on MMP-9 and protection effect on neurons by Res has relationship with selective activation of PPAR-α, blockage of PPAR-αactivation can partially bring negative impact to physiological function of Res to MMP-9 and neurons. Though both Res and troglitazone can activate expression of PPAR-γ, they have different effect on down-stream target. It may have relation with complex structure of PPARs.
引文
1. Graham SH, Hickey RW. Cyclooxygenases in central nervous system. A special role of cyclooxygenase 2 in neuronal cell death. Arch Neurol, 2003, 60(4): 628-30.
    2. Mattson MP, Culmsee C, Yu ZF. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res, 2000, 301(1): 173-87.
    3. Iadecola C, Alexander M. Cerebral ischemia and inflammation. Curr Opin Neurol, 2001, 14(1): 89-94.
    4. Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara K, Yagita Y, Yanagihara T, Hori M, Matsumoto M. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke, 2000, 31(7): 1735-43.
    5. Zheng Z, Yenari MA. Post-ischemic inflammation: molecular mechanisms and therapeutic implications. Neurol Res, 2004, 26(8): 884-92.
    6. Mascalchi M, Filippi M, Floris R, Fonda C, Gasparotti R, Villari N. Diffusion-weighted MR of the brain: methodology and clinical application. Radiol Med, 2005, 109(3): 155-97.
    7.谢集建,杨勇,陈宝芳.缺氧缺血性脑损伤的发病机制研究进展.国外医学妇幼保健分册, 2002, l3(1): 30-2.
    8. Price CJ, Menon DK, Peters AM, Ballinger JR, Barber RW, Balan KK, Lynch A, Xuereb JH, Fryer T, Guadagno JV, Warburton EA. Cerebral neutrophil recruitment, histology, and outcome in acute ischemic stroke: an imaging-based study. Stroke, 2004, 35(7): 1659-64.
    9. Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, KieferR. Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol, 2003, 183(1): 25-33.
    10. Tanaka R, Komine-Kobayashi M, Mochizuki H, Yamada M, Furuya T, Migita M, Shimada T, Mizuno Y, Urabe T. Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia ? macrophage into the mouse brain following permanent focal ischemia. Neuroscience, 2003, 117(3), 531-9.
    11. Schilling M, Besselman M, Muller M, Strecker JK, Ringelstein EB, Kiefer R. Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient cerebral brain ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol, 2005, 196(2): 290-7.
    12. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci, 2007, 27(10): 2596-605.
    13. Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation, 2006, 113(17): 2105-12.
    14. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H. T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab, 2007, 27(11): 1798-805.
    15. Lu XC, Williams AJ, Yao C, Berti R, Hartings JA, Whipple R, Vahey MT, Polavarapu RG, Woller KL, Tortella FC, Dave JR. Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injuryand reperfusion. J Neurosci Res, 2004, 77(6): 843-57.
    16. Kapadia R, Tureyen K, Bowen KK, Kalluri H, Johnson PF, Vemuganti R. Decreased brain damage and curtailed inflammation in transcription factor CCAAT? enhancer binding protein beta knockout mice following transient focal cerebral ischemia. J Neurochem. 2006, 98(6): 1718-31.
    17. Vemuganti R, Dempsey RJ, Bowen KK. Inhibition of intercellular adhesion molecule-1 protein expression by antisense oligonucleotides is neuroprotective after transient middle cerebral artery occlusion in rat. Stroke, 2004, 35(1): 179-84.
    18. Satriotomo I, Bowen K, Vemuganti R. JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. J Neurochem, 2006, 98(5): 1353-68.
    19. Tureyen K, Brooks N, Bowen K, Svaren J, Vemuganti R. Transcription factor early growth response-1 induction mediates inflammatory gene expression and brain damage following transient focal ischemia. J Neurochem, 2008, 105(4): 1313-24.
    20. Dejardin E. The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. Biochem Pharmacol, 2006, 72(9): 1161-79.
    21. Herrmann O, Baumann B, de Lorenzi R, Muhammad S, Zhang W, Kleesiek J, Malfertheiner M, Kohrmann M, Potrovita I, Maegele I, Beyer C, Burke JR, Hasan MT, Bujard H, Wirth T, Pasparakis M, Schwaninger M. IKK mediates ischemia-induced neuronal death. Nat Med, 2005, 11(12): 1322-9.
    22. Nurmi A, Lindsberg PJ, Koistinaho M, Zhang W, Juettler E, Karjalainen-Lindsberg ML, Weih F, Frank N, Schwaninger M, Koistinaho J. Nuclear factorkappaB contributes to infarction after permanent focal ischemia. Stroke,2004, 35(4): 987-91.
    23. Schwaninger M, Inta I, Herrmann O. NF-kappaB signalling in cerebral ischaemia. Biochem Soc Trans, 2006, 34(Pt 6): 1291-4.
    24. Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M. Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab, 2005, 25(1): 30-40.
    25. Sarnico I, Lanzillotta A, Boroni F, Benarese M, Alghisi M, Schwaninger M, Inta I, Battistin L, Spano P, Pizzi M. NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem, 2009, 108(2): 475-85.
    26. Fridmacher V, Kaltschmidt B, Goudeau B, Ndiaye D, Rossi FM, Pfeiffer J, Kaltschmidt C, Israel A, Memet S. Forebrain-specific neuronal inhibition of nuclear factor-kappaB activity leads to loss of neuroprotection. J Neurosci, 2003, 23(28): 9403-8.
    27. Che X, Ye W, Panga L, Wu DC, Yang GY. Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res, 2001, 902(2): 171-7.
    28. Huang J, Choudhri TF, Winfree CJ, McTaggart RA, Kiss S, Mocco J, Kim LJ, Protopsaltis TS, Zhang Y, Pinsky DJ, Connolly ES Jr. Postischemic cerebrovascular E-selectin expression mediates tissue injury in murine stroke. Stroke, 2000, 31(12): 3047-53.
    29. Sch?ning B, Elepfandt P, Daberkow N, Rupprecht S, Stockhammer F, Stoltenburg G, Volk HD, Woiciechowsky C. Differences in immune cell invasion into the cerebrospinal fluid and brain parenchyma during cerebral infusion of interleukin-1beta. Neurol Sci, 2002, 23(5): 211-8.
    30. James WG, Hutchinson P, Bullard DC, Hickey MJ. Cerebral leucocyteinfiltration in lupus-prone MRL/MpJ-fas lpr mice--roles of intercellular adhesion molecule-1 and P-selectin. Clin Exp Immunol, 2006, 144(22): 299-308.
    31. Zhang L, Zhang ZG, Zhang RL, Lu M, Krams M, Chopp M. Effects of a selective CD11b/CD18 antagonist and recombinant human tissue plasminogen activator treatment alone and in combination in a rat embolic model of stroke. Stroke, 2003, 34(7): 1790-5.
    32. Enlimomab Acute Stroke Trial Investigators. Use of anti-ICAM-1 therapy in ischemic stroke: results of the enlimomab acute stroke trial. Neurology, 2001, 57(8): 1428-34.
    33. Furuya K, Takeda H, Azhar S, McCarron RM, Chen Y, Ruetzler CA, Wolcott KM, DeGraba TJ, Rothlein R, Hugli TE, del Zoppo GJ, Hallenbeck JM. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine antihuman intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke, 2001, 32: 2665-74.
    34. Minami M, Katayama T, Satoh M. Brain cytokines and chemokines: roles in ischemic injury and pain. J Pharmacol Sci, 2006, 100(5): 461-70.
    35. Yuen CM, Chiu CA, Chang LT, Liou CW, Lu CH, Youssef AA, Yip HK. Level and value of interleukin-18 after acute ischemic stroke. Circ J, 2007, 71(11): 1691-6.
    36. Suzuki S, Yamashita T, Tanaka K, Hattori H, Sawamoto K, Okano H, Suzuki N. Activation of cytokine signaling through leukemia inhibitory factor receptor (LIFR)/gp130 attenuates ischemic brain injury in rats. J Cereb Blood Flow Metab, 2005, 25(6): 685-93.
