用户名: 密码: 验证码:
血小板活化因子在脊髓水平的疼痛调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织损伤和炎症常引起慢性疼痛,表现为自发性疼痛、痛觉过敏和触觉异常性痛敏。近十年来,对慢性疼痛的研究取得了较大的进展,痛觉传导通路的中枢敏化被认为是慢性疼痛产生和维持的重要原因。然而,中枢敏化的机制尚未完全阐明。研究表明,在中枢敏化机制中,大量的内源性神经介质参与了痛觉信号的传导和调控。
     血小板活化因子(platelet-activating factor,PAF)是免疫细胞和炎症细胞产生的一种内源性磷脂,是一种强效的炎症介质。研究发现,PAF与中枢神经系统许多生理功能和病理生理过程有关。神经细胞生成PAF,同时,神经细胞也是PAF的靶细胞,PAF在神经信号传递中发挥重要作用。近几年有研究报道表明PAF可能参与神经中枢痛觉信号的传导和调控,而PAF在痛觉信号传导和调控中的作用及相应机制仍有待进一步研究。
     前列腺素类物质(prostaglandins,PGs)在炎性疼痛中的作用已得到广泛认可,随着研究的深入,PGs在其它类型疼痛如神经病理性疼痛中的作用也受到关注。目前的研究认为,在慢性疼痛的产生及维持中,中枢及外周PGs均起作用。脊髓是调控痛觉信号的重要中枢,脊髓水平的PGs在疼痛的产生及维持中占有重要地位。体外实验表明,PAF可诱导培养的大鼠星形胶质细胞释放前列腺素E_2(prostaglandin E_2,PGE_2),这一研究提示PGE_2及其限速酶环氧酶(cyclooxygenase,COX)可能参与神经中枢PAF调控痛觉信号的机制,但目前尚无相关研究的报道。
     传统的观点认为,神经胶质细胞仅对神经元起着支持和营养作用,而没有细胞之间的信号传递功能,因而认为从外周传入的痛觉信号在脊髓水平的调控和放大以及痛敏状态的产生仅与神经元及其递质有关,而与神经胶质细胞无关。近些年,越来越多的研究证据表明胶质细胞与疼痛调控有着密切关系,特别是在如炎症和神经损伤等病理状态下。胶质细胞的激活及其促炎细胞因子的释放在病理状态下的痛觉过敏的产生和疼痛持续状态中发挥重要作用。脊髓和胶质细胞大量表达PAF受体,PAF可激活体外培养的胶质细胞,并诱导胶质细胞产生神经递质和促炎性细胞因子。以上研究结果提示,胶质细胞的激活及其促炎性细胞因子的释放可能参与神经中枢PAF调控痛觉信号的机制,而目前尚无相关报道。
     目前的研究认为,PAF通过与其受体相结合而发挥生物学效应,PAF有二类受体结合位点,即低结合力的细胞膜表面结合位点和高结合力的细胞内位点。抑制PAF受体可减轻大鼠炎性痛反应,而PAF受体拮抗剂用于其它疼痛模型如神经病理性疼痛的研究尚未见报道。
     为了进一步探讨PAF在痛觉信号调控中的作用及其机制,本课题进行了以下实验研究:(1)鞘内注射PAF对大鼠痛阈和脊髓环氧酶表达的影响,不同选择性环氧酶抑制剂对鞘内注射PAF所致大鼠痛敏的抗伤害效应;(2)鞘内注射PAF对脊髓胶质细胞活性和促炎性细胞因子表达的影响;(3)鞘内注射PAF受体拮抗剂对SNI神经痛大鼠镇痛作用的研究。
     研究方法与结果
     1.鞘内注射PAF对大鼠痛阈和脊髓环氧酶表达的影响
     方法雄性Sprague-Dawley大鼠48只随机分为6组,每组8只,鞘内置管:人工脑脊液(artificial cerebral spinal fluid,ACSF)组,鞘内注射ACSF 10μl;PAF组,鞘内注射PAF 5μg;生理盐水(normal saline,NS)组,尾静脉注射1.5 ml生理盐水,10 min后鞘内注射PAF 5μg;SC-560(环氧酶1选择性抑制剂,150μg/kg)组,NS-398(环氧酶2选择性抑制剂,150μg/kg)组和吲哚美辛(低选择性环氧酶抑制剂,300μg/kg)组,SC-560、NS-398和吲哚美辛分别溶解于1.5 ml生理盐水,尾静脉注射给药,10 min后鞘内注射PAF 5μg。PAF均溶解于10μl ACSF。给药前测机械缩爪阈(PWMT)和热缩爪潜伏期(PWTL)基础值,ACSF组和PAF组鞘内给药15 min后测PWMT和PWTL值,连续5 h每15 min测定一次;生理盐水组、SC-560组、NS-398组和吲哚美辛组鞘内注射PAF 30 min后测PWMT和PWTL值。各组大鼠痛阈测定结束后立即处死,取L_(4-6)段脊髓组织,RT-PCR分析检测ACSF组和PAF组大鼠脊髓环氧酶COX-1、COX-2和COX-3 mRNA表达,放射免疫分析检测各组大鼠脊髓PGE_2含量。
     结果(1)疼痛行为学观察:大鼠PWMT平均基础值为39.75±1.85 g,PAF组鞘内注射5μg PAF迅速诱发大鼠触觉异常痛敏(tactile allodynia),鞘内给药后各测痛时间点PWMT值下降,与ACSF对照组比较差异有统计学意义(P<0.05),触觉异常痛敏在5 h观察周期内持续存在,高峰期持续约60 min;鞘内注射PAF诱发大鼠热痛敏(thermal hyperalgesia),大鼠PWTL平均基础值为13.04±0.20 s,鞘内给药后各测痛时间点PWTL值下降(P<0.05),热痛敏持续时间和高峰期与触觉异常痛敏一致。环氧酶抑制剂NS-398和吲哚美辛减轻PAF诱发的触觉异常痛敏和热痛敏,与生理盐水对照组相比,NS-398组和吲哚美辛组PWMT和PWTL值升高(P<0.05),而SC-560对机械缩爪阈值和热缩爪潜伏期均无明显影响。(2)脊髓COX表达RT-PCR分析:ACSF组脊髓环氧酶COX-1、COX-2和COX-3在转录水平均有表达,COX-1和COX-3 mRNA表达水平低,COX-2表达水平高(P<0.05);PAF组鞘内注射PAF诱导COX-2表达增强(P<0.05),而COX-1和COX-3表达水平未见明显改变。(3)脊髓PGE_2放射免疫分析:与ACSF组比较,PAF组鞘内注射PAF 5 h后脊髓组织PGE_2含量升高(P<0.05);与生理盐水组比较,COX-2选择性抑制剂NS-398和非选择性环氧酶抑制剂吲哚美辛均抑制PAF诱发的PGE_2升高(P<0.05),其中,NS-398组PGE_2含量低于吲哚美辛组(P<0.05),而COX-1选择性抑制剂SC-560组对PAF引起的PGE_2含量升高无明显影响。
     2.鞘内注射PAF对脊髓胶质细胞活性和促炎性细胞因子表达的影响
     方法雄性Sprague-Dawley大鼠64只随机分为6组,鞘内置管:人工脑脊液(ACSF)组,16只,鞘内注射ACSF 10μl;PAF组,16只,鞘内注射PAF 5μg;DMSO(二甲基亚砜)组,8只,腹腔注射0.1%DMSO生理盐水2 ml,2 h后鞘内注射PAF 5μg;SC-514(10 mg/g)组,SC-514(50 mg/kg)组和SC-514(100 mg/kg)组,每组8只,SC-514分别溶解于2 ml 0.1%DMSO生理盐水,腹腔注射给药,2 h后鞘内注射PAF 5μg。PAF均溶解于10μl ACSF。给药前测PWMT和PWTL基础值,鞘内给药后5 min、15 min、30 min、45 min、60 min、90min和120min各时间点测PWMT和PWTL值。各组大鼠痛阈测定结束后立即处死,取L_(4-6)段脊髓组织,免疫组织化学染色检测ACSF组和PAF组大鼠腰段脊髓GFAP和OX-42的表达,ELISA检测各组大鼠脊髓TNF-a和IL-1β的表达。
