用户名: 密码: 验证码:
滇西兰坪盆地中北部铜多金属矿床成矿特征及地质条件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西南“三江”位于特提斯与环太平洋两个巨型造山带的结合部,是欧亚、印度、太平洋板块三大巨型板块相互作用的交汇地区,经历了从特提斯形成演化到印度-欧亚大陆碰撞、高原隆升的复杂演化历史。复杂的地质构造环境,形成了该区丰富的矿产资源,成为我国最重要的有色金属与贵金属矿产资源基地之一,也是世界规模的特提斯成矿域的重要组成部分。
     兰坪盆地位于“三江”造山带的中段,夹持于金沙江断裂带与澜沧江断裂带之间,经历了从晚三叠世到早白垩世弧后盆地-前陆盆地阶段及新生代走滑拉分盆地阶段的演化。此过程形成了铅、锌、铜、银等金属的巨量富集,其中产出有世界级的金顶超大型铅锌矿床,是“三江”成矿带中一个国内外瞩目的金属富集区。其主要成矿作用是在印度板块与欧亚大陆碰撞的大背景下发生的,主要矿床类型为热水沉积改造型矿床,主要成矿时代在始新世-早中新世(约56-21Ma)。喜马拉雅期兰坪盆地东缘的金沙江断裂、西缘的澜沧江断裂和位于盆地中央的“中轴断裂”是本区与深部相连的主要的导矿构造,盆地热卤水的循环和深部含矿流体的上升,均以这些深断裂带作为上升通道。
     上三叠统三合洞组(T3s)、中侏罗统花开佐组(J2h)、下白垩统景星组(K1j)和南新组(K1n)是区内的重要的矿源层。碳酸盐岩和砂岩是区内重要的赋矿岩石。碳酸盐岩中特别富集元素有Co、Ba、Sc,富集元素有Cu、Pb、Zn、As、Sb等17种元素;砂岩中特别富集元素为Co、Ni、Sb、Sc、Mn、Ba、Th,富集元素有Cu、Pb、Zn、V、P、As等13种元素。对矿石矿物和脉石矿物的地球化学、稳定同位素、放射性同位素和流体包裹体研究显示,兰坪盆地成矿物质具有多来源的特点,既有盆地内浅源地层物质,又有深部物质的参与,流体中既有盆地卤水、大气水,又有岩浆水。
     兰坪盆地中岩浆岩出露不多,但对有限的岩浆岩露头的研究表明,成矿作用与岩浆岩活动可能有较密切的关系,成矿作用时代与岩浆活动时代相近。本次工作在金顶矿床附近新发现有云煌岩,进一步证实了前人认为兰坪盆地深部有隐伏侵入体存在的推测。岩浆活动为成矿物质的活化提供了热源和部分成矿物质。
     兰坪盆地可划分东、西两个成矿带。以兰坪—思茅断裂(中轴断裂)为界,东矿带以银、铅、锌为主,西矿带以铜、钴为主。这种矿床的分带性,主要是由不同的矿源层、不同的成矿流体系统、不同的深部壳幔结构、不同的地球化学块体造成的不均一形成了东、西成矿元素的差异。
     总结区域成矿模型,大致可分为两个阶段,第一阶段矿源层的形成,盆缘岩石特别是
Sanjiang area is located at the junction between two giant orogenic belts, the Tethyan and the Circum-Pacific, and affected by the convergence of Eurasian, Indian and Pacific three plates. It has a complicate history from the formation and evolution of the Tethys to India-Eurasia collision and uplift of the plateau. The complicate tectonic settings result in abundant mineral resources. The Sanjiang metallogenic belt thus becomes one of the most important bases of mineral resources for precious and base metals in China, and also an integrate part of the world-scale Tethyan metallogenic belt.
     Lanping basin is located in the middle part of the Sanjiang orogenic belt between the Jinshajiang fault and the Lancangjiang fault zones. It underwent a two-stage evolution, that is, the stage of back-arc basin / foreland basin from middle Triassic to early Cretaceous, and the stage of slip pull-part basin in the Cenozoic. Huge accumulation of metals such as lead, zinc, copper and silver took place during this process and formed a well-known metal-concentrated region, including the formation of the Jinding world-class super-giant Pb-Zn deposit.