    37. Ohtaki H, Takaki A, Yin L, Dohi K, Nakamachi T, Matsunaga M, Horai R, Asano M, Iwakura Y, Shioda S. Suppression of oxidative stress after transientfocal ischemia in interleukin-1 knock out mice. Acta Neurochir Suppl, 2003, 86: 191-4.
    38. Rothwell N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun, 2003, 17(3): 152-7.
    39. Amantea D, Russo R, Gliozzi M, Fratto V, Berliocchi L, Bagetta G, Bernardi G, Corasaniti MT. Early upregulation of matrix metalloproteinases following reperfusion triggers neuroinflammatory mediators in brain ischemia in rat. Int Rev Neurobiol, 2007, 82: 149-69.
    40. Mulcahy N, Ross J, Rothwell NJ, Loddick SA. Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischaemia in the rat. Br J Pharmacol, 2003, 140(3): 471-6.
    41. Choi JS, Kim SJ, Shin JA, Lee KE, Park EM. Effects of estrogen on temporal expressions of IL-1beta and IL-1ra in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation. Neurosci Lett, 2008, 438(2): 233-7.
    42. Fogal B, Li J, Lobner D, McCullough LD, Hewett SJ. System x(c)- activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci, 2007, 27(38): 10094-105.
    43. Block F, Peters M, Nolden-Koch M. Expression of IL-6 in the ischemic penumbra. Neuroreport, 2000, 11(5): 963-7.
    44. Orion D, Schwammenthal Y, Reshef T, Schwartz R, Tsabari R, Merzeliak O, Chapman J, Mekori YA, Tanne D. Interleukin-6 and soluble intercellular adhesion molecule-1 in acute brain ischaemia. Eur J Neurol, 2008, 15(4): 323-8.
    45. Smith CJ, Emsley HC, Gavin CM, Georgiou RF, Vail A, Barberan EM, del Zoppo GJ, Hallenbeck JM, Rothwell NJ, Hopkins SJ, Tyrrell PJ. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week ofischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol, 2004, 4: 2.
    46. Waje-Andreassen U, Kr?kenes J, Ulvestad E, Thomassen L, Myhr KM, Aarseth J, Vedeler CA. IL-6: an early marker for outcome in acute ischemic stroke. Acta Neurol Scand, 2005, 111(6): 360-5.
    47. Acalovschi D, Wiest T, Hartmann M, Farahmi M, Mansmann U, Auffarth GU, Grau AJ, Green FR, Grond-Ginsbach C, Schwaninger M. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke, 2003, 34(8): 1864-9.
    48. Vila N, Chamorro A, Castillo J, Dávalos A. Glutamate, interleukin-6, and early clinical worsening in patients with acute stroke. Stroke, 2001, 32(5): 1234-7.
    49. Villa P, Triulzi S, Cavalieri B, Di Bitondo R, Bertini R, Barbera S, Bigini P, Mennini T, Gelosa P, Tremoli E, Sironi L, Ghezzi P. The interleukin-8 (IL-
    8/CXCL8) receptor inhibitor reparixin improves neurological deficits and reduces long-term inflammation in permanent and transient cerebral ischemia in rats. Mol Med, 2007, 13(3-4): 125-33.
    50. Kremlev SG, Palmer C. Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol, 2005, 162(1-2): 71-80.
    51. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol, 2007, 184(1-2): 53-68.
    52. Hedtj?rn M, Mallard C, Iwakura Y, Hagberg H. Combined deficiency of IL-1beta18, but not IL-1alphabeta, reduces susceptibility to hypoxia-ischemia in the immature brain. Dev Neurosci, 2005, 27(2-4): 143-8.
    53. Jander S, Schroeter M, Stoll G. Interleukin-18 expression after focal ischemia of the rat brain: association with the late-stage inflammatory response. J CerebBlood Flow Metab, 2002, 22(1): 62-70.
    54. Castillo J, Moro MA, Blanco M, Leira R, Serena J, Lizasoain I, Dávalos A. The release of tumor necrosis factor-alpha is associated with ischemic tolerance in human stroke Ann Neurol, 2003, 54(6): 811-9.
    55. Montaner J, Rovira A, Molina CA, Arenillas JF, RibóM, Chacón P, Monasterio J, Alvarez-Sabín J. Plasmatic level of neuroinflammatory markers predict the extent of diffusion-weighted image lesions in hyperacute stroke. J Cereb Blood Flow Metab, 2003, 23(12): 1403-7.
    56. Lambertsen KL, Gregersen R, Finsen B. Microglial-macrophage synthesis of tumor necrosis factor after focal cerebral ischemia in mice is strain dependent. J Cereb Blood Flow Metab, 2002, 22(7): 785-97.
    57. Lambertsen KL, Clausen BH, Fenger C, Wulf H, Owens T, Dagnaes-Hansen F, Meldgaard M, Finsen B. Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice. Neuroscience, 2007, 144(3): 934-49.
    58. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab, 2006, 26(5): 654-65.
    59. Chang Y, Hsiao G, Chen SH, Chen YC, Lin JH, Lin KH, Chou DS, Sheu JR. Tetramethylpyrazine suppresses HIF-1alpha, TNF-alpha, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacol Sin, 2007, 28(3): 327-33.
    60. Minami M and Satoh M. Chemokines and their receptors in the brain: pathophysiological roles in ischemic brain injury. Life Sci, 2003, 74(2-3): 321-7.
    61. Takami S, Minami M, Nagata I, Namura S, Satoh M. Chemokine receptorantagonist peptide, viral MIP-II, protects the brain against focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 2001, 21(12): 1430-5.
    62. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab, 2007, 27(6): 1213-24.
    63. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab, 2002, 22(3): 308-17.
    64. Losy J, Zaremba J. Monocyte chemoattractant protein-1 is increased in the cerebrospinal fluid of patients with ischemic stroke. Stroke, 2001, 32(11): 2695-6.
    65. Robin AM, Zhang ZG, Wang L, Zhang RL, Katakowski M, Zhang L, Wang Y, Zhang C, Chopp M. Stromal cell-derived factor 1 alpha mediates neural progenitor cell motility after focal cerebral ischemia. J Cereb Blood Flow Metab, 2006, 26: 125-34.
    66. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol, 2004, 63(1): 84-96.
    67. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, Savant-Bhonsale S, Chopp M. Nitric oxide donor upregulation of stromal cell-derived factor-1?chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells, 2007, 25(11): 2777-85.
    68. Shyu WC, Lin SZ, Yen PS, Su CY, Chen DC, Wang HJ, Li H. Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, andmobilization?homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther, 2008, 324(2): 834-49.
    69. Veldhuis WB, Floris S, van der Meide PH, Vos IM, de Vries HE, Dijkstra CD, B?r PR, Nicolay K. Interferon-beta prevents cytokine-induced neutrophil infiltration and attenuates blood-brain barrier disruption. J Cereb Blood Flow Metab, 2003, 23(9): 1060-9.
    70. Kawano T, Anrather J, Zhou P, Park L, Wang G, Frys KA, Kunz A, Cho S, Orio M, Iadecola C. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med, 2006, 12(2): 225-9.
    71. Bidmon HJ, Oermann E, Schiene K, Schmitt M, Kato K, Asayama K, Witte OW, Zilles K. Unilateral upregulation of cyclooxygenase-2 following cerebral, cortical photothrombosis in the rat: suppression by MK-801 and co-distribution with enzymes involved in the oxidative stress cascade. J Chem Neuroanat, 2000, 20(2): 163-76.
    72. Candelario-Jalil E, González-Falcón A, García-Cabrera M, León OS, Fiebich BL. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats. J Neurochem, 2007, 100(4): 1108-20.
    73. Gu Z, Kaul M, Yan B, Kriedel SJ, Cul J, Strongin A, Smith JW, Liddington RC, Lipton SA. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science, 2002, 297(5584): 1186-90.
