用户名: 密码: 验证码:
高分子聚合物中的电子链间跃迁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机共轭聚合物作为一种新型的功能材料,既具有金属和半导体的电子性质,又具有聚合物的易加工、有柔性的机械特点,成为近年来的研究热点。目前,人们已经研制出各种各样的有机光电子器件,如有机发光二极管,场效应管,光伏电池等。有机聚合物具有不同于传统半导体的特性。首先,有机分子间的相互作用很弱,它们大多具有准一维结构:其次,有机材料中存在着很强的电子—声子相互作用,电子态和晶格态两者相互影响.电荷的注入或光激发会诱导晶格发生畸变;反过来,晶格的变化又影响聚合物的结构。因此,聚合物中的载流子不再是传统的电子或空穴,而是电荷的自陷元激发,如孤子、极化子等准粒子。聚合物中的这些元激发在很大程度上决定着聚合物中的电荷输运,发光等物理性质,是人们理解聚合物特性的重要方面。
     近20年来,基于聚合物材料研制成功的有机光电器件相继面世。如以聚对苯乙炔(PPV)族为发光材料合成的有机发光器件(organic light-emitting diodes,OLED's)已实用;塑料激光器、有机光伏电池、电化学发光电池及纯有机三极管也已研制成功;最近又有关于小分子ALq_3作自旋极化输运材料的报道,从而开辟了有机自旋电子学这一新领域。有机光电器件的发展同时刺激了实验和理论工作者对聚合物等有机材料光电特性的广泛研究。人们逐渐认识到聚合物等有机材料中光致载流子的产生与激子的形成是紧密联系的。因此,认清二者之间的联系及如何控制二者之间的相互转化对于提高有机光电器件的工作效率具有重要意义。
     20世纪70年代,Su、Schrieffer和Heeger创立的SSH模型,用半经验的紧束缚方法研究了共轭聚合物聚乙炔的电子结构和光学性质,并取得了巨大成功,此后,Bishop、Sun、Conwell、Xie等对SSH哈密顿进行了修正,研究了各种元激发以及其他们的某些动力学过程。这些工作的进一步开展,不但有助于对共轭聚合物中的微观物理世界的认识,更具有重要的应用价值,能够推动新型有机聚合物器件的研究和开发。
     在本论文中我们在SSH模型基础上对哈密顿进行修正研究了共轭聚合物中元激发的某些新的特性并对元激发进行模拟。对于链内的光激发,其产物是链内激子或链内正负极化子。对于链间的光激发,即电子从一条链激发到另一条链上,其产物是电荷转移型激子或链间正负极化子,此时有利于光生载流子的产生。我们进一步研究了链间耦合在位能差对链间电荷转移的影响,并发现链间耦合在位能差有利于链间电荷的转移。
Conjugated polymers have attracted many interests recently because of a unique set of properties: The electronic properties of metals and semiconductors and the processing advantages and mechanical properties of polymers such as flexibility. At present , numerous high-performance photoelectric devices fabricated from organic polymers have been made including light-emiting diodes, field efect transistors, photovoltaic cells,etc. Contrast to the traditional semiconductor, organic material has its unique- properties. First, most of the conjugated polymers have the qusi-one-dimensional structure due to the weak interaction force between the organic molecules. Second, owning to its soft properties, there are strong electron-phonon couplings in organic- systems. Especially, the additional charge (electrons or holes) or photoexcitation in conjugated polymers will induce latice deformation; on the contrary, the lattice defect will have the efect on the energy band structure of the organic system. So, it is generally. believed that these self-trapping excitations, such as solitons (only in traps -polyacetylene), polarons and bipolarons, are related to the charge carriers in conjugated polymers. These elementary excitations are of fundamental importance for transport properties photoluminescence of conjugated polymers system.
     In the past twenty years, the conjugated polymers have offered promise for use in applications, particularly in the area of optoelectronics where semiconducting luminescent polymers can be used to fabricate large area, flexible devices such as light-emitting diodes, displays, integrated circuits, solar cells, and plastic lasers. In 2004, Xiong et al. built a spin valve using the Alq3 as a spacer, where the Alq3 is sandwiched between layers of cobalt and half-metallic manganite La_(0.7)Sr_(0.3)MnO_3. Spin polarized injection and transport in organic semiconductor not only can broaden our understanding on the physical world of the organic materials but also can have a substantial impact on the applications of spintronics and bionomics. In recent years, it has been found that the photoexcited formations of the charged carriers and the exciton are tightly related. How to see clearly the relation and control the translation between them has been the focus in these years in order to improve the performance of the optoelectronic devices.
     Since 1970's, SSH Hamiltonian, the tight-binding semi-empirical calculation method that was found by Su, Schrieffer and Heeger has been demonstrated successfully for determining the electronic structures and optical properties in conjugated polymers. In the later years, Bishop, Sun and Xie et al have extended the SSH Hamiltonian to research the static and dynamic process of excitations. The further research in this field not only can broaden our understanding of the microcosmic physical world but also can have a substantial impact on the applications on organic polymer devices
     In this paper, in the framework of extended SSH model, we have studied some new properties of excitations. For intrachain photoexcitation,the output is exciton or intrachain oppositely charged polaron pair. For interchain photoexcitation,where an electron is excited from one chain to the other chain,is also investigated. the output is charge-transfer exciton, or intrechain oppositely charged polaron pair. So this photoexcitation is propitious to the photogeneration of charge carriers. In addition, the interchain coupling and on-site energy difference has a certain effect on the interchain charge transfer which makes the different quantum efficiency of charge carrier photogeneration in a solid-state sample from that in a solution.
引文
[1] C. K. Chang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098-1101 (1977)
    