     Mineralization took place mainly in tectonic settings of India- Eurasia collision in the period from Eocene to early Miocene (about 56-21 Ma). The main type of ore deposits are hydrothermal sedimentary rework type. Himalayan Jinshajiang fault and Lanchangjiang fault on both side of the basin and the“central-axial fault”in the middle of the basin played a role as passageway for ore fluids. These faults are the channels for the deep-seated thermal brine to move up. The upper Triassic Sanhedong formation (T3s) consists of carbonate of shallow marine facies. The middle Jurassic Hakaizuo formation (J2h), lower Cretaceous Jingxing formation (K1j) and Nanxin formation (K1n) are composed of terrestrial red beds of clastic rocks. These formations are main host rocks for ores. The carbonate layer is rich in 17 elements such as Cu, Pb, Zn, As, Sb and so on, especially rich in Co, Ba and Sc. The sandstone is rich in 13 elements, such as Cu, Pb, Zn, V and P, especially in Co, Ni, Sb, Sc, Mn, Ba and Th. Studies in geochemistry, stable and radiogenic isotopes of ores, gangues and fluid inclusions suggest that mineralization in Lanping basin is characterized by multiple sources for metals, from either the strata in the basins or deep in the Earth’s interior. Ore-forming fluids consist of brine in the basin, meteoric water and magmatic fluid.
     Study on limited outcrops of igneous rocks in the basin suggests that mineralization may somewhat be related to magmatism, although only few igneous rocks crop out within the basin. The ages of mineralization are nearly coeval to those of emplacement of igneous rocks. A minette dike was found near Jingding deposit in this work, confirming inferred hidden intrusions
引文
1. 毕先梅,莫宣学.成岩-极低级变质-低级变质作用及有关矿产.2004,11(1):287-294
    2. 程裕淇,向缉熙.再论最大限度地合理开发和利用矿产资源.中国地质,1996(3):9-120
    3. 陈炳蔚,王铠元.怒江-澜沧江-金沙江地区大地构造.地质专报,构造地质,地质力学第 2 号.北京:地质出版社,1987
    4. 陈炳蔚,李永森,曲景川,等.三江地区主要大地构造问题及其成矿的关系.北京:地质出版社,1991
    5. 陈衍景.影响碰撞造山成岩成矿模式的因素及其机制.地学前缘,1998,5(增刊):109-118
    6. 陈繁荣.成矿过程流体地球化学模拟及其矿床学意义.地质论评,1995,41(1):42-47
    7. 段建中,薛顺荣,钱祥贵,滇西“三江”地区新生代地质构造格局及其演化。云南地质,2001,20(3):243-251
    8. 葛良胜,杨嘉禾,郭晓东,等.滇西北地区(近)东西向隐伏构造带的存在及证据.云南地质,1999.18(2):155-167
    9. 高建华.滇西金顶铅锌矿床和蒸发岩建造成因关系的初步探讨.地球科学,1989,14(5),513-521
    10. 高广立.论金顶铅锌矿床的地质问题.地球科学,1989,14(5):467-475
    11. 侯增谦,杨岳清,王海平,等.三江义敦岛弧碰撞造山过程与成矿系统.北京:地质出版社,2003
    12. 侯增谦,杨岳清,曲晓明,等.三江地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床.北京:地震出版社,1995