    74. Shen J, Ma S, Chan P, Lee W, Fung PC, Cheung RT, Tong Y, Liu KJ. Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. J Neurochem, 2006, 96(4): 1078-89.
    75. Tsuji M, Higuchi Y, Shiraishi K, Kume T, Akaike A, Hattori H. Protectiveefect of aminoguanidine on hypoxic-ischemic brain damage and temporal profile of brain nitric oxide in neonatal rat. Pediatr Res, 2000, 47(1): 79-83.
    76. Prüss H, Prass K, Ghaeni L, Milosevic M, Muselmann C, Freyer D, Royl G, Reuter U, Baeva N, Dirnagl U, Meisel A, Priller J. Inducible nitric oxide synthase does not mediate brain damage after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 2008, 28(3): 526-39.
    77. Scorziello A, Santillo M, Adornetto A, Dell'aversano C, Sirabella R, Damiano S, Canzoniero LM, Renzo GF, Annunziato L. NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J Neurochem, 2007, 103(4): 1472-80.
    78. Moro MA, Cárdenas A, Hurtado O, Leza JC, Lizasoain I. Role of nitric oxide after brain ischaemia. Cell Calcium, 2004, 36(3-4): 265-75.
    79. Murphy S, Gibson CL. Nitric oxide, ischaemia and brain inflammation. Biochem Soc Trans. 2007,35(Pt 5): 1133-7.
    80. Parfenova H, Leffler CW. Cerebroprotective functions of HO-2. Curr Pharm Des, 2008, 14(5): 443-53.
    81. DoréS, Goto S, Sampei K, Blackshaw S, Hester LD, Ingi T, Sawa A, Traystman RJ, Koehler RC, Snyder SH. Heme oxygenase-2 acts to prevent neuronal death in brain cultures and following transient cerebral ischemia.Neuroscience, 2000, 99(4): 587-92.
    82. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol. 2001, 24(1-3): 107-29.
    83. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.Nature, 2003, 425(6954): 191-6.
    84. Ge QF, Wei EQ, Zhang WP, Hu X, Huang XJ, Zhang L, Song Y, Ma ZQ, Chen Z, Luo JH. Activation of 5-lipoxygenase after oxygen-glucose deprivation is partly mediated via NMDA receptor in rat cortical neurons. J Neurochem, 2006, 97(4): 992-1004.
    85. Gladstone DJ, Black SE, Hakim AM. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke, 2002, 33(8): 2123-36.
    86. Hoyte L, Barber PA, Buchan AM, Hill MD. The rise and fall of NMDA antagonists for ischemic stroke. Curr Mol Med, 2004, 4(2): 131-6.
    87. Ikonomidou C and Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol, 2002, 1(6): 383-6.
    88. Biegon A, Fry PA, Paden CM, Alexandrovich A, Tsenter J, Shohami E. Dynamic changes in N-methyl-D-aspartate receptors after closed head injury in mice: Implications for treatment of neurological and cognitive deficits. Proc Natl Acad Sci USA, 2004, 101(14): 5117-22.
    89. Wu DC, Ye W, Che XM, Yang GY. Activation of mitogen-activated protein kinases after permanent cerebral artery occlusion in mouse brain. J Cereb Blood Flow Metab, 2000, 20(9): 1320-30.
    90. Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, Moskowitz MA, Bonventre JV, Alessandrini A. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci USA, 2001, 98(20): 11569-74.
    91. Wang Z, Chen X, Zhou L, Wu D, Che X, Yang G. Effects of extracellular signal-regulated kinase (ERK) on focal cerebral ischemia. Chin Med J (Engl),2003, 116(10): 1497-503.
    92. Gu Z, Jiang Q, Zhang G. Extracellular signal-regulated kinase and c-Jun N-terminal protein kinase in ischemic tolerance. Neuroreport, 2001, 12(16): 3487-91.
    93. Gao ZB, Hu GY. Trans-resveratrol, a red wine ingredient, inhibits voltage-activated potassium currents in rat hippocampal neurons. Brain Res, 2005, 1056(1): 68-75.
    94. Benveniste M and Dingledine R. Limiting stroke-induced damage by targeting an acid channel. N Engl J Med, 2005, 352(1): 85-6.
    95. Huang Y and McNamara JO. Ischemic stroke:‘‘acidotoxicity’’is a perpetrator. Cell, 2004, 118(6): 665-6.
    96. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell, 2004, 118(6): 687-98.
    97. Xiong ZG, Chu XP, Simon RP. Ca2+ -permeable acid-sensing ion channels and ischemic brain injury. J Membr Biol, 2006, 209(1): 59-68.
    98. Pignataro G, Simon RP, Xiong ZG. Neuroprotective time window of ASIC1a blockade in mouse model of focal cerebral ischemia. Brain, 2007, 130(Pt 1): 151-8.
    99. Harrison DC, Davis RP, Bond BC, Campbell CA, James MF, Parsons AA, Philpott KL. Caspase mRNA expression in a rat model of focal cerebral ischemia. Brain Res Mol Brain Res, 2001, 89(1-2): 133-46.
    100. Sugawara T, Noshita N, Lewén A, Gasche Y, Ferrand-Drake M, Fujimura M, Morita-Fujimura Y, Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemicdamage by blocking the mitochondrial pathway of caspase activation. J Neurosci, 2002, 22(1): 209-17.
    101. Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, Huang Z, Srinivasan A, Tomaselli KJ, Thornberry NA, Moskowitz MA, Yuan J. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol, 2000, 149(3): 613-22.
    102. Chaitanya GV, Babu PP. Differential PARP Cleavage: An Indication of Heterogeneous Forms of Cell Death and Involvement of Multiple Proteases in the Infarct of Focal Cerebral Ischemia in Rat. Cell Mol Neurobiol. 2009. [Epub ahead of print]
    103. Plesnila N, Zinkel S, Le DA, Amin-Hanjani S, Wu Y, Qiu J, Chiarugi A, Thomas SS, Kohane DS, Korsmeyer SJ, Moskowitz MA. BID mediates neuronal cell death after oxygen/glucose deprivation and focal cerebral ischemia. Proc Natl Acad Sci USA, 2001, 98(26): 15318-23.
    104. Shi YA. Structural view of mitochondria-mediated apoptosis. Nat Struct Biol, 2001, 8(5): 394-401.
    105. Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, Lu A, Ran R, Graham SH, Chen J. In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J Neurosci, 2002, 22(13): 5423-31.
    106. Inta I, Paxian S, Maegele I, Zhang W, Pizzi M, Spano P, Sarnico I, Muhammad S, Herrmann O, Inta D, Baumann B, Liou HC, Schmid RM, Schwaninger M. Bim and Noxa are candidates to mediate the deleterious effect of the NF-kappa B subunit RelA in cerebral ischemia. J Neurosci, 2006, 26(50): 12896-903.
    107. Qiu J, Grafe MR, Schmura SM, Glasgow JN, Kent TA, Rassin DK, Perez-Polo JR. Differential NF-kappa B regulation of bcl-x gene expression in hippocampus and basal forebrain in response to hypoxia. J Neurosci Res, 2001, 64(3): 223-34.
    108. Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH. Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J Neurosci, 2003, 23(5): 1710-8.
    109. Wen XR, Li C, Zong YY, Yu CZ, Xu J, Han D, Zhang GY. Dual inhibitory roles of geldanamycin on the c-Jun NH2-terminal kinase 3 signal pathway through suppressing the expression of mixed-lineage kinase 3 and attenuating the activation of apoptosis signal-regulating kinase 1 via facilitating the activation of Akt in ischemic brain injury. Neuroscience, 2008, 156(3): 483-97.
    110. Lee MC, Rho JL, Kim MK, Woo YJ, Kim JH, Nam SC, Suh JJ, Chung WK, Moon JD, Kim HI. c-JUN expression and apoptotic cell death in kainate-induced temporal lobe epilepsy. J Korean Med Sci, 2001, 16(5): 649-56.