    [2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid et al., J. Chem. Soc. Chem. Commun. 578 (1977)
    
    [3] C. K. Chang, E. J. Louis, M. A. Druy et al., J. Am. Chem. Soc. 100, 1013 (1978)
    [4] Y.-W. Park, A. J. Heeger, M. A. Druy, and A. G. MacDiarmid, J. Chem. Phys. 73, 946-957(1980)
    
    [5] H. Naarmann, and N. Theophilou, Synth Met. 22, 1 (1987)
    [6] W. J. Feast, J. Tsibouklis, K. L. Pouwer, L. Gronendaal, and E. W. Meijer, polymer 37, 5017 (1996)
    
    [7] R. L. Greene, G B. Street, and L. J. Suter, Phys. Rev. Lett. 34, 577-579 (1975)
    [8] A. Rajca, et al., Science 294, 1503 (2001)
    [9] T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature 413, 716 (2001)
    [10] Y. V. Korshak, T. V. Medvedeva, A. A. Ovchinnikov, and V. N. Spector, Nature (London)326, 370(1987)
    
    [11] M. Takahashi, P. Turk, Y. Nakazawa, M. Tamura, K. Nozawa, D. Shioni, M. Ishikawa and M. Kinoshita, Phys. Rev. Lett. 67, 746 (1991)
    [12] Z. Fang, Z. L. Liu, and K. L. Yao Phys. Rev. B 49, 3916 (1994)
    [13] Y. Q Wang, Y. S. Xiong, L. Yi and K. L. Yao, Phys. Rev. B 53, 8481(1996)
    [14] A. A. Ovchinnikov and V. N. Spector, Synth Met. 49, B615 (1988)
    [15] Z. Fang, Z. L. Liu, and K. L. Yao, Phys. Rev. B 49, 3916 (1994)
    [16] Y. Q Wang, Y. S. Xiong, L. Yi, and K. L. Yao, Phys. Rev. B 53, 8481(1996)
    [17] J. H. Burroughes, D. D. C. Bradley, A. R. Brown R. N. Marks, K. Mackay R. H. Friend, P. L. Bums, and A. B. Holmes, Nature 347, 539 (1990)
    [18] M. D. McGehee and A. J. Heeger, Adv. Mat. 12, 828 (2000)
    [19] D. Mose, A. Dogariu, and A. J. Heeger, Phys. Rev. B 61, 9373 (2000)
    [20]N.C.Granstrom,K.Petritsch,A.C.Arias,A.Lux,M.R.Andersson,and R.H.Friend,Nature 395,257(1998)
    [21]J.Szmytkowski,W.Stampor,and J.Kalinowski,and Z.H.Kafafi,Appl.Phys.Lett.80,1465(2002)
    [22]A.B.Walker,A.Kamnili,and S.J.Martin,J.Phys:Condens.Matter.14,9825(2002)
    [23]C.W.Tang and S.A.Vanslyke,Appl.Phys.Lett.51,913(1987)
    [24]B.H.Cumpston and K.F.Jensen,Synth Met.73,195(1995)
    [25]Y.Yang and A.J.Heeger,Appl Phys Lett.64,1245(1994)
    [26]Y.Yang,E.Westerweele,C.Zhang,P.Smith,and A.J.Heeger,J Appl.Phys.77,694(1995)
    [27]R.S.James,A.Homer,H.Mark,L.William,M.Jeff,M.Ron,R.Daniel,and S.Andrew,Science.273,884(1996)
    [28].C.J.Brabec,N.S.Sariciftci,and J.C.Hummelen,Adv.Funct.Mater.11,15(2001)
    [29].J.J.M.Halls,R.H.Friend,Synthetic Metals,85,1307(1997)
    [30].N.S.Sariciftci,Science,4,373(1999)
    [31].K.Takahashi,N.Kuraya,T.Yamaguchi,et al.,Solar Energy Materials & Solar Cell,61,403(2000)
    [32].A.Goetzberger,J.Luther,G.Willeke,Solar Energy Materials & Solar Cell,74,1(2002)
    [33].殷敬华 莫志深 现代高分子物理学 北京 科学出版社(2001)
    [34].孙鑫 物理学进展 61(1986)
    [35].P.E.Peierls,Quantum Theory of Solids,Oxford University Press,London,1955,108
    [36].F.Genoud,M.Nechtschein,E.genies,and M.Salmon,Phys.Rev Lett.55,118(1985)
    [37].J.Chen,A.J.Heeger,and F.Wudl,Solid State Commun.58,251(1986)
    [38].S.A.Brazovskii and N.N.Kirova,Pis'ma Zh.Eksp.Teor.Fiz 33,6(1981)[JETP Lett.33,4(1981)
    [39]. G. M. e Silva, Phys. Rev. B 61, 10777 (2000)
    