    13. 侯增谦,钟大赉,邓万明.青藏高原东缘斑岩铜钼金成矿带的构造模式.中国地质,2004(1):1-14
    14. 侯增谦,韩发,夏林圻,等.现代与古代海底热水成矿作用.北京:地质出版社,2003
    15. 黄汲清,陈柄蔚.中国及邻区特提斯海的演化.北京:地质出版社,1987
    16. 黄汲清,陈国铭,陈柄蔚.特提斯-喜马拉雅构造域初步分析.地质学报,1984
    17. 黄汲清.特提斯-喜马拉雅构造域初步分析.地质学报,1984,58(1):1-10
    18. 黄朋,唐菊兴,顾雪祥.地幔柱构造与成矿作用.云南地质,1997,16(4):425-430
    19. 黄智龙,朱成明,肖化云,刘丛强.煌斑岩岩浆能携带金吗?-高温超高压实验的证据.科学通报,1999,44(12):1331-1334
    20. 黄智龙,王联魁.云南老王寨金矿区煌斑岩主元素对比及其意义.贵金属地质,1995,4(3):202-207
    21. 何科昭,赵崇贺,何浩生,等.滇西陆内裂谷与造山作用.北京:中国地质大学出版社,1996
    22. 何明勤,刘家军,李朝阳,等.兰坪盆地铅锌铜大型矿集区的流体成矿作用机制—以白秧坪铜钴多金属地区为例.北京:地质出版社,2004
    23. 何明勤,宋焕斌,冉崇英,严键.云南兰坪金满铜矿床改造成因的证据.地质与勘探,1998,34(2):13-18
    24. 何明勤,宋焕斌,冉崇英,等.云南兰坪盆地金满铜矿床改造成因的证据.地质与勘探,1998,34(2):13-18
    25. 胡明安.试论岩溶型铅锌矿床的成矿作用及其特点-以云南金顶铅锌矿床为例.地球科学,1989,14(5),531-537
    26. 华仁民.试论层状铜矿的一种主要成因模式.地质论评,1995,41(2):112-120
    27. 董方浏,莫宣学,侯增谦,等.云南兰坪盆地喜马拉雅期碱性岩 40Ar/ 39Ar 年龄及地质意义.岩石矿物学杂志,2005,24(2):103-109
    28. 季宏兵.滇西金满铜矿床地质、地球化学特征及成矿机理(摘要).地质地球化学,1993,(9):104-105
    29. 贾建称,温长顺,王根厚,等.冈底斯地区林子宗群火山岩岩石地球化学特征及地球动力学意义.2005,32(3):396-404
    30. 卢焕章.成矿流体.北京:北京科学技术出版社,1997:1-151
    31. 卢焕章.流体地球化学.见:高等地球化学.北京:科学出版社,243-283
    32. 卢焕章,李秉伦,沈昆等.包裹体地球化学.北京:地质出版社,1990
    33. 罗君烈,杨荆舟.滇西特提斯演化及主要金属矿床成矿作用.北京:地质出版社.1994
    34. 罗君烈,李志伟,云南中西部喜马拉雅期岩浆及成矿研究新进展.云南地质,2001,20(3)229-242
    35. 罗建宁,张正贵,陈明,等.三江特提斯沉积地质与成矿.北京:地质出版社,1992
    36. 李永森,周伟勤,陈文明,等.怒江-澜沧江-金沙江重要金属矿产成矿特征及分布规律.北京:地质出版社.1986
    37. 李小明,胡宝清.初论兰坪盆地构造流体与成矿作用的时空格架及可能的成矿模式.大地构造与成矿学.2001,25(2):187-193
    38. 李小明.滇西金满铜矿床成矿年龄测定.现代地质,2001,15(4):405-408
    39. 李小明,凯旋,龚革联,等.裂变径迹法对兰坪盆地构造热演化与成矿作用的初步研究.矿物岩石.2000a,20(2):40-42
    40. 李小明,谭凯旋,龚文君,等.利用磷灰石裂变径迹法研究金顶铅锌矿成矿时代.大地构造与成矿学,2000b,24(3):282-286
    41. 李志明,廖宗廷,刘家军,等.兰坪盆地金顶超大型铅锌矿床成矿年龄探讨.地质找矿论丛.2006,21(3):23-27
    42. 李朝阳.滇西地区陆相热水沉积成矿作用.铀矿地质,1993,(9):25-31
    43. 李峰,甫为民.兰坪盆地区域成矿特征初析.西南矿产地质,1991,5(1):27-33
    44. 李峰,甫为民,颜文.兰坪-思茅盆地地层及铜矿床 REE 地球化学研究.云南地质.1995,14(1):1-12
    45. 李峰,甫为民,李雷.滇西红层铜矿区域成矿物质来源.云南地质,1997,16(3):233-244
    46. 李峰,黄敦义,甫为民.兰坪一思茅盆地红层铜矿成矿规律.大地构造与成矿学,1995,19(4):322-335
    47. 李峰,甫为民,冉崇英,等.兰坪金满铜矿床地质地球化学特征,矿产与地质,1993,7(3):176-182
    48. 李雷.云南兰坪金满砂岩铜型和热液型铜矿成因探讨.西南矿产地质,1990,7(1):6-10
    49. 李文昌,莫宣学.西南“三江”地区新生代构造及其成矿作用.云南地质,2001(4):333-346
    50. 刘家军,李朝阳,潘家永,等.兰坪-思茅盆地砂页岩中铜矿床同位素地球化学.矿床地质,2000,19(3):223-234
    51. 刘家军,李志明,刘玉平,等.滇西金满脉状铜矿床成矿年龄讨论.现代地质,2003,17(1):34-39
    52. 刘增乾,李兴振,叶庆同,等.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1993
    53. 刘建云.北衙金矿区煌斑岩地质特征及找矿意义.黄金,2004,25(4):17-19
    54. 刘英俊.元素地球化学.北京:地质出版社,1984,194-225