    111. Currie RW, Ellison JA, White RF, Feuerstein GZ, Wang X, Barone FC. Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27. Brain Res, 2000, 863(1-2): 169-81.
    112. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab, 2001, 21(1): 2-14.
    113.Beschorner R, Adjodah D, Schwab JM, Mittelbronn M, Pedal I, Mattern R, Schluesener HJ, Meyermann R. Long-term expression of heme oxygenase-1(HO-1,HSP32) following focal cerebral infarctions and traumatic brain injury in humans. Acta Neuro pathology(Berl), 2000, 100(4): 377-84.
    114. Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem, 2004, 89(6): 1358-67.
    115. Bi FF, Xiao B, Hu YQ, Tian FF, Wu ZG, Ding L, Zhou XF. Expression and localization of Fas-associated proteins following focal cerebral ischemia in rats. Brain Res, 2008,1191: 30-8.
    116. Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407: 770-6.
    117. Rosenbaum DM, Gupta G, D’Amore J, Singh M, Weidenheim K, Zhang H , Kessler JA. Fas (CD95/APO-1) plays a role in the pathophysiology of focal cerebral ischemia. J Neurosci Res, 2000, 61(6): 686-92.
    118. Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA. Fas (CD95) may mediate delayed cell death in hippocampal CA1 sector after global cerebral ischemia. J Cereb Blood Flow Metab, 2001, 21(12): 1411-21.
    119. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1. Brain Res Mol Brain Res, 2004, 127(1-2): 89-95.
    120. Huang CY, Fujimura M, Noshita N, Chang YY, Chan PH. SOD1 down-regulates NF-kappaB and c-Myc expression in mice after transient focal cerebral ischemia. J Cereb Blood Flow Metab, 2001, 21(2): 163-73.
    121. Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role ofsuperoxide radicals. Stroke, 2002, 33(3): 809-15.
    122. Sheng H, Kudo M, Mackensen GB, Pearlstein RD, Crapo JD, Warner DS. Mice overexpressing extracellular superoxide dismutase have increased resistance to global cerebral ischemia. Exp Neuro, 2000, 163(2): 392-8.
    123. Klegeris A, Bissonnette CJ, Dorovini-Zis K, McGeer PL. Expression of complement messenger RNAs by human endothelial cells. Brain Res, 2000, 871(1): 1-6.
    124. Thomas A, Gasque P, Vaudry D, Gonzalez B, Fontaine M. Expression of a complete and functional complement system by human neuronal cells in vitro. Int. Immunol, 2000, 12(7): 1015-23.
    125. Van Beek J, Chan P, Bernaudin M, Petit E, Mackenzie ET, Fontaine M. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse. Glia, 2000, 31(1): 39-50.
    126. Ducruet AF, Hassid BG, Mack WJ, Sosunov SA, Otten ML, Fusco DJ, Hickman ZL, Kim GH, Komotar RJ, Mocco J, Connolly ES. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J Cereb Blood Flow Metab, 2008, 28(5): 1048-58.
    127. Tohgi H, Utsugisawa K, Nagane Y. Hypoxia-induced expression of C1q, a subcomponent of the complement system, in cultured rat PC12 cells. Neurosci Lett, 2000, 291(3): 151-4.
    128. Rus H, Cudrici C, David S, Niculescu F. The complement system in central nervous system diseases. Autoimmunity, 2006, 39(5): 395-402.
    129. Sch?fer MK, Schwaeble WJ, Post C, Salvati P, Calabresi M, Sim RB, Petry F, Loos M, Weihe E. Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J Immunol,2000, 164(10): 5446-52.
    130. Beck J, Lenart B, Kintner DB, Sun D. Na-K-Cl cotransporter contributes to glutamate-mediated excitotoxicity. J Neurosci, 2003, 23(12): 5061-8.
    131. Su G, Kintner DB, Sun D. Contribution of Na+-K+-Cl- cotransporter to high-[K+]o-induced swelling and EAA release in astrocytes. Am J Physiol Cell Physiol, 2002, 282(5): 1136-46.
    132. Vannucci RC, Brucklacher RM, Vannucci SJ. Intracellular calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. Brain Res Dev Brain Res, 2001, 126(1): 117-20.
    133. Aizenman E, Stout AK, Hartnett KA, Dineley KE, McLaughlin B, Reynolds IJ. Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem, 2000, 75(5): 1878-88.
    134. Coulson EJ, Paliga K, Beyreuther K, Masters CL. What the evolution of the amyloid protein precursor supergene family tells us about its function.Neurochem Intenation, 2000, 36(3): 175- 84.
    135. Chen H, Luo J, Kintner DB, Shull GE, Sun D. Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J Cereb Blood Flow Metab, 2005, 25(1): 54-66.
    136. Clarke J, Thornell A, Corbett D, Soininen H, Hiltunen M, Jolkkonen J. Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats. Eur J Neurosci, 2007, 26(7): 1845-52.
    137. Boyt AA, Taddei TK, Hallmayer J, Helmerhorst E, Gandy SE, Craft S, Martins RN. The efect of insulin and gIucose on the concentration of Alzheimer’s amyloid precursor protein.J Neurosci, 2000, 95(3): 727-34.
    138. Horn J, de Haan RJ, Vermeulen M, Luiten PG, Limburg M. Nimodipine inanimal model experiments of focal cerebral ischemia: a systematic review. Stroke, 2001, 32(10): 2433-8.
    139. Gelmers HJ, Gorter K, de Weerdt CJ, Wiezer HJ. A controlled trial of nimodipine in acute ischemic stroke. N Engl J Med, 1998, 318(4): 203-7.
    140. Aarts MM and Tymianski M. Novel treatment of excitotoxicity: targeted disruption of intracellular signalling from glutamate receptors. Biochem Pharmacol, 2003, 66(6): 877-86.
    141. Arundine M, Tymianski M. Molecular mechanisms of glutamatedependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci, 2004, 61(6): 657-68.
    142. Schurr A. Neuroprotection against ischemic/hypoxic brain damage: blockers of ionotropic glutamate receptor and voltage sensitive calcium channels. Curr Drug Targets, 2004, 5(7): 603-18.
    143. Ginsberg MD. Neuroprotection in brain ischemia e an update-PartsI and II. Neuroscientist, 1995, 1: 95-103. 164-75.
    144. Schabitz WR, Li F, Fisher M. The N-methyl-D-aspartate antagonist CNS 1102 protects cerebral gray and white matter from ischemic injury following temporary focal ischemia in rats. Stroke, 2000, 31(7): 1709-14.
    145. Simon R and Shiraishi K. N-Methyl-D-aspartate antagonist reduces stroke size and regional glucose metabolism. Ann Neurol, 1990, 27(6): 606-11.
    146. Miyabe M, Kirsch JR, Nishikawa T, Koehler RC, Traystman RJ. Comparative analysis of brain protection by N-methyl-D-aspartate receptor antagonists after transient focal ischemia in cats. Crit Care Med, 1997, 25(6): 1037-43.
    147. Davis SM, Lees KR, Albers GW, Diener HC, Markabi S, Karlsson G, Norris J. Selfotel in acute ischemic stroke: possible neurotoxic effects of an NMDAantagonist. Stroke, 2000, 31(2): 347-54.
    148. Bordi F, Pietra C, Ziviani L, Reggiani A. The glycine antagonist GV150526 protects somatosensory evoked potentials and reduces the infarct area in the MCAo model of focal ischemia in the rat. Exp Neurol, 1997, 145 (2 Pt 1): 425-33.
    149. Reggiani A, Pietra C, Arban R, Marzola P, Guerrini U, Ziviani L, Boicelli A, Sbarbati A, Osculati F. The neuroprotective activity of the glycine receptor antagonist GV150526: an in vivo study by magnetic resonance imaging. Eur J Pharmacol, 2001, 419(2-3): 147-53.
