用户名: 密码: 验证码:
土壤中持久性有机污染物的形态和提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中有机污染物的生物有效性是对污染土壤暴露进行定量风险评估的一个非常重要的方面。体外模拟是一种有效而重要方法,广泛用于持久性有机污染物对人体健康的风险评估。有毒污染物通过口的摄入是进入人体最重要的途径。有关污染土壤生物有效性的研究揭示体外消化系统中消化液和残渣中总的有机氯杀虫剂的量明显高于用有机溶剂直接进行的粗提取,这不仅为研究锁定的有机污染的释放提供了线索,同时提出了这样的假设:基于常规提取污染物总量的风险评估会低估土壤或者其他基质中憎水性有机污染物的口摄风险。本研究对有关有机氯杀虫剂(OCPs)和多环芳烃(PAHs)的这一假设做了验证。
     本研究采用三种不同有机质含量(SOC)的土壤进行体外模拟。在体外胃肠道消化系统中,三种土壤中均有部分锁定OCPs和PAHs被释放出来。消化过程活化的OCPs和PAHs为常规方法提取量的80%到580%。研究发现,锁定残留的提取率与SOC呈正相关,与土壤中污染物总量呈负相关。并且在五种消化液组分中,只有胆汁盐在锁定残留态的活化中起作用,而且胆汁盐的提取作用在2 mg/mL到20 mg/mL浓度范围内是一个常数。对于土壤中有机污染物的释放动力学研究发现,释放过程遵循典型的一次动力学过程并可用指数函数来量化。计算的速率常数表明这是个快速释放的过程。90%的OCPs和PAHs分别在2.4和4.8个小时内被释放出来。
     这些发现有力的证明了污染土壤中OCPs和PAHs的口摄生物有效性在利用有机溶剂粗提取时可能被明显的低估。
Oral intake is one of the most important pathways of human exposure to toxic substances. Since not all contaminants in soil can be absorbed by human digestive system, inaccessibility is critical in terms of risk assessment for oral exposure. In-vitro gastrointestinal model is a commonly used screening method for evaluating inaccessibility of various toxic substances. A previous study on oral bioaccessibility of contaminated soil revealed that the total amount of organic chlorine pesticides in digestive fluid and chyme extracted by a gastrointestinal model seems to be higher than the quantity directly extracted by harsh solvent extraction, providing a clue that bound residue of these contaminants could be released. The result not only provided mobilization potential of sequestrated organic contaminants, but also suggested a hypothesis to be tested in this study, e.g. the conventional procedure of harsh solvent extraction may underestimate risk of oral intake of contaminated soils. This hypothesis was tested in this study for both organic chlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). It was found that.
     Three soils with different contents of soil organic carbon (SOC) have been collected in this study. The mobilization of the sequestrated OCPs and PAHs has been observed. For the three soils with different organic carbon (SOC) content tested the bound residue of individual compounds of OCPs and PAHs were mobilized during in vitro gastrointestinal digestion. The qualities of bound residues mobilized varied from 80% to580% of amount extracted by conventional extraction procedure without digestion. It was found that the ratio of the extracted bound residue was positively correlated with SOC and negatively correlated with total concentration of the contaminants in the soil. Besides,among five constitutes in the digestive juice, only bile salt served to mobilized the bound residue and the extractability of bile salt was constant over a concentration range from 2 to 20 mg/mL. The result of kinetic experiments indicated that the process of the mobilization followed a typical first-order kinetics which can be quantified by an exponential function. By fitting the kinetics model, the total amounts of extractable residue and bound residue could be quantified. The calculated rate constant suggested a fast mobilization processes. Ninety percent of bound OCP and PAH residues could be mobilized within 2.4 h and 4.8 h, respectively.
     These findings provided strong evidence indicating that the oral inaccessibility of OCPs and PAHs in contaminated soil can be underestimate significantly even using harsh organic solvent extraction.
引文
[1] MacDonald, R. W.; Barrie, L. A.; Bidleman, T. F.; Diamond, M. L.; Gregor, D. J.; Semkin, R. G.; Strachan, W. M. J.; Li, Y. F.; Wania, F.; Alaee, M.; Alexeeva, L. B.; Backus, S. M.; Bailey, R.; Bewers, J. M.; Gobeil, C.; Halsall, C. J.; Harner, T.; Hoff, J. T.; Jantunen, L. M. M.; Lockhart, W. L.; Mackay, D.; Muir, D. C. G.; Pudykiewicz, J.; Reimer, K. J.; Smith, J. N.; Stern, G. A.; Schroeder, W. H.; Wagemann, R.; Yunker, M. B., Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways.[J] Sci Total Environ 2000, 254, (2-3), 93-234.
    [2] Turusov, V.; Rakitsky, V.; Tomatis, L., Dichlorodiphenyltrichloroethane (DDT): Ubiquity, persistence, and risks.[J] Environ Health Persp 2002, 110, (2), 125-128.