    55. 刘英俊,曹励明,1987.元素地球化学导论.地质出版社:98-112
    56. 刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999
    57. 刘福田,刘建华,何建坤,等.滇西特提斯造山带下扬子地块的俯冲板片.科学通报,2000,45(1):79-84
    58. 刘忠俊,邹树,刘宗国等.镇西大理地区喜马拉雅期斑岩岩石化学特征及其成其成矿性.云南地质,1983,2(4):277-288
    59. 林舸,范蔚茗,尹汉辉.中国滇西兰坪-思茅地洼盆地内中轴断裂带的初步研究[J].大地构造与成矿学,1991,15(1):15-21
    60. 吕伯西,王增,张能德,等.三江地区花岗岩类及其成矿专属性.北京:地质出版社.1993
    61. 廖崇高,陈建平,刘登忠.兰坪盆地遥感地质及化探综合分析在成矿预测中的应用.国土资源遥感,1999,42(4):17-22
    62. 莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿.北京:地质出版社.1993
    63. 莫宣学,邓晋福,董方浏,等.西南三江造山带火山岩-构造组合及其意义.高校地质学报,2001,7(2):121-138
    64. 莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005,11(3)281-290
    65. 牟保磊.元素地球化学.北京:北京大学出版社,1999
    66. 牟传龙,王剑,余谦.兰坪中生代沉积盆地演化.矿物岩石,1999,19(3):30-36
    67. 欧锦秀.桂东寒武系发现草莓球粒状黄铜矿.桂林工学院学报,1997,17(1):46-47
    68. 阙梅英,程敦模,张立生,等.兰坪-思茅盆地铜矿床.北京:地质出版社,1998
    69. 潘桂棠,徐强,侯增谦,等.西南“三江”多岛弧造山过程成矿系统与资源评价.北京:地质出版社,2003
    70. 甫为民,李峰,鲁文举.兰坪金满铜矿床成矿地质特征及成因探讨.云南地质,1992,11(1):63-68
    71. 芮宗瑶,李光明,张立生.西藏斑岩铜矿对重大地质事件的响应.地学前缘.2004,11(1):145-142
    72. 孙珍,钟志洪,周蒂,等.红河断裂带的新生代变形机制及莺歌海盆地的实验证据.热带海洋学报,2003,22(2):1-9
    73. 邵兆刚,孟宪刚,冯向阳,等.云南兰坪-维西地区成矿与岩石圈构造动力学.北京:地质出版社,2004
    74. 沈上越,魏启荣,程惠兰,等.“三江”哀牢山带蛇绿岩特征研究.岩石矿物学杂志,199817,(1):1-8
    75. 桑海清,裘冀,王英兰.石英 40Ar/39Ar 阶段加热法定年的实验技术改进及意义.矿物岩石地球化学通报.2001,(4):444-447
    76. 涂光炽.中国层控矿床地球化学(第一卷).北京:科学出版社,1984
    77. 涂光炽.热水沉积矿床.四川地质科技情报,1987,5(1):1-5
    78. 涂光炽.论改造成矿兼评现行矿床成因分类中的弱点.见国际科学院地球化学研究所.地球化学文集.北京:科学出版社,1986
    79. 王登红,陈毓川,徐珏等.中国新生代成矿作用.北京:地质出版社,2005:655-657
    80. 王江海,颜文,常向阳,等.陆相热水沉积作用-以云南地区为例.北京:地质出版社,1998,79-87
    81. 吴淦国,吴习东.云南金顶铅锌矿床构造演化及矿化富集规律初探.地球科学,1989,14(5),477-485
    82. 魏启荣,沈上越.“三江”地区哀牢山西侧三类弧火山岩特征.地质科技情报,1997,16(2):13-18
    83. 魏启荣,沈上越,莫宣学,等.三江中段两古陆铅同位素地球化学边界的厘定.矿物岩石学杂志,2003,22(2):143-149
    84. 谢应雯,张玉泉,钟孙霖等.云南洱海东部新生代高钾碱性岩浆岩痕量元素特征.岩石学报,1999,(1):75-82
    85. 谢静,朱炳泉,常向阳.滇西北金沙江带中基性火山岩的地球化学特征.矿物岩石地球化学通报,2005,29(4):299-308
    86. 徐晓春,黄震,谢巧勤,等.云南金满、水泄铜多金属矿床的 Ar-Ar 同位素年代学及其地质意义.高校地质学报,2004,10(2)157-164
    87. 徐启东,李建威.云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带.矿床地质.2003,22(4):365-376
    88. 薛春纪,陈毓川,王登红,等.滇西北金顶和白秧坪矿床:地质和 He、Ne、Xe 同位素组成及成矿时代.中国科学 D 辑,2003,33(4):316-322
    89. 薛春纪,杨建民,陈毓川,等.兰坪白秧坪 Cu-Ag-Co 多金属成矿学特征.见:陈毓川主编.喜马拉雅期内生成矿作用研究.北京:地震出版社,2000,69-83
    90. 肖新建,倪培.论喷流沉积(SEDER)成矿与沉积板次造成矿之对比.地质找矿论丛,2000,5(3):238-245
    91. 肖荣阁,李朝阳.云南啦井温泉喷流沉积矿化体的发现及其地质意义.地球化学,1997,26(2):55-63
    92. 云南省地矿局.云南省区域地质志.北京:地质出版社,1990
    93. 尹汉辉,范蔚茗,林舸,等.滇西地洼构造与成矿.长沙:中南矿业大学出版社,1993
    94. 叶连俊.生物有机质成矿作用和成矿背景,北京:海洋出版社.1998,22-83