    150. Bordi F, Terron A, Reggiani A. The neuroprotective glycine receptor antagonist GV150526 does not produce neuronal vacuolization or cognitive deficits in rats. Eur J Pharmacol, 1999, 378(2): 153-60.
    151. North American GAIN Investigators. Phase II studies of the glycine antagonist GV150526 in acute stroke: the North American experience. The North American Glycine Antagonist in Neuroprotection (GAIN) Investigators. Stroke, 2000, 31(2): 358-65.
    152. Haley Jr EC, Thompson JL, Levin B, Davis S, Lees KR, Pittman JG, DeRosa JT, Ordronneau P, Brown DL, Sacco RL. Gavestinel does not improve outcome after acute intracerebral hemorrhage: an analysis from the GAIN International and GAIN Americas studies. Stroke, 2005, 36(5): 1006-10.
    153. Lees KR, Asplund K, Carolei A, Davis SM, Diener HC, Kaste M, Orgogozo JM, Whitehead J. Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. GAIN International Investigators. Lancet, 2000, 355(9219): 1949-54.
    154. Sacco RL, DeRosa JT, Haley Jr EC, Levin B,Ordronneau P, Phillips SJ, Rundek T, Snipes RG, Thompson JL. Glycine antagonist in neuroprotection for -86-patientswith acute stroke:GAINAmericas: a randomized controlled trial. J Am Med Assoc, 2001, 285(13): 1719-28.
    155. Warach S, Kaufman D, Chiu D, Devlin T, Luby M, Rashid A, Clayton L, Kaste M, Lees KR, Sacco R, Fisher M. Effect of the glycine antagonist gavestinel on cerebral infarcts in acute stroke patients, a randomized placebo-controlled trial: the GAIN MRI substudy. Cerebrovasc Dis, 2006, 21(2): 106-11.
    156. Takahashi M, Kohara A, Shishikura J, Kawasaki-Yatsugi S, Ni JW, Yatsugi S, Sakamoto S, Okada M, Shimizu-Sasamata M, Yamaguchi T. YM872: a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist. CNS Drug Rev, 2002, 8(4): 337-52.
    157. Elting JW, Sulter GA, Kaste M, Lees KR, Diener HC, Hommel M, Versavel M, Teelken AW, De Keyser J. AMPA antagonist ZK200775 in patients with acute ischemic stroke: possible glial cell toxicity detected by monitoring of S-100B serum levels. Stroke, 2002, 33(12): 2813-8.
    158. Sydserff SG, Cross AJ, West KJ, Green AR. The effect of chlormethiazole on neuronal damage in a model of transient focal ischaemia. Br J Pharmacol, 1995, 114(8): 1631-5.
    159. Sydserff SG, Cross AJ, Green AR. The neuroprotective effect of chlormethiazole on ischaemic neuronal damage following permanent middle cerebral artery ischaemia in the rat. Neurodegeneration, 1995, 4(3): 323-8.
    160. Marshall JW, Cross AJ, Ridley RM. Functional benefit from clomethiazole treatment after focal cerebral ischemia in a nonhuman primate species. Exp Neurol, 1999, 156(1): 121-9.
    161. Wahlgren NG, MacMahon DG, DeKeyser J, Indredavik B, Ryman T.Intravenous Nimodipine West European Stroke Trial (INWEST) of nimodipine in the treatment of acute ischaemic stroke. Cerebrovasc Dis, 1994, 4(3): 204-10.
    162. Lyden P, Jacoby M, Schim J, Albers G, Mazzeo P, Ashwood T, Nordlund A, Odergren T. The Clomethiazole Acute Stroke Study in tissue-type plasminogen activator-treated stroke (CLASS-T): final results. Neurology, 2001, 57(7): 1199-205.
    163. Kong RS, Butterworth J, Aveling W, Stump DA, Harrison MJ, Hammon J, Stygall J, Rorie KD, Newman SP. Clinical trial of the neuroprotectant clomethiazole in coronary artery bypass graft surgery: a randomized controlled trial. Anesthesiology, 2002, 97(3): 585-91.
    164. Lyden P, Shuaib A, Ng K, Levin K, Atkinson RP, Rajput A, Wechsler L, Ashwood T, Claesson L, Odergren T, Salazar-Grueso E, CLASS-I/H/T Investigators. Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I): final results. Stroke, 2002, 33(1): 122-8.
    165. Lodder J, van Raak L, Hilton A, Hardy E, Kessels A. Diazepam to improve acute stroke outcome: results of the early GABA-ergic activation study in stroke trial. a randomized double-blind placebo-controlled trial. Cerebrovasc Dis, 2006, 21(1-2): 120-7.
    166. Ovbiagele B, Kidwell CS, Starkman S, Saver JL. Neuroprotective agents for the treatment of acute ischemic stroke. Curr Neurol Neurosci Rep, 2003, 3(1): 9-20.
    167. Izumi Y, Roussel S, Pinard E, Seylaz J. Reduction of infarct volume by magnesium after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab, 1991, 11(6): 1025-30.
    168. Yang Y, Li Q, Ahmad F, Shuaib A. Survival and histological evaluation oftherapeutic window of post-ischemia treatment with magnesium sulfate in embolic stroke model of rat. Neurosci Lett, 2000, 285(2): 119-22.
    169. Marinov MB, Harbaugh KS, Hoopes PJ, Pikus HJ, Harbaugh RE. Neuroprotective effects of preischemia intraarterial magnesium sulfate in reversible focal cerebral ischemia. J Neurosurg, 1996, 85(1):117-24.
    170. Westermaier T, Zausinger S, Baethmann A, Schmid-Elsaesser R. Dose finding study of intravenous magnesium sulphate in transient focal cerebral ischemia in rats. Acta Neurochir (Wien), 2005, 147(5): 525-32.
    171. Muir KW, Lees KR, Ford I, Davis S, Intravenous Magnesium Efficacy in Stroke (IMAGES) Study Investigators. Magnesium for acute stroke (Intravenous Magnesium Efficacy in Stroke trial): randomised controlled trial. Lancet, 2004, 363(9407): 439-45.
    172. Kuroda S, Tsuchidate R, Smith ML, Maples KR, Siesj? BK. Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab, 1999, 19(7): 778-87.
    173. Sydserff SG, Borelli AR, Green AR, Cross AJ. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat, studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol, 2002, 135(1): 103-12.
    174. Zhao Z, Cheng M, Maples KR, Ma JY, Buchan AM. NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Res, 2001, 909(1-2): 46-50.
    175. Lapchak PA, Araujo DM, Song D, Wei J, Zivin JA. Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino)-methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) in a rabbit small clot embolic stroke model: combination studies with the thrombolytic tissue plasminogen activator.Stroke, 2002, 33: 1411-5.
    176. Marshall JW, Cummings RM, Bowes LJ, Ridley RM, Green AR. Functional and histological evidence for the protective effect of NXY-059 in a primate model of stroke when given 4 hours after occlusion. Stroke, 2003, 34(9): 2228-33.
    177. Marshall JW, Duffin KJ, Green AR, Ridley RM. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke, 2001, 32(1): 190-8.
    178. Lapchak PA, Araujo DM, Song D, Wei J, Purdy R, Zivin JA. Effects of the spin trap agent disodium-[tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) on intracerebral hemorrhage in a rabbit large clot embolic stroke model: combination studies with tissue plasminogen activator. Stroke, 2002, 33(6): 1665-70.
    179. Sena E, Wheble P, Sandercock P, Macleod M. Systematic review and meta-analysis of the efficacy of tirilazad in experimental stroke. Stroke, 2007, 38(2): 388-94.
    180. The RANTTAS Investigators. A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). The RANTTAS Investigators. Stroke, 1996, 27(9): 1453-8.
    181. van der Worp HB, Kappelle LJ, Algra A, B?r PR, Orgogozo JM, Ringelstein EB, Bath PM, van Gijn J,TESS Investigators, TESS II Investigators. The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke. Neurology, 2002, 58(1): 133-5.