    [3] Harner, T.; Kylin, H.; Bidleman, T. F.; Strachan, W. M. J., Removal of alpha- and gamma-hexachlorocyclohexane and enantiomers of alpha-hexachlorocyclohexane in the eastern Arctic Ocean.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1999, 33, (8), 1157-1164.
    [4] Willett, K. L., Ulrich, E.M., Hites, R.A., Differential toxicity and environmental fates of hexachlorocyclohexane isomers.[J] Environ Sci Technol 1998, 32, 2197-2206.
    [5] Zhang Y X, D. H., Chang B, Wei Z C, Qiu W X, Liu S Z, Liu Y, Liu W X, Tao S, Emission of polycyclic aromatic hydrocarbons (PAHs) from indoor straw burning and emission inventory updating in China.[J] Annals of the New York Academy of Science 2008, (1140), 218-227.
    [6] Wang, X. H.; Hong, H. S.; Xu, L.; Chen, W. Q.; Zhang, Z. L., Distribution and transportation of Polycyclic Aromatic Hydrocarbons in suspended particulate matter and surface sediment from the Pearl River Estuary.[J] J Environ Sci Heal A 2002, 37, (4), 451-463.
    [7] Wild, S. R., Jones, K.C., Polynuclear aromatic hydrocarbons in the United Kingdom environment- A preliminary source inventory and budget.[J] Environ Pollut 1995, 88, 91-108.
    [8] M, B., Polycyclic aromatic compounds in nature.[J] Scientific America 1076, 234, 34-45.
    [9] Laflamme, R. E.; Hites, R. A., Global Distribution of Polycyclic Aromatic-Hydrocarbons in Recent Sediments.[J] Geochim Cosmochim Ac 1978, 42, (3), 289-303.
    [10] Means, J. C.; Wood, S. G.; Hassett, J. J.; Banwart, W. L., Sorption of Polynuclear Aromatic-Hydrocarbons by Sediments and Soils.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1980, 14, (12), 1524-1528.
    [11] R.A, G. P. M. a. H., Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States.[J] Geochinica et Cosmochinica Acta 1981, 45, 2359-2367.
    [12] Muri, G.; Wakeham, S. G.; Rose, N. L., Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia).[J] Environ Pollut 2006, 139, (3), 461-468.
    [13] Louchouarn, P.; Chillrud, S. N.; Houel, S.; Yan, B. Z.; Chaky, D.; Rumpel, C.; Largeau, C.; Bardoux, G.; Walsh, D.; Bopp, R. F., Elemental and molecular evidence of soot- and char-derived black carbon inputs to New York City's atmosphere during the 20th century.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007, 41, (1), 82-87.
    [14] Behymer, T. D.; Hites, R. A., Photolysis of Polycyclic Aromatic-Hydrocarbons Adsorbed on Fly-Ash.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1988, 22, (11), 1311-1319.
    [15] Hites, R. A.; Laflamme, R. E.; Farrington, J. W., Sedimentary Polycyclic Aromatic-Hydrocarbons - Historical Record.[J] Science 1977, 198, (4319), 829-831.
    [16] Miton, L. L., Analytical chemistry of Polycyclic Aromatioc Compound.[J] INC 1981, 17-40.
    [17] Freeman, D. J.; Cattell, F. C. R., Wood-Burning as a Source of Atmospheric Polycyclic Aromatic-Hydrocarbons.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1990, 24, (10), 1581-1585.
    [18] Neff, J. M., Polycyclic aromatic hydrocarbons. Fudemantals of Aquatic Toxicology: Hemisphere.[J] New York 1985, 416-454.
    [19] Wilcke, W., Amelung, W., Martius, C., Garcia, M.V.B., Zech, W., Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian Rain Forest.[J] Journal of Plant Nutrition and Soil Science 2000, 163, 27-30.
    [20] Benlahcen, K. T.; Chaoui, A.; Budzinski, H.; Bellocq, J.; Garrigues, P. H., Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments.[J] Mar Pollut Bull 1997, 34, (5), 298-305.
    [21] Wilcke, W.; Amelung, W.; Martius, C.; Garcia, M. V. B.; Zech, W., Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian Rain Forest.[J] J Plant Nutr Soil Sc 2000, 163, (1), 27-30.
    [22]左谦,环渤海西部地区表土中的PAHs污染.[J] 2007.
    [23] Baek SO, F. R., Goldstone ME, Kirk PW, Lester JN, Perry R, A review of polycylic aromatic hydrocarbons - sources, fate and behaviour. Water.[J] Air and Soil Pollution 1991, 60, 279.
    [24] Howsam M, J. K., Sources of PAHs in the environment. In: Neilson AH (Ed). The hand book of environmental chemistry. Vol.3, Part I. PAHs and related compounds.[J] New York: Springer 1998, 137-174.
    [25]Xu, S. S.; Liu, W. X.; Tao, S., Emission of polycyclic aromatic hydrocarbons in China.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006, 40, (3), 702-708.