     结果(1)疼痛行为学观察:PAF组鞘内注射给药迅速诱发大鼠触觉异常痛敏和热痛敏,各测痛时间点PWMT和PWTL值均下降(P<0.05)。IKKβ选择性抑制剂SC-514预处理明显减轻PAF诱发的触觉异常痛敏和热痛敏,其作用呈剂量依赖性增强,与DMSO对照组比较,SC-514不同剂量组各测痛时间点PWMT和PWTL值均升高(P<0.05)。(2)胶质细胞活性免疫组织化学分析:PAF组鞘内注射PAF激活星形胶质细胞和小胶质细胞,大鼠脊髓灰质区可见分别以GFAP和OX-42标记的活化星形胶质细胞和小胶质细胞,活化评分达(++),对照组活化评分为(—);各组脊髓灰质背角GFAP和OX-42免疫阳性反应物的光密度值分析,PAF组高于ACSF对照组,差异有统计学意义(P<0.05)。活化的胶质细胞分布于整个脊髓灰质,在脊髓背角中主要分布在第Ⅰ~Ⅱ层。(3)促炎性细胞因子TNF-a和IL-1β表达ELISA分析:与ACSF组比较,PAF组鞘内注射PAF 2 h后脊髓促炎性细胞因子TNF-a和IL-1β表达均增强(P<0.05),IKKβ选择性抑制剂SC-514预处理明显抑制PAF诱导的TNF-a和IL-1β的表达增强(P<0.05),其抑制作用呈剂量依赖性。
     3.鞘内注射PAF受体拮抗剂对SNI神经痛大鼠镇痛作用的研究
     方法雄性Sprague-Dawley大鼠64只,随机分为6组:SNI组,16只,制作SNI疼痛模型;假手术组(sham组),16只:DMSO(二甲基亚砜)组,8只,制作SNI疼痛模型,鞘内注射0.1%DMSO生理盐水5μl;BN52021(100μg)组,BN50730(100μg)组和BN52021(100μg)+BN50730(100μg)组,每组各8只,制作SNI疼痛模型,鞘内注射给药,PAF受体拮抗剂BN52021和BN50730溶解于5μl 0.1%DMSO生理盐水。DMSO组和拮抗剂治疗组每天鞘内注射给药一次,连续给药7 d。第7 d测各组大鼠PWMT值,随后处死大鼠取L_(4-6)段脊髓,免疫组织化学染色检测各组大鼠脊髓c-fos表达,放射免疫分析检测sham组和SNI组大鼠脊髓PAF含量。
     结果(1)疼痛行为学观察:SNI组神经损伤诱发大鼠触觉异常痛敏,术后第7 dPWMT值下降,与假手术组比较,差异有统计学意义(P<0.05);鞘内注射PAF受体拮抗剂BN52021和BN50730均减轻SNI神经损伤诱发的触觉异常痛敏,与SNI组及DMSO对照组比较,三个拮抗剂组PWMT值升高(P<0.05),BN52021和BN50730二者联合给药与单独用药比较镇痛效应更明显(P<0.05)。(2)脊髓c-fos表达免疫组织化学分析:Fos蛋白表达分布较广泛,位于Ⅰ~Ⅴ层,其在Ⅰ~Ⅱ层分布较为密集,FLI(Fos-likeimmunoreactivity)阳性神经元为细胞核染成棕黄色的圆形或卵圆形颗粒,胞浆未着色。与sham组比较,SNI组手术侧脊髓背角内FLI阳性神经元数目明显增加(P<0.05),对侧背角内仅有少量FLI阳性神经元;三个拮抗剂给药组大鼠脊髓背角各层FLI阳性神经元数目与SNI组及DMSO对照组相比明显下降(P<0.05)。(3)脊髓PAF放射免疫分析:SNI组神经损伤后第7d脊髓L_(4-6)节段组织PAF水平升高(1.183±0.098 pg/mg),与假手术组(0.571±0.065 pg/mg)比较,差异有统计学意义(P<0.05)。
     4.统计学方法
     所有数据以均数±标准差((?)±s)表示,采用SPSS11.0统计软件包分析。两组间比较采用非配对t检验,多组间比较采用单因素方差分析,继之以Fisher's PLSD多重比较法,P<0.05为差异有统计学意义。
     研究结论
     1.鞘内注射PAF诱发大鼠触觉异常痛敏和辐射热痛敏,环氧酶COX-2的激活和表达增强以及PGE_2的产生参与其机制。
     2.鞘内注射PAF诱发大鼠触觉异常痛敏和辐射热痛敏,胶质细胞和NF-κB通路的激活以及促炎性细胞因子TNF-α和IL-1β的表达增强参与其机制;IKKβ是PAF诱发的NF-κB通路激活以及促炎性细胞因子TNF-α和IL-1β表达增强的重要激酶。
     3.脊髓内源性PAF参与SNI神经损伤大鼠痛敏的中枢调控,PAF的二类结合位点均介导痛觉信号的传导和调控,PAF受体拮抗剂可应用于治疗神经病理性疼痛。
Background
     Tissue damage and inflammation usually induce persistant pain, characterized asspontaneous pain, hyperalgesia, tactile allodynia and so on. Within the past decade, there isgreat development in research on persistent pain.Central sensitization in pain signalconduction pathway is viewed as important mechanism in the creation and maintenance ofpersistent pain. However, so far the mechanism of central sensitization remainsunintelligible.Years of research indicates an amount of endogenous nerve mediators areimplicated in pain signal conduction and modulation in central sensitization.
     Platelet-activating factor (PAF) is an endogenous phospholipid, described in a varietyof immune and inflammatory cells and a potent mediator that participates in inflammatoryresponses.In further researches, neural cells produce PAF and also are target cells of PAF.PAF is suggested to be implicated in a variety of physiological and pathological states incentral nervous system, and play a significant role in signal conduction in nervous system.Recently, evidence suggests that PAF may play a part in pain signal conduction andmodulation in central nervous system. At present, the role and mechanism of PAF acted inpain signal conduction and modulation remain to be established further.