    182. Tirilazad International Steering Committee. Tirilazad mesylate in acute ischemic stroke: a systematic review. Tirilazad International Steering Committee. Stroke, 2000, 31(9): 2257-65.
    183. Parnham M, Sies H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opin Invest Drugs, 2000, 9(3): 607-19.
    184. Namura S, Nagata I, Takami S, Masayasu H, Kikuchi H. Ebselen reduces cytochrome c release from mitochondria and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke, 2001, 32(8): 1906-11.
    185. Salom JB, Perez-Asensio FJ, Burguete MC, Marin N, Pitarch C, Torregrosa G, Romero FJ, Alborch E. Single-dose ebselen does not afford sustained neuroprotection to rats subjected to severe focal cerebral ischemia. Eur J Pharmacol, 2004, 495(1): 55-62.
    186. Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H. Ebselen in acute ischemic stroke: a placebo controlled, double-blind clinical trial. Ebselen Study Group. Stroke, 1998, 29(1): 12-7.
    187. Nakajima H, Kakui N, Ohkuma K, Ishikawa M, Hasegawa T. A newly synthesized poly (ADP-ribose) polymerase inhibitor, DR2313 [2-methyl-3,5,7,8-tetrahydrothiopyrano[4,3-d]-pyrimidine-4-one]: pharmacological profiles, neuroprotective effects, and therapeutic time window in cerebral ischemia in rats. J Pharmacol Exp Ther, 2005, 312: 472-81.
    188. Amemiya S, Kamiya T, Nito C, Inaba T, Kato K, Ueda M, Shimazaki K, Katayama Y. Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol, 2005, 516(2): 125-30.
    189. Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke, 2005, 36(10): 2220-5.
    190. Edaravone Acute Infarction Study. Effect of a novel free radical scavenger,edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis, 2003, 15(3): 222-9.
    191. Adibhatla RM, Hatcher JF, Dempsey RJ. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal, 2003, 5(5): 647-54.
    192. Adibhatla RM, Hatcher JF, Larsen EC, Chen X, Sun D, Tsao FH. CDP-choline significantly restores phosphatidylcholine levels by differentially affecting phospholipase A2 and CTP: phosphocholine cytidylyltransferase after stroke. J Biol Chem, 2006, 281(10): 6718-25.
    193. Mir C, Clotet J, Aledo R, Durany N, ArgemíJ, Lozano R, Cervós-Navarro J, Casals N. CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J Mol Neurosci, 2003, 20(1): 53-60.
    194. Hurtado O, Moro MA, Cárdenas A, Sánchez V, Fernández-ToméP, Leza JC, Lorenzo P, Secades JJ, Lozano R, Dávalos A, Castillo J, Lizasoain I. Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: effects on glutamate transport. Neurobiol Dis, 2005, 18(2): 336-45.
    195. Alonso de Leci?ana M, Gutiérrez M, Roda JM, Carceller F, Díez-Tejedor E. Effect of combined therapy with thrombolysis and citicoline in a rat model of embolic stroke. J Neurol Sci, 2006, 247(2): 121-9.
    196. Hurtado O, Cárdenas A, Pradillo JM, Morales JR, Ortego F, Sobrino T, Castillo J, Moro MA, Lizasoain I. A chronic treatment with CDP-choline improves functional recovery and increases neuronal plasticity after experimental stroke. Neurobiol Dis, 2007, 26(1): 105-11.
    197. Dávalos A, Castillo J, Alvarez-Sabín J, Secades JJ, Mercadal J,López S, Cobo E, Warach S, Sherman D, Clark WM, Lozano R. Oral citicoline in acute ischemic stroke: an individual patient data pooling analysis of clinical trials. Stroke, 2002, 33(12): 2850-7.
    198. De Ryck M, Verhoye M, Van der Linden AM. Diffusion-weighted MRI of infarct growth in a rat photochemical stroke model: effect of lubeluzole. Neuropharmacology, 2000, 39(4): 691-702.
    199. Gandolfo C, Sandercock P, Conti M. Lubeluzole for acute ischaemic stroke. Cochrane Database Syst Rev, CD001924.
    200. Zhang RL, Chopp M, Jiang N, Tang WX, Prostak J, Manning AM, Anderson DC. Anti-intercellular adhesion molecule-1 antibody reduces ischemic cell damage after transient but not permanent middle cerebral artery occlusion in the Wistar rat. Stroke, 1995,26(8): 1438-42.
    201. EAST Trial. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology, 2001, 57(8): 1428-34.
    202. Gribkoff VK, Starrett JE Jr, Dworetzky SI, Hewawasam P, Boissard CG, Cook DA, Frantz SW, Heman K, Hibbard JR, Huston K, Johnson G, Krishnan BS, Kinney GG, Lombardo LA, Meanwell NA, Molinoff PB, Myers RA, Moon SL, Ortiz A, Pajor L, Pieschl RL, Post-Munson DJ, Signor LJ, Srinivas N, Taber MT, Thalody G, Trojnacki JT, Wiener H, Yeleswaram K, Yeola SW. Targeting acute ischemic stroke with a calciumsensitive opener of maxi-K potassium channels. Nat Med, 2001, 7(4): 471-7.
    203. Candelise L, Ciccone A. Gangliosides for acute ischaemic stroke. Cochrane Database Syst Rev, 2001, CD000094.
    204. De Deyn PP, Reuck JD, Deberdt W, Vlietinck R, Orgogozo JM. Treatment of acute ischemic stroke with piracetam. Members of the Piracetam in Acute Stroke Study (PASS) Group. Stroke, 1997, 28(12): 2347-52.
    205. Clark WM, Raps EC, Tong DC, Kelly RE. Cervene (Nalmefene) in acute ischemic stroke: final results of a phase III efficacy study. The Cervene Stroke Study Investigators. Stroke, 2000, 31(6): 1234-9.
    206. Bogousslavsky J, Victor SJ, Salinas EO, Pallay A, Donnan GA, Fieschi C, Kaste M, Orgogozo JM, Chamorro A, Desmet A. Fiblast (trafermin) in acute stroke: results of the European-Australian phase II/III safety and efficacy trial. Cerebrovasc Dis, 2002, 14(3-4): 239-51.
    207. Franke CL, Palm R, Dalby M, Schoonderwaldt HC, Hantson L, Eriksson B, Lang-Jenssen L, Smakman J. Flunarizine in stroke treatment (FIST): a double-blind, placebo-controlled trial in Scandinavia and the Netherlands. Acta Neurol Scand, 1996, 93(1): 56-60.
    208. Hsu CY, Norris JW, Hogan EL, Bladin P, Dinsdale HB, Yatsu FM, Earnest MP, Scheinberg P, Caplan LR, Karp HR. Pentoxifylline in acute nonhemorrhagic stroke. A randomized, placebocontrolled double-blind trial. Stroke, 1988, 19(6): 716-22.
    209. Internet Stroke Center, 2007. Stroke Trials Registry. http://www.strokecenter. org/trials/index.aspx.
    210. Gao D, Zhang X, Jiang X, Peng Y, Huang W, Cheng Q Song L. Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia-reperfusion in mice. Life Sci, 2006, 78(22): 2564-70.
    211. Szklarczyk A, Lapinska J, Rylski M, McKay RD, Kaczmarek L. Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci, 2002, 22(3): 920-30.
    212. Dong H, Fan YH, Zhang W, Wang Q, Yang QZ, Xiong LZ. Repeated electroacupuncture preconditioning attenuates matrix metalloproteinase-9 expression and activity after focalcerebral ischemia in rats. Neurol Res, 2009. [Epub ahead of print]
    213.刘卫平,章翔,松本義人,国鹽勝三,岡田真樹,長尾省吾. MMP-2及MMP-9表达在侵袭性垂体腺瘤中的生物学意义.中华神经外科疾病研究杂志, 2004, 3(1): 47-51.