    [26] Santodonato, J., Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: Relationship to carcinogenicity.[J] Chemosphere 1997, 34, (4), 835-848.
    [27] USEPA, NOTICE TO MANUFACTURERS, FORMULATORS, PRODUCERS, REGISTRANTS AND APPLICATORS OF PESTICIDE PRODUCTS In 2002.
    [28] IARC, IARC monographs on the evaluation of the carcinogenic risk of chemicals tohumans.[M] International Agency for Research on Cancer: Lyon, France, 1987; Vol. 1-42.Suppl.7.
    [29] ATSDR Toxicological profile for DDT, DDE, and DDD;[R] Department of Health and Human Services: Washington, DC, 1994.
    [30] USEPA, Method 3540C, Soxhlet Extraction. In 1996.
    [31] Krahn, M. M.; Myers, M. S.; Burrows, D. G.; Malins, D. C., Determination of Metabolites of Xenobiotics in the Bile of Fish from Polluted Waterways.[J] Xenobiotica 1984, 14, (8), 633-646.
    [32] Nisbet, C., LaGoy, P., Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs).[J] Regulatory Toxicology and Pharmacology 1992, 16, 290-300.
    [33] Fang, G. C.; Chang, K. F.; Lu, C. S.; Bai, H. L., Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung.[J] Chemosphere 2004, 55, (6), 787-796.
    [34] Nielsen, T.; Jorgensen, H. E.; Larsen, J. C.; Poulsen, M., City air pollution of polycyclic aromatic hydrocarbons and other mutagens: Occurrence, sources and health effects.[J] Sci Total Environ 1996, 190, 41-49.
    [35] Petry, T.; Schmid, P.; Schlatter, C., The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs).[J] Chemosphere 1996, 32, (4), 639-648.
    [36] Tsai, P. J.; Shieh, H. Y.; Lee, W. J.; Lai, S. O., Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry.[J] Sci Total Environ 2001, 278, (1-3), 137-150.
    [37] Hafner, W. D.; Carlson, D. L.; Hites, R. A., Influence of local human population on atmospheric polycyclic aromatic hydrocarbon concentrations.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005, 39, (19), 7374-7379.
    [38] Arey, J.; Atkinson, R.; Zielinska, B.; Mcelroy, P. A., Diurnal Concentrations of Volatile Polycyclic Aromatic-Hydrocarbons and Nitroarenes during a Photochemical Air-Pollution Episode in Glendora, California.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1989, 23, (3), 321-327.
    [39] Dong, S. M.; Hwang, H. M.; Shi, X. C.; Holloway, L.; Holloway, L.; Yu, H. T., UVA-induced DNA single-strand cleavage by 1-hydroxypyrene and formation of covalent adducts between DNA and 1-hydroxypyrene.[J] Chem Res Toxicol 2000, 13, (7), 585-593.
    [40] Mackay D., S. W. Y. a. M. K. C., Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals.[M] Lewis Publishers: Boca Raton, 1992.
    [41] Li, Y., Global technical hexachlorocyclohexane usage and its contamination consequences in the environment: from 1948 to 1997.[J] The Science of the Total Environment 1999, 232, 121-158.
    [42]农业部农药检定所,新编农药手册. In农业出版社:北京, 1989; p 2~7.
    [43] Goldberg, Synthetic organochlorines in the sea.[J] Proc R Soc Lond, B Biol Sci 1975, 189, 277- 289.
    [44] Rovinsky F, A. M. I., Buivolovr Yu. A, Vulykh N. K, Zagruzina A. N., Background pollution by organochlorine pesticide and benzo(a)pyrene over the territories of the East Euro, pean countries (1982-89).[J] J Ecol Chem 1993, N1, 27- 39.
    [45] Organic Pollutants: Towards Global Action. In Joint Canada-Philip pines Planning Committee- Meeting Background Report for the International Experts Meeting on Persistent, Vancouver. Canada, 1995.
    [46] Mellanby, K., The DDT story, survey. In Farnham7 The British Crop Protection Council, 1992.
    [47] Voldner E. C, L. Y. F., Global usage of selected persistent organochlorines.[J] Sci Total Environ. 1995, (160/161), 201-210.
    [48] Zhang G, P. A., House A, Mai B, Li X, Kang Y, Wang Z., Sedimentary records of DDT and HCH in the Pearl River Delta, South China.[J] Environmental Science and Technoloby 2002, 36(17), 3671-3677.
    [49] Fung C.N, Z. G. J., Connell D. W, Zhang X, Wong H. L, Giesy J. P, Fang Z, Lam P. K., Risks posed by trance organic contaminants in coastal sediments in the Pearl River Delta.[J] China Marine Pollution Bulletin 2005, 50(10), 1036-1049.
    [50] Kong K. Y, C. K. C., Wong C. K, Wong M. H., The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the Pearl River Delta South China.[J] Water Res 2005, 39(9), 1831-1843.