    95. 叶同庆,胡云中,杨岳清.三江地区区域地球化学背景和金银铅锌成矿作.北京:地质出版社,1992:9-15
    96. 颜文,李朝阳.一种新类型铜矿床的地球化学特征及其热水沉积成因[J].地球化学,1997,26(1):55-63
    97. 颜文,欧阳自远,李朝阳.兰坪一思茅盆地脉状铜矿床黝铜矿的矿物化学.矿物学报.1994,14(4):361-368
    98. 燕守勋,李朝阳,周朝宪,等.金顶铅锌矿床穹隆构造成因及其相关问题探讨.矿床地质,1994,13(2):148-185
    99. 杨伟光.云南兰坪白秧坪银铜多金属矿集区成矿作用的地质—地球化学条件和成矿机制.博士学位论文,北京:中国地质大学,2000
    100. 於崇文,岑况,鲍征宇,等.成矿作用动力学.北京:地质出版社,1998
    101. 张连昌,赵伦山.成矿流体研究的若干进展与动态.地质与勘探,2001,37(1):7-10
    102. 张德会.成矿流体地球化学研究的若干进展.见:欧阳自远主编,世纪之交矿物学岩石学地球化学回顾与展望.北京:原子能出版社,1998:290-294
    103. 张文淮,陈紫英.流体包裹体地质学.武汉:中国地质大学出版社,1993.132-155
    104. 张连生,钟大赉.从红河剪切带走滑运动看东亚大陆新生代构造.1996,31(4):327-341
    105. 张泰身,和浪涛.兰坪-思茅盆地“中轴断裂”及其对金矿区域成矿的控制.大地构造与成矿,2000,24(增刊)63-66
    106. 张成江,倪师军,腾彦国,等.兰坪盆地喜马拉雅期构造-岩浆活动与流体成矿关系.矿物岩石,2000(2):35-39
    107. 赵利青,陈祥,周红,李秀梅.南秦岭赋存于沉积岩中的金龙山金矿带主要载金矿物黄铁矿、毒砂研究.贵金属地质,2000,9(4):193-199
    108. 赵兴元.云南金顶铅锌矿床稳定同位素地球化学研究.地球科学,1989,14(5):495-502
    109. 赵兴元.云南金顶铅锌矿床成因研究.地球科学,1989,14(5):523-530
    110. 翟裕生,邓军,李晓波,等.区域成矿学.北京:地质出版社,1999:236
    111. 朱炳泉,李献华,戴橦谟,等.地球科学中同位素体系理论应用——兼论中国大陆壳幔演化.北京:科学出版社,1998:1-330
    112. 钟大赉,丁林,刘福田,等.造山带岩石层多向层架构造及其对新生代岩浆活动制约—以三江及邻区为例[J].中国科学(D),2000,30(增刊):1-8
    113. 钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学 D 辑,1996,26(4):289-295
    114. J.B.赖特主编,陈昌明,陈志明译.矿床、大陆漂移和板块构造.见:Richard H.Sillitoe.美洲西部金属省与大洋岩石圈消减作用的关系.北京:地质出版社.1982:117-120
    115. Rollison H R.岩石地球化学.杨学明,杨晓勇,陈双全.合译.中国科学技术出版社.2000,186-187
    116. Ahmad S N,Rose A W.1980. Fluid in clusions in porphyry and skarn ore at Santa Rita,New Mexico.Econ.Geol.,75:229-250
    117. Bau M,Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and thesignificance of the oxidation state of europium.Chemical Geology,1991,93(3/4):219-230
    118. Bowers T S,Helgeson J R.Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems:Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures.Geochim.Cosmochim.1983a.Acta.,47:1247-1275
    119. Bowers T S,Helgeson J R.1983b.Calculation of the thermodynamic and geochemical lconsequences of nonideal mixing in the system H2O-CO2-NaCl on phaserelations in geologic systems:Metamorphic equilibria at high pressures and temperatures. Amer. Minera l.67:1059-1075
    120. Bhallacharjee.The ophiolites of northcast India-a subduction zone ophiolite complex of the India-Burman orogenic belt.Tectonophysics,1991,191:213-222
    121. Barnes H L. Solubilities of ore minerals. In: Barnes H L. ed. Geochemistry of hydrothermal ore deposits. J. Wiley and Sone, 1979, 404-460