     The role of prostaglandins (PGs) as nociceptive mediators in inflammatory pain isaccepted extensively. Along with intensive research, the role of prostaglandins in other painmodels such as nuropathic pain is recognized gradually. Prostaglandins are thought to playan important role in the creation and maintenance of persistent pain both at peripheral sitesand in central nervous system. Spinal cord is the primary center in pain signal transmission,and prostaglandins in spinal cord act as important mediators in the creation andmaintenance of persistent pain. In vitro, PAF induces prostaglandin E_2 (PGE_2) release fromrat primary astrocytes.It suggests that prostaglandins and their rate-limiting enzymes (i.e.cyclooxygenases) may be involved in pain modulation mediated by PAF in central nervoussystem.There are no reports corresponding to this subject.
     Traditionally, glial cells were simply thought to be housekeepers for neurons andprovide neurochemical precursors and energy sources to neurons, not to function in signaltransmission among neural cells, and it were neurons and their transmitters rather than glialcells that modulated and amplified signals from the periphery in spinal cord and wereresponsible for hyperalgesia. However, in the last several years, we have seen exponentiallyincreasing number of research articles suggesting the role of glial cells in pain controlespecially in conditions involving inflammation and nerve injury. Activation of glial cells(e.g. astrocytes and microglia) and proinflammatory cytokines release from glial cellscontribute importantly to the development of pain hypersensitivity under pathologicalconditions. PAF receptor mRNA and functional expression are abundant in spinal cord andglial cells. In addition, PAF receptors function to stimulate the production of transmittersand proinflammatory cytokines in cultured glial cells in vitro.These researches abovesuggest the activation of glial cells and release of proinflammatory cytokines may beimplicated in pain modulation mediated by PAF in central nervous system. There are noreports corresponding to this subject.
     Evidence suggests that PAF exerts cellular actions through binding to its receptors.PAF has two kinds of binding sites which are high-affinity intracellular membrane binding site and low-affinity cell surface receptor. Inhibition of platelet-activating factor receptorsattenuates the inflammatory nociceptive response in rats.Whether antagonists for PAFreceptors attenuate nociceptive response in other pain model such as neuropathic pain hasnot been reported.
     To further explore the role of PAF in nociceptive modulation and its mechanism, thepresent study is to investigate: (1) Effects of platelet-activating factor administeredintrathecally on pain behaviour and cyclooxygenase expression in spinal cord in rats,antinociceptive effects of different inhibitors of cyclooxygenases on pain behaviouralresponse induced by PAF. (2) Effects of platelet-activating factor administeredintrathecally on glial activation and proinflammatory cytokines in spinal cord in rats. (3)Antinociceptive effects of PAF receptor antagonists administered intrathecally in rats withspared nerve injury.