    214. Itatsu K, Sasaki M, Yamaguchi J, Ohira S, Ishikawa A, Ikeda H, Sato Y, Harada K, Zen Y, Sato H, Ohta T, Nagino M, Nimura Y, Nakanuma Y. Cyclooxygenase-2 is involved in the up-regulation of matrix metalloproteinase-9 in cholangiocarcinoma induced by tumor necrosis factor-alpha. Am J Pathol, 2009, 174(3): 829-41.
    215. Reyes R, Guo M, Swann K, Shetgeri SU, Sprague SM, Jimenez DF, Barone CM, Ding Y. Role of tumor necrosis factor-alpha and matrix metalloproteinase-9 in blood-brain barrier disruption after peripheral thermal injury in rats. J Neurosurg. 2009. [Epub ahead of print]
    216. Fukunaga S, Ichiyama T, Maeba S, Okuda M, Nakata M, Sugino N, Furukawa S. MMP-9 and TIMP-1 in the cord blood of premature infants developing BPD. Pediatr Pulmonol, 2009, 44(3): 267-72.
    217. Rosenberg GA and Yang Y. Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus, 2007, 22(5): E4.
    218. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behaviour. Annu Rev Cell Dev Biol, 2001, 17: 463-516.
    219. Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 2005, 50(4): 329-39.
    220. Rosell A, Cuadrado E, Ortega-Aznar A, Herna′ndez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brainbarrier breakdown and basal lamina type iv collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke, 2009, 39(4): 1121-6.
    221. Rosell A, Ortega-Aznar A, Alvarez-Sabin J, Fernandez-Cadenas I, Ribo M, Molina CA, Lo EH, Montanter J. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke, 2006, 37(6): 1399-1406.
    222. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci, 2005, 25(27): 6401-8.
    223. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab, 2007, 27(4): 697-709.
    224. Amantea D, Corasaniti MT, Mercuri NB, Bernardi G, Bagetta G. Brain regional and cellular localization of gelatinase activity in rat that have undergone transient middle cerebral artery occlusion. Neuroscience, 2008, 152(1): 8-17.
    225. Gidday JM, Gasche YG, Copin JC, Shah AR, Perez RS, Shapiro SD, Chan PH, Park TS. Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia. Am J Physiol Heart Circ Physiol, 2005, 289(2): H558-68.
    226. Justicia C, Panés J, SoléS, Cervera A, Deulofeu R, Chamorro A, Planas AM. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.J Cereb Blood Flow Metab, 2003, 23(12): 1430-40.
    227. Horstmann S, Kalb P, Koziol J, Gardner H, Wagner S. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: influence of different therapies. Stroke, 2003, 34(9): 2165-70.
    228. Vukasovic I, Tesija-Kuna A, Topic E, Supanc V, Demarin V, Petrovcic M. Matrix metalloproteinases and their inhibitors in different acute stroke subtypes. Clin Chem Lab Med, 2006, 44(4): 428-34.
    229. Lee H, Park JW, Kim SP, Lo EH, Moskowitz MA, Lee SR. Doxycycline inhibits matrix metalloproteinase-9 and laminin degradation after transient global cerebral ischemia. Neurobiol Dis. 2009. [Epub ahead of print]
    230. Asahi M, Sumii T, Fini ME, Itohara S, Lo EH. Matrix metalloproteinase-2 gene knock out has no effect on acute brain injury after focal ischemia. NeuroReport, 2001, 12(13): 3003-7.
    231. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH. Effects of matrix metalloproteinase 9 gene knock out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci, 2001, 21(9): 7724-32.
    232. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH. Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab, 2000, 20(12): 1681-9.
    233. Zhu W, Khachi S, Hao Q, Shen F, Young WL, Yang GY, Chen Y. Upregulation of EMMPRIN after permanent focal cerebral ischemia. Neurochem Int, 2008, 52(6): 1086-91.
    234. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, LoEH. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med, 2006, 12(4): 441-5.
    235. Dong W, Gao D, Lin H, Zhang X, Li N, Li F. New insights into mechanism for the effect of resveratrol preconditioning against cerebral ischemic stroke: Possible role of matrix metalloprotease-9. Med Hypotheses, 2008, 70(1): 52-5.
    236. Walle T, Hsieh F, DeLegge MH, Oatis JE Jr, Walle UK. High absorption but very low bioavailability of oral resveratro1 in humans. Drug Metab Dispos. 2004,32: 1377-82.
    237. Das S, Alagappan VK, Bagchi D, Sharma HS, Maulik N, Das DK. Coordinated induction of iNOS-VEGF-KDR-eNOS after resveratrol consumption: a potential mechanism for resveratrol preconditioning of the heart. Vascul Pharmacol, 2005, 42(5-6): 281-9.
    238. Das S, Cordis GA, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol, 2005, 288(1): H328-H335.
    239. Das S, Tosaki A, Bagchi D, Maulik N, Das DK. Potentiation of a survival signal in the ischemic heart by resveratrol through p38 mitogen-activated protein kinase/mitogen- and stress-activated protein kinase 1/cAMP response element-binding protein signaling. J Pharmacol Exp Ther, 2006, 317(3): 980-8.
    240. Imamura G, Bertelli AA, Bertelli A, Otani H, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: an insight with iNOS knockout mice. Am J Physiol Heart Circ Physiol, 2002, 282(6): H1996-H2003.
    241. Sato M, Maulik G, Bagchi D, Das DK. Myocardial protection by protykin, a novel extract of trans-resveratrol and emodin. Free Radic Res, 2000, 32(2):135-44.
    242. Mizutani K, Ikeda K, Yamori Y. Resveratrol inhibits AGEs-induced proliferation and collagen synthesis activity in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun, 2000, 274(1): 61-7.
    243. Goh SS. The red wine antioxidant resveratrol prevents cardiomyocyte injury following ischemia-reperfusion via multiple sites and mechanisms. Antioxid Redox Signal, 2007, 9(1): 101-13.
    244. Zhang W, Fei Z, Zhen HN, Zhang JN, Zhang X. Resveratrol inhibits cell growth and induces apoptosis of rat C6 glioma cells. J Neurooncol, 2007, 81(3): 231-40.
    245. Liu BL, Zhang X, Zhang W, Zhen HN. New enlightenment of French Paradox: resveratrol's potential for cancer chemoprevention and anti-cancer therapy. Cancer Biol Ther, 2007, 6(12):1833-6.
    246. el-Mowafy AM, Abou-Zeid LA, Edafiogho I. Recognition of resveratrol by the human estrogen receptor-alpha: a molecular modeling approach to understand its biological actions. Med Princ Pract, 2002, 11(2): 86-92.
    247. Basly JP, Marre-Fournier F, Le Bail JC, Habrioux G, Chulia AJ. Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol. Life Sci, 2000, 66(9): 769-77.
    248. Benitez DA, Pozo-Guisado E, Alvarez-Barrientos A, Fernandez-Salguero PM, Castellón EA. Mechanisms involved in resveratrol-induced apoptosis and cell cycle arrest in prostate cancer-derived cell lines. J Androl, 2007, 28(2): 282-93.
    249. Ziolkowska A, Rucinski M, Pucher A, Tortorella C, Nussdorfer GG, Malendowicz LK. Expression of osteoblast marker genes in ratcalvarial osteoblast-like cells, and effects of the endocrine disrupters diphenylolpropane, benzophenone-3, resveratrol and silymarin. Chem Biol Interact, 2006, 164(3): 147-56.
    250. Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res, 2002, 958(2): 439-47.
    251. Sinha K, Chaudhary G, Gupta YK. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci, 2002, 71(6): 655-65.
    252. Huang SS, Tsai MC, Chih CL, Hung LM, Tsai SK. Resveratrol reduction of infarct size in Long–Evans rats subjected to focal cerebral ischemia. Life Sci, 2001, 69(9): 1057-65.
    253. Gong QH, Wang Q, Shi JS, Huang XN, Liu Q, Ma H. Inhibition of caspases and intracellular free Ca2+ concentrations are involved in Resveratrol protection against apoptosis in rat primary neuron cultures. Acta Pharmacol Sin, 2007, 28(11): 1724-30.