    122. Crear D A. Wood S A. Brantley S et al., Chemical controls on solubility of ore-forming minerals in hydrothermal solutions. Can. Miner., 1985, 23: 333-352)
    123. Chaussidon M.,and Lorand J P.,Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege(N.E.Pyrenees France): An ion microprobe study.Geochim.Gosmochim.1990,Acta., 54,2835-2846
    124. Coplen T B,Hanshaw B B.Ultrafiltration by a compacted clay membrane.I.Oxygen and hydrogen isotopic fractionation.Geochim Cosmochim1973,Acta 37:2295-2310
    125. Coleman M,Hodges K.Evidence for Tibetan plateau uplift before 14Myr ago from a new minimum age for east-west extension.Nature,1995.374(6517):49-52
    126. Carothers W W,Adami L H and Rosenbaum R J, Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite.Geochim.Cosmochim.1988,Acta,52,2445-2450
    127. Coplen T B,Hanshaw B B. Ultra filtration by a compacted clay membrane.I.Oxygen and hydrogen isotopic fractionation.Geochim Cosmochim Acta37:1973,2295-2310
    128. Dewey J F,Burke R M and Cang C.The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond, 1988,27:379-416
    129. Elderfield H, The rare earth elements in sea water.Nature,1982,296,214-219
    130. Griyet M,Rebetez M,Ghouma N B et al.Apatite fission-track age correction and thermal history analysis from projected track length distributions.Chem Geol(Isot.Geosci.Sect.),1993,103:157-169
    131. Giordano T H.Metal transport in ore fluids by organic ligand complexation.In:Pittman,E D and Lewan M D eds.,Organic acids in geological processes.Springer-Verlag Berlin Heidelberg.1994,319-354
    132. Hoefs J, Stable Isotope Geochemistry,forth edition.Springer-Verlag,Berlin Heidelberg.1997
    133. Heaton T H E,Vogel J C."Excess air"in groundwater;J.Hydrol.50,1981,3103-3113
    134. Henderson P,General geochemical properities and abundance of rare earth elements.In:Henderson Ped.Rare Earth Element Geochemistry.Amsterdam:Elsevier,1984,1-32
    135. Happel J and Brenner H.Low reynolds number llydrodynamics Englewood cliffs N J:Prentice-Hall 1965,1-473
    136. Kirkham,R.V. Sediment-hosted stratiform copper,In Eckstrand,O.R.et al.(eds) Geology of Canadian Mineral Deposit Types.Geol.Surv.Can.Geol.Can.8 or Geol.Soc.Am.Geol.N.Am.1996a,P:233-240
    137. Kirkham,R.V. Volcanic redbed copper.In Ekstrand,et al.(eds) Geology of Canadian Mineral Deposit Types.Geol.Surv.Can.Geol.Can.8 or Geol.Soc.Am.Geol.N.Am.1996b,P:241-252