    [51] Luo X, M. B., Yang Q, Fu J, Sheng G, Wang Z., Polycyclic aromatic hydrocarbons(PAHs)and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China.[J] Mar Pollut Bull 2004, 48(11-12), 1102-1115.
    [52] Maskaoui K, Z. J. L., Zheng T. L, Hong H, Yu Z., Organochlorine micro,pollutants in the Jiulong River Estuary and Western Xiamen Sea, China.[J] Mar Pollut Bull 2005, 51(8-12), 950-959.
    [53] Nakata H, H. Y., Kawazoe M, Nakabo T, Arizono K, Abe S, Kitano T, Shinada H, Watanabe I, Li W, Ding X., Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China.[J] Environ Pollut 2005, 133(3), 415-429.
    [54] Yang R. Q, Y. Z. W., Jiang G. B, Zhou Q. F, Liu J. Y., HCH and DDT residues in mollusks from Chinese Bohai coastal sites.[J] Marine Pollution Bulletion 2004, 48(7-8), 795-799.
    [55] Zhou J. L, M. K., Qiu Y. W, Hong H. S, Wang Z. D., Polychlorinated biphenyl congeners and organochlorines insecticides in the water column and sediments of Da Bay, China.[J] Environ Pollut B 2001, 113(3), 373-384.
    [56] Leone A D, U., EM, Bodnar, CE, Falconer, RL, Hites, RA,, Organochlorine pesticideconcentrations and enantiomer fractions for chlordane in indoor air from the US corn belt.[J] Atmos Environ 2000, 34, 4131-4138.
    [57] Bidleman T, L. A. D., Soil-air exchange of organochlorine pesticides in the Southern United States.[J] Environ Pollut 2004, 128, 49-57.
    [58] Kolankaya, D., Organochlorine pesticide reidues and their toxic effects on the environment and organisms in Turkey.[J] Int J Environ Anal Chem 2006, 86, 147-160.
    [59] Ilyina T, P. T., Lammel G, Sundennann J., A fate and transport ocean model for persistent organic pollutants and its application to the North Sea.[J] J Mar Syst 2006, 63, 1-19.
    [60] Vega F A, C. E. F., Andrade M L, Accidental Organochlorine Pesticide Contamination of Soil in Porri?o, Spain.[J] J Environ Qual 2007, 36, 272-279.
    [61] Srivastava A, S. T., Hexachlorocyclohexane differentially alters the antioxidant status of the brain regions in rat.[J] Toxicology 2005, 214, 123-130.
    [62] Verreault J, M. D. C. G., Norstrom R J, Stirling I, Fisk A T, Gabrielsen G W, Derocher A E, Evans T J, Dietz R, Sonne C., Chlorinated hydrocarbon contaminants and metabolites in polar bears (Ursus maritimus) from Alaska, Canada, East Greenland, and Svalbard: 1996?2002.[J] Sci Total Environ. 2005, 351/352, 369-390.
    [63] Hinck J E, B. V. S., Denslow N D, Echols K R, Gale R W, Wieser C, May T W, Ellersieck M, Coyle J J, Tillitt D E,, Chemical contaminants, health indicators, and reproductive biomarker responses in fish from rivers in the Southeastern United States.[J] Sci Total Environ. 2008, 390, 538-557.
    [64] Polder A, G. G. W., Odland J, Savinova T N, Tkachev A, L?ken K B Skaare J U, Spatial and temporal changes of chlorinated pesticides, PCBs, dioxins (PCDDs/PCDFs) and brominated flame retardants in human breast milk from Northern Russia.[J] Science Total Environ. 2008, 391, 41-54.
    [65] Rosa R, R.-F. E. S. C., Cytotoxicity of hexachlorocyclohexane isomers and cyclodienes in primary cultures of cerebellar granule cells.[J] Pharmacol Exp Ther 2006, 278, 163-169.
    [66] Lawerence L J, C. J. E., Interactions of lindane, toxaphene and cyclodienes with brain specific t-butyl-bicyclophosphorothionate receptor.[J] Life Sci 1984, 35, 171-178.
    [67] Abalis I M, E. M. E., Elderfrawi A T, High affinity stereospecific binding of cyclodiene insecticides and g-hexachlorocyclohexane to g-aminobutyric acid receptor of rat brain.[J] Pesti Biochem Phy 1985, 24, 95-102.
    [68] Woolley D E, Z. I., Effects and proposed mechanism of action of lindane in mammals: unsolved problems In: Clark, JM, Matsumura, F (Eds), Membrane Receptors and Enzymes as Targets for Insecticidal Action Plenum Press.[J] New York: Springer 1986, 1-31.
    [69] Baker M T, N. R. M., Van Dyke R, The information on chlorobenzene and benzene by the reductive metabolism of lindane in rat liver microsomes.[J] Arch Biochem Biophys 1985, 236, 506-514.