    [40]. S.V. Rakhmanova and E. M.Conwell, Synth. Met. 110, 37 (2000)
    [41]. S. V. Rakhmanova and E. M.Conwell, Appl. Phys. Lett. 75, 1518 (1999)
    [42]. A. Johansson and S. Stafstrom, Phys. Rev. Lett. 86, 3602 (2001)
    
    [43]. A. Johansson and S. Stafstrom, Phys. Rev. B 65, 5207 (2002)
    
    [44]. Y. Qiu, Z. An, and C. Q. Wu, Synth Met. 135, 503 (2003)
    
    [45]. C. Q. Wu, Y. Qiu, Z. An, and K. Nasu, Phys. Rev. B 68,125416 (2003)
    
    [46]. P. S. Davids, A. Saxena, and D. L. Smith, Phys. Rev. B 53, 4823 (1996)
    
    [47]. Y. H. Yan, Z. An, C. Q.Wu, and K. Nasu, Eur. Phys. J. B 48, 501-508 (2005)
    
    [48]. A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, J. Phys.: Condens. Matter. 14, 9877 (2002)
    [49]. R. Knox, Theory of excitons. New York: Academic Press, 1963
    [50]. R. J. Elliot, Theory of excitons. In: Polarons and Excitons. New York: Plenum Press, 1963
    [51]. Z. Shuai, D. Beljonne, R. J. Silbey, and J. L. Bredas, Phys. Rev Lett. 84, 131(2000)
    [52]. R. H. Friend et al., Nature 397, 121 (1999); N. K. Mark and R. B. Eric, Phys. Rev. B 62, 11473(2000)
    [53]. A. S. Dhoot, D.S. Ginger, D. Beljonne, Z. Shuai, and N. C. Greenham, Chem. Phys. Lett. 88,197401 (2002)
    [54]. J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Kohler, and R. H. Frend, Nature 413, 828 (2001),
    [55]. P. K. H. Ho, J. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Caeialli, and R. H. Friend, Nature 404, 481 (2000)
    [1]Chapin D.M,Fuller C.S,Pearson G..L.A New silicon p-n junction photocell for converting solar radiation into electrical power[J].J.Appl.Phys.,1954,25(5):676-680.
    [2]C.W.Tang.Two-layer organic photovoltaic cell[J].Appl.Phys.Lett.,1986,48:183-185.
    [3]Yu G,Gao J,Hummelen J.C,et al.Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor - Acceptor Heterojunctions[J].Science,1995,270(15):1789-1791.
    [4]Shaheen S.E,Brabec C.J,Sariciftci N.S,et al.2.5%efficient organic plastic solar eclls[J].Appl.Phys.Lett.,2001,78:841-843.
    [5]Schmidt-Mende L,Fechtenkotter K,Mullen E,et al.Self-organized discortic liquid crystals for high-efficiency organic photovoltaics[J].Science,2001,293:1119-1122.
    [6]Sam-Shajing Sun,Zhen Fan,Yiqing Wang,etc,Block Copolymers for Optoelectronics.Materials,Active Devices,and Optical Amplifiers,2004,5280:253
    [7]Peter Peumans,Organic thin-film photodiodes.A dissertation for PhD,Princeton University,2004:2-10
    [8]V.M.Aroutiounian,H.Tributsch,Theoretical analysis of composite polymer solar cell function.Organic Photovoltaics 11,2002,4465:4353