    254. Choi SY, Kim S, Son D, Lee P, Lee J, Lee S, Kim DS, Park Y, Kim SY. Protective effect of (4-methoxybenzylidene)-(3-methoxynophenyl)amine against neuronal cell death induced by oxygen and glucose deprivation in rat organotypic hippocampal slice culture. Biol Pharm Bull, 2007, 30(1): 189-92.
    255. Tillement JP. In vitro protection of cerebral mitochondrial function by E-resveratrol in anoxia followed by re-oxygenation. Bull Acad Natl Med, 2001, 185(8): 1429-43, discussion 1443-5.
    256. Morin C. Evidence for resveratrol-induced preservation of brain mitochondrial functions after hypoxia-reoxygenation. Drugs Exp Clin Res,2003, 29(5-6): 227-33.
    257. Lu KT, Chiou RY, Chen LG, Chen MH, Tseng WT, Hsieh HT, Yang YL. Neuroprotective effects of resveratrol on cerebral ischemia-induced neuron loss mediated by free radical scavenging and cerebral blood flow elevation. J Agric Food Chem, 2006, 54(8): 3126-31.
    258. Dong W, Li N, Gao D, Zhen H, Zhang X, Li F. Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg, 2008, 48(3): 709-14.
    259. Escher P, Wahli W. Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res, 2000, 448(2): 121-38.
    260. Feige JN, Gelman L, Tudor C, Engelborghs Y, Wahli W, Desvergne B. Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem, 2005, 280(18): 17880-90.
    261. Christensen KB, Minet A, Svenstrup H, Grevsen K, Zhang H, Champy MF, Schrader E, Rimbach G, Mandard S, Wein S, Wolffram S, Kristiansen K, Christensen LP. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake. Phytother Res, 2009. [Epub ahead of print]
    262. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Investig, 2006, 116(3): 571-80.
    263. Kersten S, Mandard S, Escher P, Gonzalez FJ, Tafuri S, Desvergne B, WahliW. The peroxisome proliferator-activated receptor alpha regulates amino acid metabolism. FASEB J, 2001, 15(11): 1971-8.
    264. He W, Barak Y, Hevener A, Olson P, Liao D, Le J, Nelson M, Ong E, Olefsky JM, Evans RM. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA, 2003, 100(26): 15712-7.
    265. Koutnikova H, Cock TA, Watanabe M, Houten SM, Champy MF, Dierich A, Auwerx J. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. Proc Natl Acad Sci USA, 2003, 100(24): 14457-62.
    266. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VK, O'Rahilly S. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes, 2003, 52(4): 910-7.
    267. Zhang J, Ge H, Wang C, Guo TB, He Q, Shao Q, Fan Y. Inhibitory effect of PPAR on the expression of EMMPRIN in macrophages and foam cells. Int J Cardiol, 2007, 117(3): 373-80.
    268. Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Herrmann O, Aronowski J. Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and 15d-prostaglandin J2-Mediated protection of brain after experimental cerebral ischemia in rat. Brain Res, 2006, 1096(1): 196-203.
    269. Victor NA, Wanderi EW, Gamboa J, Zhao X, Aronowski J, Deininger K, Lust WD, Landreth GE, Sundararajan S. Altered PPAR-γexpression andactivation after transient focal ischemia in rats. Eur J Neurosci, 2006, 24(6): 1653-63.
    270. Inoue H, Jiang XF, Katayama T, Osada S, Umesono K, Namura S. Brain protection by resveratrol and fenofibrate against stroke requires peroxisome proliferator-activated receptor alpha in mice. Neurosci Lett, 2003, 352(3): 203-6.
    271. Deplanque D, GeléP, Pétrault O, Six I, Furman C, Bouly M, Nion S, Dupuis B. Peroxisome proliferator-activated receptor-alpha activation as a mechanism of preventive neuroprotection induced by chronic fenofibrate treatment. J Neurosci, 2003, 23(15): 6264-71.
    272. Collino M, Aragno M, Mastrocola R, Benetti E, Gallicchio M, Dianzani C, Danni O, Thiemermann C, Cárdenas A, Fantozzi R. Oxidative stress and inflammatory response evoked by transient cerebral ischemia/reperfusion: effects of the PPAR-alpha agonist WY14643. Free Radic Biol Med, 2006, 41(4): 579-89.
    273. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R. Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol, 2006, 530(1-2): 70-80.
    274. Pereira MP, Hurtado O, Cárdenas A, Alonso-Escolano D, Lizasoain I, BoscáL, Vivancos J, Nombela F, Leza JC, Lorenzo P, Lizasoain I, Moro MA. The nonthiazolidinedione PPARgamma agonist L-796,449 is neuroprotective in experimental stroke. J Neuropathol Exp Neurol, 2005, 64(9): 797-805.
    275. Pereira MP, Hurtado O, Cárdenas A, BoscáL, Castillo J, Dávalos A,Vivancos J, Serena J, Lorenzo P, Lizasoain I, Moro MA. Rosiglitazone and 15-deoxy-Delta12, 14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab, 2006, 26(2): 218-29.
    276. Shimazu T, Inoue I, Araki N, Asano Y, Sawada M, Furuya D, Nagoya H, Greenberg JH. A peroxisome proliferator-activated receptorgamma agonist reduces infarct size in transient but not in permanent ischemia. Stroke, 2005, 36(2): 353-9.
    277. Zhao Y, Patzer A, Gohlke P, Herdegen T, Culman J, Zhang X. The intracerebral application of the PPARgamma-ligand pioglitazone confers neuroprotection against focal ischaemia in the rat brain. Eur J Neurosci, 2005, 22(1): 278-82.
    278. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefèbvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Korányi L, Laakso M, Mokán M, Norkus A, Pirags V, Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet, 2005, 366(9493): 1279-89.
    279. Lee J, Reding M. Effects of thiazolidinediones on stroke recovery: a case-matched controlled study. Neurochem Res, 2007, 32(4-5): 635-8.
    280. Lee BC, Lee HJ, Chung JH. Peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism is associated with reduced risk for ischemic stroke with type 2 diabetes. Neurosci Lett, 2006, 410(2): 141-5.
    281. Thieringer R, Fenyk Melody JE, Le Grand CB. Activation of peroxisome proliferator-activated receptorγdoes not inhibit IL-6 or TNF-αresponses ofmacrophages to lipopolysaccharide in vitro or in vivo. J Immunol, 2000, 164(2): 1046-54.
    282. Delerive P, Gervois P, Fruchart JC, Staels B. Induction of IkappaBalpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J Biol Chem, 2000, 275(47): 36703-7.
    283. Youssef J, Badr M,Cheng G. Role of Peroxisome Proliferator-Activated Receptors in Inflammation Control. J Biomed Biotechnol, 2004, 2004(3): 156-66.
    284. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med, 2001, 7(1): 48-52.
    285. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, Milstone DS, Mortensen RM, Freeman MW. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med, 2001, 7(1): 41-7.
    286. Gampe RT Jr, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE. Asymmetry in the PPARγ/RXRαcrystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell, 2000, 5(3): 545-55.
    287. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell, 1999, 3(3): 397-403.
    288. Berger JP, Petro AE, Macnaul KL, Kelly LJ, Zhang BB, Richards K, Elbrecht A, Johnson BA, Zhou G, Doebber TW, Biswas C, Parikh M, Sharma N, Tanen MR, Adams AD, Mosley R, Surwit RS, Moller DE. Distinctproperties and advantages of a novel peroxisome proliferator-activated protein [gamma] selective modulator. Mol Endocrinol, 2003, 17(4): 662-76.
    289. Miller JR, Siripurkpong P, Hawes J, Majdalawieh A, Ro HS, McLeod RS. The trans-10, cis-12 isomer of conjugated linoleic acid decreases adiponectin assembly by PPARgamma-dependent and PPARgamma-independent mechanisms. J Lipid Res, 2008, 49(3): 550-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700