    [70] Srivastava A, S. T., Hexachlorocyclohexane differentially alters the antioxidant status ofthe brain regions in rat.[J] Toxicol Appl Pharm 2005, 214, 123-130.
    [71] Wong P S Y, M. F., Serum free BG-1 cell proliferation assay: A sensitive method for determining organochlorine pesticide estrogen receptor activation at the nanomolar range.[J] Toxico in Vitro 2006, 20, 382-394.
    [72] Zhang, Y. X., Tao S, Emission of polycyclic aromatic hydrocarbons in China by county.[J] Environ. Sci. Technol 2007, 41, 683-687.
    [73] Tao, S.; Liu, W. X.; Li, Y.; Yang, Y.; Zuo, Q.; Li, B. G.; Cao, J., Organochlorine Pesticides Contaminated Surface Soil As Reemission Source in the Haihe Plain, China.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008, 42, (22), 8395-8400.
    [74] Howsam M, J. K., Sources of PAHs in the environment. In: Neilson AH (Ed). The hand book of environmental chemistry.[J] PAHs and related compounds. New York: Springer 1998, 3, 137-174.
    [75] Tao, S. C., YJ; Xu, FL; Cao, J; Li, BG, Changes of copper speciation in maize rhizosphere soil.[J] Environ Pollut 2003, 122, 447-454.
    [76] Wang XH, H. H., Xu L, Chen WQ, Zhang ZL, Distribution and transportation of Polycyclic Aromatic Hydrocarbons in suspended particulate matter and surface sediment from the Pearl River Estuary.[J] J Environ Sci Heal A 2002, 37 (4), 451-463.
    [77] Tao, S. C., HY; Liu, WX; Li, BG; Cao, J; Xu, FL; Wang, XJ; Coveney, RM; Shen, WR; Qin, BP; Sun, R, Fate modeling of phenanthrene with regional variation in Tianjin, China.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003, 37, 2453-2459.
    [78] Chisholm, R. D.; Koblitsky, L.; Fahey, J. E.; Westlake, W. E., Ddt Residues in Soil.[J] J Econ Entomol 1950, 43, (6), 941-942.
    [79] Lichtenstein, E. P., Ddt Accumulation in Mid-Western Orchard and Crop Soils Treated since 1945.[J] J Econ Entomol 1957, 50, (5), 545-547.
    [80] Lichtenstein, E. P., Absorption of some chlorinated hydrocarbon insecticides from soils into various crops.[J] J. Agr. Food Chem. 1959, 7, 430-33.
    [81] Ginsburg, J. M., Accumulation of Ddt in Soils from Spray Practices.[J] J Agr Food Chem 1955, 3, (4), 322-325.
    [82] Chessells, M. J.; Hawker, D. W.; Connell, D. W.; Papajcsik, I. A., Factors Influencing the Distribution of Lindane and Isomers in Soil of an Agricultural Environment.[J] Chemosphere 1988, 17, (9), 1741-1749.
    [83] Cavanagh, J. E.; Burns, K. A.; Brunskill, G. J.; Coventry, R. J., Organochlorine pesticide residues in soils and sediments of the Herbert and Burdekin river regions, North Queensland - Implications for contamination of the Great Barrier Reef.[J] Mar Pollut Bull 1999, 39, (1-12), 367-375.
    [84] Brustad, M.; Sandanger, T. M.; Nieboer, E.; Lund, E., 10th Anniversary Review: when healthy food becomes polluted - implications for public health and dietary advice.[J] J Environ Monitor 2008, 10, (4), 422-427.
    [85] Boris N W, H. O. R., Steiner G P., Case study: Hypersomnolence and precocious puberty in a child with pica and chronic lead intoxication.[J] J Am Aca Child Adoles Psychiatry1996, 35, 1050-1054.
    [86] Davis S. , W. P., Quantitative estimates of soil ingestion in normal children between the ages of 2 and 7 years: population-based estimates using aluminum, silicon, and titanium as soil tracer elements.[J] Arch. Environ. Health 1990, 45, 112-122.
    [87] Calabrese E.J., S. E. J., James R.C., Roberts S.M., Soil ingestion, a concern for acute toxicity in children.[J] J. Environ. Health 1999, 61, 18-23.
    [88] Phillips, D. H., olycyclic aromatic hydrocarbons in the diet.[J] Mutat Res-Gen Tox En 1999, 443, (1-2), 139-147.
    [89] Menzie, C. A.; Potocki, B. B.; Santodonato, J., Exposure to Carcinogenic Pahs in the Environment.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1992, 26, (7), 1278-1284.
    [90] Guo, M. Population exposure to organochlorine pesticides in Tianjin area. MS Thesis. MS Thesis, Beijing Peking University, 2004.
    [91] Li X.R., L. B. G., Tao S., Guo M., Cao J., Wang X.J., Liu W.X., Xu F.L., Wu Y.N, Population exposure to PAHs in Tianjin area.[J] Acta Sci. Circum 2005, 25, 989-993.