    [9]M.A.Green et al.,Prog.Photovoltaics 16,61(2008).
    [10]N.S.Sariciftci,L.Smilowitz,A.J.Heeger,and Ewudl,Science 258,1474(1992).
    [11]J.J.Benson-Smith et al.,Adv.Mater.17,451(2007).
    [12]Fu R L,Ye H J,Li L 1998 Acta Phys.Sin.47 94(in Chinese)[傅柔励、叶红娟、李蕾等1998物理学报47 94]
    [13]Stafstrom S,Chao K A 1984 Phys.Rev.B29 7010
    [14]Shimo Y,Abe S 1994 Phys.Rev.B49 14113
    [1].Z.H.Xiong,D.Wu,Z.V.Vardeny,and J.Shi,Nature(London) 427,821(2004)
    [2].G.D.Scholes,and G.Rumbles,Nature,5,683(2006)
    [3].X.J.Liu,K.Gao,J.Y.Fu,Y.Li,J.H.Wei,and S.J.Xie,Phys.Rev.B 74,172301(2006)
    [4].L.E.Lyons,and K.A.Milne,J.Chem.Phys.65,1474(1976)
    [5].T.Virgili,D.Marinotto,C.Manzoni,G.Cerullo,and G.lanzani,Phys.Rev.Lett.94,117402(2005)
    [6].高琨 博士论文《有机共轭聚合物中的光电特性研究》 70(2007)
    [7].P.B.Miranda,D.Moses,andA.J.Heeger,Phys.Rev.B 70,085212(2004)
    [8].A.Ruseckas,et al.,Chem.Phys.Lett.322,136(2000)
    [9].Z.An,C.Q.Wu,and X.Sun,Phys.Rev.Lett.93,216407(2004)
    [10]J.J.Benson-Smith et al.,Adv.Mater.17,451(2007).
    [11].V.Gulbinas,Y.Zaushitsyn,H.B(a|¨)ssler,A.Yartsev,and V.Sundstr6m,Phys.Rev.B 70,035215(2004)
    [12]T.Drori,C.-X.Sheng et al.,Phys.Rev.Lett.101,037401(2008).
    [13].E.Hendry,M.Koeberg,J.M.Schins,H.K.Nienhuys,V.Sundstr(o|¨)m,L.D.A.Siebbeles,and M.Bonn,Phys.Rev.B 71,125201(2005)
    [1]Burroughes J H,Bradley D D C,Brown A R et al 1990 Nature 347 539
    [2]Pei Q,Yu G,Zhang C et al 1995 Science 269 1086
    [3]Gamier F,Horowitz G,Peng X et al 1990 Adv.Mater 2 592
    [4]Shakin VA 1994 Phys.Rev.B50 4306
    [5]Sun X,Fu R L,Yonemitsu K et al 2000 Phys.Rev.Lett.84 2830
    [6]Sun X,.Fu R L,Yonemitsu K,Nasu K 2001 Phys.Rev.A64 032504
    [7]Fu R L,Ye H J,Li L 1998 Acta Phys.Sin.47 94(in Chinese)[傅柔励、叶红娟、李蕾等1998 物理学报47 94]
    [8]Wang Lu-xia,Liu De-sheng,Wei Jian-hua et al 2002 Journal of Chemical Physics.116 6760
    [9].高琨,付吉永,刘德胜,解士杰,物理学报,54,665(2005)
    [10]Zhao E H,Fu R T,Sun X 1998 Acta Phys.Sin.47 2031(in Chinese)[赵二海、傅荣堂、孙鑫等 1998物理学报 47 2031]
    [11]Wang X D,Chen K,Sun X 2001 Synthetic Metals 119 221
    [12]Heeger A et al 1988 Rev.Mod.Phys.60 821
    [13]Dionys Baeriswyl,Kazumi Maki 1988 Phys.Rev.B38 8135
    [14]Xie Shi-Jie,Wei Jian-Hua,Liu De-Sheng et al 1997 Phys.Rev.B56 13162
    [15]An Z,Li Z J,Liu Z L,Yao K L 1994 Acta Phys.Sin.43 516(in Chinese)[安忠、李占杰、刘祖黎、姚凯伦 1994物理学报43 516]
    [16]Mizes H A and Conwell E M 1993 Phys.Rev.Lett.70 1505
    [17]Li Z J.,Lin H Q,Yao K L 1997 Z.Phys.B104 77
    [18]Fesser K 1989 Phys.Rev.B40 1962

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700