    138. Leloup P H,Lacassin R,Tapponnier P,et al.The AilaoShan-Red River shear zone(Yunnan,China),Tertiary transform boundary of Indochina.Tectonophysics,1995,25:3—84
    139. Morlev C K.A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia.Tectonophysics,2002.347(4):189-215
    140. Molnar P and Tapponnier P.Genozoic tectonics of Asia:Effects of a continental collision.Science,1975,189 (4201):419-426
    141. Mo X,Zhao Z,Zhou S,et al.Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet.EOS Trans AGU,2002,83(47),F1003,Fall Meeting Abstract S62B-1201,San,Francisco
    142. Le Pichon X,Fournier M and Olivert L.Kinematics,topography,shortening,and extrusion in the India-Eurasia collision.Tectonics,1992,11(6):1085-1098
    143. Phillips F M,Bentley H W, Isotopic fractionation during ion filtration:I.theory.Geochim cosmochim Acta 51:1987,683-695
    144. Suerjensky D A,Europium equilibria in aqueous solution.Earth Planet Sci Lett,1984,67(1):70-78
    145. Seward T M. The complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta, 1973, 37: 379-399
    146. Turner S,Hawkcsworth C,Liu Jiaqi et al.Timing of Tibet uplift constrained by analvsis of olcanic rocks,Nature,1993,364 (6432):50-54
    147. Tapponnier P,Lacassin R,Leloup P H,et al.The Ailaoshan-Red river metamorphic belt:Tertiary left-lateral shear between Indochina and South China.Nature,1990,343 (6257):431-437
    148. Tapponnier P,Lacassin R and Leloup P H.Propagating extrusion tectonics in Asia:new in sights from simple experiments with plasticine.Geology,1982,10:611—616
    149. Wang P L,Lo C H,Lee T Y et al.Thermochrono logical evidence for the movement of the Ailao Shan-Red River Shear Zone: Aperspective from Vietnam. Geology,1998,26 (10):887-890
    150. Wan X,Jansa L F,Sarti M,et al.Cretaceous and Tertiary boundary strata in southern Tibet and their implication for India-Asia collision.Lethaia.2002,35(2):131 一 146
    151. White E D.Diverse Origins of Hydrothermal Ore Fluids.Economic Geology,1974,6(6)
    152. Zartman R P,Doe B R.Plumbotectonics-the model.Tectonophysics,1981,75:135-162
    153. Zhao H-B.,Mo X-X.,Zeng P-S.,and Wang Y.2005.Deposit geology,geochemical characteristics and ore formation of the Jiayashan sector of the Jinding zinc (-lead) deposit,Yunnan,China.In:Mao & Bierlein (Eds.),Mineral deposit research:meeting the global challenge,Vol.2:1283-1285.Proceedings of the 8th Biennial SGA Meeting,Beijing,August 18-21,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700