    [92] Zhong, W. K., Wang, M. J., me polycyclic aromatic hydrocarbons in vegetables from northern China.[J] J Environ Sci Heal A 2002, 37, (2), 287-296.
    [93] Alvarez-Pedrerol, M.; Ribas-Fito, N.; Torrent, M.; Carrizo, D.; Grimalt, J. O.; Sunyer, J., Effects of PCBs, p,p '-DDT, p,p '-DDE, HCB and beta-HCH on thyroid function in preschool children.[J] Occup Environ Med 2008, 65, (7), 452-457.
    [94] Tao, S.; Lu, Y.; Zhang, D. Y.; Yang, Y. F.; Yang, Y.; Lu, X. X.; Sai, D. J., Assessment of Oral Bioaccessibility of Organochlorine Pesticides in Soil Using an In Vitro Gastrointestinal Model.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009, 43, (12), 4524-4529.
    [95] Tang, X. Y.; Tang, L.; Zhu, Y. G.; Xing, B. S.; Duan, J.; Zheng, M. H., Assessment of the bioaccessibility of polycyclic aromatic hydrocarbons in soils from Beijing using an in vitro test.[J] Environ Pollut 2006, 140, (2), 279-285.
    [96] Eschenbach, A.; Kastner, M.; Bierl, R.; Schaefer, G.; Mahro, B., Evaluation of a New, Effective Method to Extract Polycyclic Aromatic-Hydrocarbons from Soil Samples.[J] Chemosphere 1994, 28, (4), 683-692.
    [97] Capriel, P.; Haisch, A.; Khan, S. U., Distribution and Nature of Bound (Nonextractable) Residues of Atrazine in a Mineral Soil 9 Years after the Herbicide Application.[J] J Agr Food Chem 1985, 33, (4), 567-569.
    [98] Schiavon, M., Studies of the Movement and the Formation of Bound Residues of Atrazine, of Its Chlorinated Derivatives, and of Hydroxyatrazine in Soil Using C-14 Ring-Labeled Compounds under Outdoor Conditions.[J] Ecotox Environ Safe 1988, 15, (1), 55-61.
    [99] Barriuso, E.; Schiavon, M.; Andreux, F.; Portal, J. M., Localization of Atrazine Non-Extractable (Bound) Residues in Soil Size Fractions.[J] Chemosphere 1991, 22, (12), 1131-1140.
    [100] Barriuso, E., Schiavon, M., Andreux, F., Portal, J.M., Localization of atrazine non-extractable (bound) residues in soil size fractions.[J] Chemosphere 2002, 22, 1131–1140.
    [101] Loiseau, L.; Barriuso, E., Characterization of the atrazine's bound (nonextractable) residues using fractionation techniques for soil organic matter.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002, 36, (4), 683-689.
    [102]US Government Federal Register.1975.40 123 pp26889-91
    [103] Pignatello, J. J.; Xing, B. S., Mechanisms of slow sorption of organic chemicals to natural particles.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1996, 30, (1), 1-11.
    [104] Chiou, C. T.; Peters, L. J.; Freed, V. H., Physical Concept of Soil-Water Equilibria for Non-Ionic Organic-Compounds.[J] Science 1979, 206, (4420), 831-832.
    [105] Karickhoff, S. W.; Brown, D. S.; Scott, T. A., Sorption of Hydrophobic Pollutants on Natural Sediments.[J] Water Res 1979, 13, (3), 241-248.
    [106] Steinberg, S. M.; Pignatello, J. J.; Sawhney, B. L., Persistence of 1,2-Dibromoethane in Soils - Entrapment in Intraparticle Micropores.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1987, 21, (12), 1201-1208.
    [107] Pignatello, J. J., Slowly Reversible Sorption of Aliphatic Halocarbons in Soils .1. Formation of Residual Fractions.[J] Environ Toxicol Chem 1990, 9, (9), 1107-1115.
    [108] Richnow, H. H.; Eschenbach, A.; Mahro, B.; Kastner, M.; Annweiler, E.; Seifert, R.; Michaelis, W., Formation of nonextractable soil residues: A stable isotope approach.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1999, 33, (21), 3761-3767.
    [109] Cornelissen, G.; Van Noort, P. C. M.; Govers, H. A. J., Mechanism of slow desorption of organic compounds from sediments: A study using model sorbents.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1998, 32, (20), 3124-3131.
    [110] Waiter J. Weber, J., Paul M. McGinley, and Lynn E. Kat, A Distributed Reactivity Model for Sorption by Soils and Sediments. 1. Conceptual Basis and Equilibrium Assessments [J] Envlron. Sci. Technol 1992, 26, 1955-1962
    [111] PIGNATELLO, B. X. A. J. J., Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly(Vinyl Chloride) and Soil Organic Matter.[J] Environ. Sci. Technol. 1997, 31, 792-799.