     Methods and Results
     1. Effects of platelet-activating factor administered intrathecally on painbehaviour and cyclooxygenase expression in spinal cord in rats
     Methods Forty-eight Sprague-Dawley rats were randomly divided into six groups, andintrathecal PE-10 catheters were placed in the spinal subarachnoid space of rats: InACSF(artificial cerebral spinal fluid)group, rats were treated with 10μl artificial cerebralspinal fluid intrathecally. In PAF group, rats were treated with 5μg PAF which wasdissolved in 10μl artificial cerebral spinal fluid. In normal saline, SC-560, NS-398 andindomethacin group, all rats were pretreated with 1.5 ml normal saline, SC-560, NS-398and indomethacin intravenously through tail vein 10 minutes prior to intrathecal PAF(5μg,dissolved in 10μl ACSF) injection respectively. The doses of SC-560, NS-398 andindomethacin dissolved in 1.5 ml normal saline were 150μg/kg, 150μg/kg and 300μg/kg respectively. Baseline paw withdrawal mechanical threshold (PWMT) and paw withdrawalthermal latency (PWTL) were measured before intravenous and intrathecal injection. InACSF and PAF group, behavioural tests were processed at 15 minutes after intrathecalinjection and repeated every 15 minutes in the following 5 hours.In normal saline, SC-560,NS-398 and indomethacin group, behavioural tests were processed at 30 minutes afterintrathecal PAF injection.The rats were euthanized immediately after nociceptivebehavioural tests were all over. RT-PCR analysis (in ACSF and PAF group) andradioimmunoassay (in each group) were used to assess the expressions of COX-1, COX-2and COX-3 mRNA and concentrations of PGE_2 in L_(4-6) spinal cord respectively.
     Results (1) Nociceptive behavioural tests: The mean baseline PWMT of rats in thepresent study was 39.75±1.85 g. Intrathecal injection with 5μg PAF induced developmentof tactile allodynia rapidly in PAF group. PWMT of rats in PAF group in different timepoints reduced significantly compared with that in ACSF control group(P<0.05).Tactileallodynia in rats existed during the whole observation period of 5 hours, and the peak timespersisted about 60 minutes.Intrathecally administered PAF also induced development ofthermal hyperalgesia rapidly, The mean baseline PWTL of rats in the present study was13.04±0.20 s. PWTL of rats in PAF group in different time points reduced significantlycompared with that in ACSF control group(P<0.05).The time-course of thermalhyperalgesia was similar to that of tactile allodynia.The cyclooxygenase inhibitors, NS-398and indomethacin attenuated tactile allodynia and thermal hyperalgesia induced by PAF.PWMT and PWTL in NS-398 and indomethacin group increased significantly comparedwith that in normal saline control group(P<0.05). The COX-1 inhibitor, SC-560 had nosignificant effects on both PWMT and PWTL. (2) RT-PCR analysis of cyclooxygenases inspinal cord: COX-1, COX-2 and COX-3 mRNA all expressed constitutively in spinal cordin ACSF group. Both COX-1 and COX-3 mRNA expressed lower than COX-2 mRNA inspinal cord(P<0.05). PAF increased the expression of COX-2 mRNA(P<0.05), and had noeffects on the expression of COX-1 and COX-3 mRNA. (3) Radioimmunoassay of PGE_2 in spinal cord: PGE_2 concentration in PAF group increased significantly at 5 hours afterPAF injection compared with that in ACSF group(P<0.05). Compared with normal salinegroup, NS-398 and indomethacin inhibited the release of PGE_2 induced by PAF in spinalcord (P<0.05), and the PGE_2 concentration in NS-398 group is lower than that inindomethacin group(P<0.05). SC-560 did not affect the release of PGE_2 induced by PAF.
     2. Effects of platelet-activating factor administered intrathecally on glialactivation and proinflammatory cytokine expression in spinal cord in rats
     Methods Sixty-four Sprague-Dawley rats were randomly divided into six groups, andintrathecal PE-10 catheters were placed in the spinal subarachnoid space of rats: In ACSFgroup, rats were treated with 10μl artificial cerebral spinal fluid intrathecally. In PAFgroup, rats were treated with 5μg PAF which was dissolved in 10μl artificial cerebralspinal fluid intrathecally. In DMSO control group, SC-514(10 mg/kg)group, SC-514(50mg/kg)group and SC-514(100 mg/kg)group, DMSO(2 ml, the final concentration ofDMSO in normal saline was 0.1%) and SC-514 which was dissolved in 2 ml 0.1% DMSOwere injected intraperitoneally respectively 2 hours prior to intrathecal injection with 5μgPAF. Baseline PWMT and PWTL were measured before intraperitoneal and intrathecalinjection. PWMT and PWTL were measured at 5, 15, 30, 45, 60, 90 and 120 minutes afterPAF was administered intrathecally. The rats were euthanized immediately afternociceptive behavioural tests were all over. The activation of astrocyte and microglia in L_(4-6)spinal cord were assessed with immunohistochemical staining of glial fibrillary acid protein(GFAP) and OX-42 respectively in ACSF and PAF group. Proinflammatory cytokinesTNF-a and IL-1βin L_(4-6) spinal cord were analyzed with ELISA in each group.
     Results (1) Nociceptive behavioural tests: Intrathecally administered PAF induceddevelopment of tactile allodynia and thermal hyperalgesia rapidly, decreased PWMT andPWTL in rats in PAF group significantly (P<0.05). Pretreatment with SC-514dose-dependently attenuated nociceptive behavioural response induced by PAF. Both PWMT and PWTL in different time points in SC-514 groups increased significantlycompared with that in DMSO control group(P<0.05). (2) Immunohistochemical analysisof glial activation: Intrathecally administered PAF activated astrocyte and microglia labeledrespectively with GFAP and OX-42 staining in dorsal horn of gray matter in PAF group.Activating grade of glia is (++) and (-) in PAF and control group respectively. Opticaldensity of GFAP and OX-42 immunoreactive profiles increased significantly in PAF groupcompared with that in control group (P<0.05). Activated glia distributed throughout thespinal gray matter, and in dorsal horn, activated glia distributed mostly in laminaⅠ~Ⅱ. (3)ELISA analysis of proinflammatory cytokines: Intrathecally admini- stered PAFsignificantly increased the expressions of TNF-a and IL-1βin lumbar spinal cord at 2 hoursafter intrathecal injection (P<0.05). Pretreatment with SC-514 dose-dependently inhibitedthe increase of TNF-a and IL-1βexpression induced by PAF in spinal cord (P<0.05).
     3. Antinociceptive effects of PAF receptor antagonists administeredintrathecally in rats with spared nerve injury
     Methods Sixty-four Sprague-Dawley rats were randomly divided into six groups:sham group, SNI group, DMSO (5μl, 0.1% final concentration in normal saline) controlgroup, BN52021(100μg) group, BN50730(100μg) group and BN52021(100μg)+BN50730(100μg) group. BN52021 and BN50730, the antagonists for PAF receptors weredissolved in 5μl DMSO (the final concentration of DMSO in normal saline was 0.1%)respectively. Spared nerve injury neuropathic pain model was set up in all rats except shamgroup. Intrathecal injections with DMSO or antagonists were administered once a day in 7days in DMSO or antagonists groups. PWMT were measured at 7 days in all rats. The ratswere euthanized immediately after nociceptive behavioural tests were all over.Immunohistochemical staining (in each group),and radioimmunoassay (in ACSF and PAFgroup) were used to assess the expressions of c-fos and PAF levels in L_(4-6) spinal cordrespectively.
     Results (1) Nociceptive behavioural tests: Spared nerve injury induced tactileallodynia in rats. PWMT in SNI group reduced significantly compared with that in shamgroup (P<0.05). The antagonists BN52021 and BN50730 attenuated tactile allodynia in ratswith spared nerve injury. PWMT in three antagonist groups increased, significantlydifferent from that in SNI and DMSO group (P<0.05). Combination treatment withBN52021 and BN50730 were more potent in antinociceptive effects than treatment withone alone (P<0.05). (2) Immunohistochemical analysis: The expression of c-fos in spinalcord distributed extensively in laminaⅠ~Ⅴ,mostly in laminaⅠ~Ⅱ.Fos-like immuno-reactivityneurons were present dyeing deep brown on nucleus, with round or ellipticgranule-like product, and not dyeing in cytoplasm.The number of Fos-like immuno-reactivityneurons in ipsilateral dorsal horn in SNI rats increased, significantly differentfrom that in sham group(P<0.05). The number of Fos-like immunoreactivity neurons indifferent lamina of dorsal horn in spinal cord in three antagonist groups reduced,significantly different from that in SNI and DMSO group(P<0.05). (3) Radioimmunoassayof PAF in spinal cord: SNI induced PAF release in spinal cord in SNI group rats at 7days. PAF concentration in spinal cord in SNI group was 1.183±0.098 pg/mg, significantlydifferent from 0.571±0.065 pg/mg in sham group(P<0.05).
     Conclusions
     1. Intrathecally administered PAF may induce development of tactile allodynia andthermal hyperalgesia in rats.The activation and increased expression of COX-2 andrelease of PGE_2 in spinal cord are implicated in its mechanism.
     2. Intrathecally administered PAF may induce development of tactile allodynia andthermal hyperalgesia in rats.The activation of glia and NF-κB pathway, and theincreased expressions of TNF-αand IL-1βin spinal cord in rats are implicated in its mechanism. IKKβplays the major role in the activation of NF-κB pathway andexpressions of proinflammatory cytokine TNF-αand IL-1βinduced by PAF.
     3. These findings suggest a role for endogenous PAF in central nociceptive modulationfor spared nerve injury induced neuropathic pain in rats.Both intracellular and cellsurface PAF binding sites are involved in nociceptive transmission and modulation inrats, and that PAF receptor antagonists might be useful for treating some patients withneuropathic pain.
引文
1 Leith JL, Wilson AW, Donaldson LF, et al. Cyclooxygenase-1-derived prostaglandins in the periaqueductal gray differentially control C- versus A-fiber-evoked spinal nociception. J Neurosci, 2007, 27(42):11296-11305.
    2 Narita M, Shimamura M, Imai S, et al. Role of interleukin-1beta and tumor necrosis factor-alpha-dependent expression of cyclooxygenase-2 mRNA in thermal hyperalgesia induced by chronic inflammation in mice. Neuroscience, 2008, 152(2): 477-486.
    3 Chandrasekharan NV, Dai Hu, Lamar Turepu Roos K, et al. COX-3, a cyclo-oxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs:Cloning, structure, and expression. Proc Natl Acad Sci USA, 2002, 99(21): 13926-13931.
    4 O'Rielly DD, Loomis CW. Spinal prostaglandins facilitate exaggerated A- and C-fiber-mediated reflex responses and are critical to the development of allodynia early after L_5-L_6 spinal nerve ligation. Anesthesiology, 2007,106(4):795-805.
    5 Lee JH, Jang KJ, Lee YT, et al. Electroacupuncture inhibits inflammatory edema and hyperalgesia through regulation of cyclooxygenase synthesis in both peripheral and central nociceptive sites. Am J Chin Med, 2006, 34(6):981-988.
    6 Bazan NG, Packard MG, Teather L, et al. Bioactive lipids in excitatory neuro-transmission and neuronal plasticity. Neurochem Int, 1997, 30(2):225-231.
    7 Morita K, Morioka N, Abdin J, et al. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain, 2004, 111(3):351-359.
    8 Teather LA, Lee RK, Wurtman RJ. Platelet-activating factor increases prostaglandin E_2 release from astrocyte-enriched cortical cell cultures. Brain Res, 2002,946(1):87-95.