    [112] Calderbank, A., The Occurrence and Significance of Bound Pesticide-Residues in Soil.[J] Rev Environ Contam T 1989, 108, 71-103.
    [113] Kearney, P. C., Summary of Soil Bound Residues Discussion Session Acs Symposium Series.[J] Acs Sym Ser 1976, (29), 378-382.
    [114] Gevao, B. M., C, Semple, K, Piearce, T.G.; Jones, K., Bioavailability of Nonextractable (Bound) Pesticide Residues to Earthworms.[J] Environ. Sci. Technol. 2001, 35, 501-507.
    [115] Eschenbach, A. W., R.; Mahro, R., Fate and stability of nonextractable residues of [14C]PAH in contaminated soils under environmental stress conditions.[J] Environ. Sci.Technol. 1998, 32, 2585-2590.
    [116] Northcott, G. L.; Jones, K. C., Validation of procedures to quantify nonextractable polycyclic aromatic hydrocarbon residues in soil.[J] J Environ Qual 2003, 32, (2), 571-582.
    [117] Rotard, W., Christmann, W., Knoth, W., Mailahn, M., Determination of absorption availability of PCDD/PCDF from Kieselrot -simulation of the digestion of technogenic soil (in German).[J] UWSF-Z. Umweltchem. O. kotox 1995, 7, 3-9.
    [118] Rotard, W., W. Christmann, Background Levels of Pcdd/F in Soils of Germany.[J] Chemosphere 1994, 29(9-11), 2193-2200.
    [119] OOMEN, A. G., Mobilization of PCBs and Lindane from Soil during in Vitro Digestion and Their Distribution among Bile Salt Micelles and Proteins of Human Digestive Fluid and the Soil.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2000, 34, 297-303.
    [120] Oomen, A. G.; Tolls, J.; Kruidenier, M.; Bosgra, S. S. D.; Sips, A. J. A. M.; Groten, J. P., Availability of polychlorinated biphenyls (PCBs) and lindane for uptake by intestinal Caco-2 cells.[J] Environ Health Persp 2001, 109, (7), 731-737.
    [121] Oomen, A. G.; Rompelberg, C. J. M.; Van de Kamp, E.; Pereboom, D. P. K. H.; De Zwart, L. L.; Sips, A. J. A. M., Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model.[J] Arch Environ Con Tox 2004, 46, (2), 183-188.
    [122] Goni, I.; Serrano, J.; Saura-Calixto, F., Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables.[J] J Agr Food Chem 2006, 54, (15), 5382-5387.
    [123] Laparra, J. M., D. VE ? LEZ, R. MONTORO, R. BARBERA ? , R. FARRE, Estimation of Arsenic Bioaccessibility in Edible Seaweed by an in Vitro Digestion Method.[J] J Agr Food Chem 2003, 51(20), 6080-6085.
    [124] Alison J.Fraser, I. C. B., Hans Wolkers,Don Mackay, Modeling Biomagnification And Metabolism of Contaminants in Harp Seals of the Barents Sea.[J] Environ Toxicol Chem 2002, 21(1), 55-61.
    [125] G. Andreas Moser, M. S. M., Modeling Digestive Tract Absorption and Desorption of Lipophilic Organic Contaminants in Humans.[J] Environ. Sci. Technol. 2002, 36, 3318-3325.
    [126] Van de Wiele, T. R.; Verstraete, W.; Siciliano, S. D., Polycyclic aromatic hydrocarbon release from a soil matrix in the in vitro gastrointestinal tract.[J] J Environ Qual 2004, 33, (4), 1343-1353.
    [127] Van de Wiele, T.; Vanhaecke, L.; Boeckaert, C.; Peru, K.; Headley, J.; Verstraete, W.; Siciliano, S., Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites.[J] Environ Health Persp 2005, 113, (1), 6-10.
    [128] Wallace WG, L. B., Luoma SN, Subcelluar compartmentalization of Cd and Zn in two bivalves. I.Significance of metal-sensitive fractions(MSF) and biologically detoxified metal(BDM).[J] Mar Ecol-Prog Ser 2003, 249, 183-197.
    [129] Wallace WG, L. S., Subcellular compartmentalization of Cd and Zn in twobivalves.II.Significance of trophically available metal(TAM).[J] Mar Ecol-Prog Ser 2003, 257, 125-137.
    [130] Edward Wild, J. D., Gareth O.Thomas,Kevin C.Jones, Visualizing the Air-To-Leaf Transfer and Within-Leaf Movement and Distribution of Phenanthrene: Further Studies Utilizing Two-Photon Excitation Microscopy.[J] Environ. Sci. Technol. 2006, 40, 907-916.
    [131] Pu, X. Z.; Lee, L. S.; Galinsky, R. E.; Carlson, G. P., Evaluation of a rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils.[J] Toxicol Sci 2004, 79, (1), 10-17.