    9 Boetkjaer A, Boedker M, Cui JG, et al.Synergism in the repression of COX-2-and TNFalpha-induction in platelet activating factor-stressed human neural cells. Neurosci Lett, 2007, 426(1):59-63.
    10 Milligan ED,Hinde JL,Mehmert KK, et al. A method for increasing the viability of the external portion of lumbar catheters placed in the spinal subarachnoid space of rats. J Neurosci Methods, 1999, 90(1):81-86.
    11 Obata K, Yamanaka H, Kobayashi K, et al. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci, 2004, 24(4): 10211-10222.
    12 Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia.Pain, 1988, 32(1): 77-88.
    13 Sogos V, Bussolino F, Pilia E, et al. Acetylcholine-induced production of platelet-activating factor by human fetal brain cells inculture. J Neurosci Res 1990, 27(4):706-711.
    14 Bito H, Nakamura M, Honda Z, et al. Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca~(2+) in hippocampal neurons.Neuron 1992,9(2):285-294.
    15 Catalan RE, Martinez AM, Aragones MD, et al.PAF-induced activation of polyphosphoinositide-hydrolyzing phospholipase C in cerebral cortex. Biochem Biophys Res Commun, 1992, 183(1):300-305.
    16 Teather LA, Magnusson JE, Wurtman RJ. Platelet-activating factor antagonists decrease the inflammatory nociceptive response in rats. Psychopharmacology (Berl),2002, 163(3-4):430-433.
    17 Teather LA, Afonso VM, Wurtman RJ. Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res, 2006,1097(1):230-233
    18 Tsuda M, Ishii S, Masuda T, et al. Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor. J Neurochem, 2007,102(5):1658-1668.
    19 Zhang Q, Sitzman LA, Al-Hassani M, et al. Involvement of platelet-activating factor in ultraviolet B-induced hyperalgesia. J Invest Dermatol, 2009,129(1):167-174.
    20 Kroin JS,Takatori M,Li J,et al. Upregulation of dorsal horn microglial cyclo-oxygenase-1 and neuronal cyclooxygenase-2 after thoracic deep muscle incisions in the rat.Anesth Analg, 2008,106(4):1288-1295.
    21 Zhang FY,Wan Y,Zhang ZK, et al. Peripheral formalin injection induces long-lasting increases in cyclooxygenase 1 expression by microglia in the spinal cord. J Pain, 2007, 8(2): 110-117.
    22 Marcheselli VL,Rossowska,Domingo MT, et al. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex.J Biol Chem, 1990, 265(16): 9140-9145.
    23 Ishii S, Shimizu T. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res, 2000, 39(1): 41-82.
    24 Marrache AM,Gobeil Jr,Bernier SG, et al. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. J Immunol, 2002,169(11): 6474-6481.
    1 Watkins LR, Milligan ED, Maier SF. Glial activation: a driving force for pathological pain. Trends Neurosci, 2001, 24(8): 450-455.
    2 Wieseler-Frank J, Maier SF, Watkins LR. Central proinflammatory cytokines and pain enhancement. Neurosignals, 2005,14(4): 166-174.
    3 Suter MR, Wen YR, Decosterd I, et al. Do glial cells control pain? Neuron Glia Biol, 2007, 3(3): 255-268.
    4 Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol, 1996, 14:649-683.
    5 Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene, 1999,18(49): 6853-6866.
    6 Morita K, Morioka N, Abdin J, et al. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain,2004, 111(3):351-359.
    7 oetkjaer A, Boedker M, Cui JG, et al. Synergism in the repression of COX-2- and TNFalpha-induction in platelet activating factor-stressed human neural cells. Neurosci Lett, 2007, 426(1):59-63.
    8 Hostettler ME, Carlson SL. PAF antagonist treatment reduces proinflammatory cytokine mRNA after spinal cord injury. Neuroreport, 2002, 13(1):21-24.
    9 Milligan ED, Hinde JL, Mehmert KK, et al. A method for increasing the viability of the external portion of lumbar catheters placed in the spinal subarachnoid space of rats. J Neurosci Methods, 1999, 90(1):81-86.
    10 Obata K, Yamanaka H, Kobayashi K, et al. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci, 2004, 24(45):10211-10222.
    11 Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988, 32(1): 77-88.
    12 Coyle DE. Partial peripheral nerve injury leads to activation of astroglia and microglia which parallels the development of allodynic behavior.Glia, 1998, 23(1):75-83.
    13 Fu KY,Light AR,Matsushima GK, et al.Microglial reactions after subcutaneous formalin injection into the rat hind paw. Brain Res, 1999, 825(1-2):59-67.
    14 Schwei MJ, Honore P, Rogers SD, et al.Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci, 1999, 19(24):10886-10897.
    15 Meller ST, Dykstra C, Grzybycki D, et al.The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology, 1994, 33(11):1471-1478.
    16 Sweitzer SM, Schubert P, DeLeo JA. Propentofylline, a glial modulating agent, exhibits antiallodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther, 2001, 297(3):1210-1217.
    17 DeLeo JA, Yezierski RP.The role of neuroinflammation and neuroimmune activation in persistent pain. Pain, 2001, 90(1-2):1-6.
    18 Sweitzer S, Martin D, DeLeo JA. Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience, 2001, 103(2):529-539.
    19 Schafers M, Sommer C. Anticytokine therapy in neuropathic pain management. Expert Rev Neurother, 2007, 7(11):1613-1627.
    20 Marcheselli VL, Rossowska MJ, Domingo MT,et al. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem, 1990, 265(16):9140-9145.