    [132] Pu, X. Z.; Lee, L. S.; Galinsky, R. E.; Carlson, G. P., Bioavailability of 2,3 ',4,4 ',5-pentachlorobiphenyl (PCB118) and 2,2 ',5,5 '-tetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test.[J] Toxicology 2006, 217, (1), 14-21.
    [133] Gan, J.; Becker, L.; Koskinen, W. C.; Buhler, D. D., Degradation of atrazine in two soils as a function of concentration.[J] J Environ Qual 1996, 25, (5), 1064-1072.
    [134] Gevao, B.; Mordaunt, C.; Semple, K. T.; Piearce, T. G.; Jones, K. C., Bioavailability of nonextractable (bound) pesticide residues to earthworms.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2001, 35, (3), 501-507.
    [135] Pignatello, J. J., Slowly Reversible Sorption of Aliphatic Halocarbons in Soils .2. Mechanistic Aspects.[J] Environ Toxicol Chem 1990, 9, (9), 1117-1126.
    [136] Cornelissen, G.; Gustafsson, O.; Bucheli, T. D.; Jonker, M. T. O.; Koelmans, A. A.; Van Noort, P. C. M., Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005, 39, (18), 6881-6895.
    [137] Cornelissen, G.; Rigterink, H.; Ferdinandy, M. M. A.; Van Noort, P. C. M., Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1998, 32, (7), 966-970.
    [138] Nam, K.; Chung, N.; Alexander, M., Relationship between organic matter content of soil and the sequestration of phenanthrene.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1998, 32, (23), 3785-3788.
    [139] Boehm PD, F. J., Aspects of the polycyclic aromatic hydrocarbon geochemistry of recent sediments in the georges bank region.[J] Environ Sci Technol 1984, 18(11), 840-845.
    [140] Luthy, R. G.; Aiken, G. R.; Brusseau, M. L.; Cunningham, S. D.; Gschwend, P. M.; Pignatello, J. J.; Reinhard, M.; Traina, S. J.; Weber, W. J.; Westall, J. C., Sequestration of hydrophobic organic contaminants by geosorbents.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 1997, 31, (12), 3341-3347.
    [141] Yang Y, H. W., Tao S. Gan J., Microbial availability of different forms of phenanthrenein soils.[J] Environ. Sci. Technol. 2009, 43, 1852-1857.
    [142] Vasiluk, L.; Pinto, L. J.; Walji, Z. A.; Tsang, W. S.; Gobas, F. A. P. C.; Eickhoff, C.; Moore, M. M., Benzo[a]pyrene bioavailability from pristine soil and contaminated sediment assessed using two in vitro models.[J] Environ Toxicol Chem 2007, 26, (3), 387-393.
    [143] Holman, H. Y. N.; Goth-Goldstein, R.; Aston, D.; Yun, M.; Kengsoontra, J., Evaluation of gastrointestinal solubilization of petroleum hydrocarbon residues in soil using an in vitro physiologically based model.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002, 36, (6), 1281-1286.
    [144] Abate, G.; Penteado, J. C.; Cuzzi, J. D.; Vitti, G. C.; Lichtig, J.; Masini, J. C., Influence of humic acid on adsorption and desorption of atrazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine onto a clay-rich soil sample.[J] J Agr Food Chem 2004, 52, (22), 6747-6754.
    [145] Ruby, M. V., Bioavailability of soil-borne chemicals: Abiotic assessment tools.[J] Hum Ecol Risk Assess 2004, 10, (4), 647-656.
    [146] Doick, K. J.; Klingelmann, E.; Burauel, P.; Jones, K. C.; Semple, K. T., Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in an agricultural soil.[J] ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005, 39, (10), 3663-3670.
    [147] Charman, W. N.; Porter, C. J. H.; Mithani, S.; Dressman, J. B., Physicochemical and physiological mechanisms for the effects of food on drug absorption: The role of lipids and pH.[J] J Pharm Sci 1997, 86, (3), 269-282.
    [148] Embleton, J. K.; Pouton, C. W., Structure and function of gastro-intestinal lipases.[J] Adv Drug Deliver Rev 1997, 25, (1), 15-32.
    [149] Friedman, H. I. N., B., Intestinal fat digestion, absorption, and transport - a review.[J] Am. J. Clin. Nutr. 1980, 33, 1108-1139.
    [150] Hack, A.; Selenka, F., Mobilization of PAH and PCB from contaminated soil using a digestive tract model.[J] Toxicol Lett 1996, 88, (1-3), 199-210.
    [151] Accardi-Dey, A. G., P. M., Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments.[J] Environmental Science & Technology 2002, 36(1), (21-29).
    [152] Salloum, M. J. C., B. Hatcher, P. G., Phenanthrene sorption by aliphatic-rich natural organic matter.[J] Environmental Science & Technology 2002, 36, (9), 1953-1958.
    [153]张迪宇,吕.赛.张.张.陶.,残渣吸着对消化道中土壤多环芳烃生物可给性体外测定的影响.[J]环境化学2009, 28(4), 524-529.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700