    21 Bazan NG, Packard MG, Teather L, et al.Bioactive lipids in excitatory neuro-transmission and neuronal plasticity. Neurochem Int, 1997, 30(2):225-231.
    22 Jaranowska A, Bussolino F, Sogos V, et al. Platelet-activating factor production by human fetal microglia. Effect of lipopolysaccharides and tumor necrosis factor-alpha.Mol Chem Neuropathol, 1995, 24(2-3):95-106.
    23 Brodie C. Functional PAF receptors in glia cells: binding parameters and regulation of expression. Int J Dev Neurosci, 1994,12(7):631-640.
    24 Mori M, Aihara M, Kume K, et al. Predominant expression of platelet-activating factor receptor in the rat brain microglia. J Neurosci, 1996, 16(11):3590-3600.
    25 Aihara M, Ishii S, Kume K, et al. Interaction between neurone and microglia mediated by platelet-activating factor. Genes Cells, 2000, 5(5):397-406.
    26 Brodie C.Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci Lett, 1995,186(1):5-8.
    27 Wang JH, Sun GY. Platelet activating factor (PAF) antagonists on cytokine induction of iNOS and sPLA2 in immortalized astrocytes(DITNC). Neurochem Res, 2000,25(5):613-619.
    28 Karin M. How NF-κB is activated: the role of the IkB kinase (IKK) complex. Oncogene, 1999,18(49): 6867-6874.
    29 Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol, 2000,18:621-663.
    30 Li ZW, Chu W, Hu Y, et al. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med, 1999,189(11):1839-1845.
    31 Wen D, Nong Y, Morgan JG, et al. A selective small molecule IkappaB Kinase beta inhibitor blocks nuclear factor kappaB-mediated inflammatory responses in human fibroblast-like synoviocytes, chondrocytes, and mast cells. J Pharmacol Exp Ther, 2006, 317(3):989-1001.
    32 Kishore N, Sommers C, Mathialagan S, et al. A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J Biol Chem, 2003, 278(35):32861-32871.
    1 Ishii S, Shimizu T. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res, 2000, 39(1):41-82.
    2 Morita K, Morioka N,Abdin J, et al. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain,2004, 111 (3):351-359.
    3 Marcheselli VL, Rossowska MJ, Domingo M-T, et al.Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem, 1990, 265(16):9140-9145.
    4 Teather LA , Magnusion JE, Wurtman RJ. Platelet-activating factor antagonists decrease the inflammatory nociceptive response in rats.Psychopharmacology, 2002,163(3-4):430-433.
    5 Milligan ED, Hinde JL, Mehmert KK, et al. A method for increasing the viability of the external portion of lumbar catheters placed in the spinal subarachnoid space of rats. J Neurosci Methods, 1999, 90(l):81-86.
    6 Decosterd I,Woolf CJ.Spared nerve injury: an animal model of persistent peripheral neuropathic pain[J]. Pain,2000,87(2):149-158.
    7 Obata K, Yamanaka H, Kobayashi K, et al. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci, 2004, 24(45):10211-10222.
    8 Kim KJ, Yoon YW, Chung JM. Comparison of three rodent neuropathic pain models. Exp Brain Res, 1997, 113(2):200-206.
    9 Clark GD, Happel LT, Zorumski CF, et al. Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron, 1992, 9(6):1211-1216.
    10 Bazan NG. The neuromessenger platelet-activating factor in plasticity and neuro-degeneration. Prog Brain Res, 1998,118:281-291.
    11 Bazan NG, Packard MG, Teather L, et al. Bioactive lipids in excitatory neuro-transmission and neuronal plasticity. Neurochem Int, 1997, 30(2):225-231.
    12 Lindsberg PJ, Yue TL, Frerichs KU, et al. Evidence for platelet-activating factor as a novel mediator in experimental stroke in rabbits. Stroke, 1990, (10):1452-1457.
    13 Nogami K, Hirashima Y, Endo S, et al. Involvement of platelet-activating factor (PAF) in glutamate neurotoxicity in rat neuronal cultures. Brain Res, 1997, 754(1-2):72-78.
    14 Jaranowska A, Bussolino F, Sogos V, et al. Platelet-activating factor production by human fetal microglia. Effect of lipopolysaccharides and tumor necrosis factor-alpha.Mol Chem Neuropathol, 1995, 24(2-3):95-106.
    15 Xu Y, Tao YX. Involvement of the NMDA receptor/nitric oxide signal pathway in platelet-activating factor-induced neurotoxicity. Neuroreport, 2004,15(2):263-266.
    16 Bazan NG, Allan G. Platelet-activating factor in the modulation of excitatory amino acid neurotransmitter release and of gene expression. J Lipid Mediat Cell Signal, 1996 ,(1-3):321-330.
    17 Tabuchi S, Kume K, Aihara M, et al.Lipid mediators modulate NMDA receptor currents in a Xenopus oocyte expression system. Neurosci Lett, 1997, 237(1):13-16.
    18 Marrache AM,Gobeil F Jr,Bernier SG, et al. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor.J Immunol, 2002,169(11): 6474-6481.
    19 Bazan NG, Rodriguez de Turco EB, Allan G. Mediators of injury in neurotrauma: intracellular signal transduction and gene expression. J Neurotrauma, 1995, 12(5):791-814.
    20 Teather LA, Lee RK, Wurtman RJ. Platelet-activating factor increases prostaglandin E(2) release from astrocyte-enriched cortical cell cultures. Brain Res, 2002, 946(1):87-95.
    21 Boetkjaer A, Boedker M, Cui JG, et al. Synergism in the repression of COX-2-and TNFalpha-induction in platelet activating factor-stressed human neural cells. Neurosci Lett, 2007, 426(1):59-63.
    22 Hostettler ME, Carlson SL. PAF antagonist treatment reduces proinflammatory cytokine mRNA after spinal cord injury. Neuroreport, 2002,13(1):21-24.
    23 Harris JA. Using c-fos as a neural marker of pain. Brain Research Bulletin, 1998,45(1):1-8.
    24 Squinto SP, Block AL, Braquet P, et al. Platelet-activating factor stimulates a fos/jun/AP-1 transcriptional signaling system in human neuroblastoma cells. J Neurosci Res, 1989, 24(4):558-566.
    1 Snyder F. Platelet-activating factor and its analogs: metabolic pathways and related intracellular processes. Biochim Biophys Acta,1995,1254(3):231-249.
    2 Lee TC, Malone B, Snyder F. Formation of 1-alkyl-2-acetyl-sn-glycerols via the de novo biosynthetic pathway for platelet-activating factor. Characterization of 1-alkyl-2-acetyl-sn-glycero-3-phosphate phosphohydrolase in rat spleens. J Biol Chem,1988,263(4):1755-1760.
    3 Blank ML, Smith ZL, Fitzgerald V, et al.The CoA-independent transacylase in PAF biosynthesis: tissue distribution and molecular species selectivity. Biochim Biophys Acta,1995,1254(3):295-301.
    4 Nogami K, Hirashima Y, Endo S, et al. Involvement of platelet-activating factor (PAF) in glutamate neurotoxicity in rat neuronal cultures.Brain Res,1997, 754(1-2):72-78.
    5 Jaranowska A, Bussolino F, Sogos V, et al. Platelet-activating factor production by human fetal microglia. Effect of lipopolysaccharides and tumor necrosis factor-alpha. Mol Chem Neuropathol,1995,24(2-3):95-106.
    6 Yue TL, Lysko PG, Feuerstein G. Production of platelet-activating factor from rat cerebellar granule cells in culture. J Neurochem,1990,54(5): 1809-1811.
    7 Tokutomi T, Maruiwa H, Hirohata M, et al. Production of platelet-activating factor by neuronal cells in the rat brain with cold injury. Neurol Res,2001,23(6):605-611.
    8 Kumar R, Harvey SA, Kester M, et al. Production and effects of platelet-activating factor in the rat brain. Biochim Biophys Acta,1988,963(2):375-383.
    9 Nishida K, Markey SP. Platelet-activating factor in brain regions after transient ischemia in gerbils. Stroke,1996,27(3):514-519.
    10 Hostettler ME,Carlson SL.PAF antagonist treatment reduces proinflammatory cytokine mRNA after spinal cord injury. Neuroreport,2002,13(1):21-24.
    11 Gelbard HA,Nottet HS,Swindells S, et al. Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol,1994, 68(7):4628-4635.
    12 Morita K, Morioka N,Abdin J, et al. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice.Pain,2004,111(3):351-359.
    13 Bito H, Kudo Y, Shimizu T. Characterization of platelet-activating factor (PAF) receptor in the rat brain. J Lipid Mediat,1993,6(1-3):169-174.
    14 Teather LA, Afonso VM, Wurtman RJ. Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res,2006,1097(1):230-233.
    15 Lu SM, Tong N, Gelbard HA. The phospholipid mediator platelet-activating factor mediates striatal synaptic facilitation. J Neuroimmune Pharmacol,2007, 2(2):194-201.
    16 Mori M, Aihara M, Kume K, et al. Predominant expression of platelet-activating factor receptor in the rat brain microglia. J Neurosci,1996,16(11):3590-3600.
    17 Marcheselli VL,Rossowska,Domingo MT, et al. Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex. J Biol Chem,1990, 265(16): 9140-9145.
    18 Ishii S, Shimizu T. Platelet-activating factor(PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res, 2000 ,39(1): 41-82.
    19 Clark GD, Zorumski CF, McNeil RS, et al. Neuronal platelet-activating factor receptor signal transduction involves a pertussis toxin-sensitive G-protein. Neurochem Res,2000, 25(5):603-611.
    20 Aihara M, Ishii S, Kume K, et al. Interaction between neurone and microglia mediated by platelet-activating factor. Genes Cells, 2000, 5(5):397-406.
    21 Marcheselli VL, Bazan NG. Platelet-activating factor is a messenger in the electroconvulsive shock-induced transcriptional activation of c-fos and zif-268 in hippocampus. J Neurosci Res, 1994, 37(1):54-61.
    22 Boetkjaer A, Boedker M, Cui JG, et al. Synergism in the repression of COX-2- and TNFalpha-induction in platelet activating factor-stressed human neural cells. Neurosci Lett, 2007, 426(1):59-63.
    23 Hostettler ME, Carlson SL. PAF antagonist treatment reduces proinflammatory cytokine mRNA after spinal cord injury. Neuroreport, 2002,13(1):21-24.
    24 Brodie C.Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci Lett, 1995, 186(1):5-8.
    25 Wang JH, Sun GY. Platelet activating factor (PAF) antagonists on cytokine induction of iNOS and sPLA2 in immortalized astrocytes (DITNC). Neurochem Res, 2000,25(5):613-619.
    26 Teather LA, Lee RK, Wurtman RJ. Platelet-activating factor increases prostaglandin E_2 release from astrocyte-enriched cortical cell cultures. Brain Res, 2002, 946(1):87-95.
    27 Teather LA, Wurtman RJ. Cyclooxygenase-2 mediates platelet-activating factor- induced prostaglandin E_2 release from rat primary astrocytes. Neurosci Lett,2003,340(3): 177-180.
    28 Clark GD, Happel LT, Zorumski CF, et al.Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor. Neuron, 1992, 9(6):1211-1216.
    29 Calcerrada MC,Catal(?)n RE,Martinez AM.Glutamate release is involved in PAF-increased cyclic GMP levels in hippocampus.Biochem Mol Biol Int,1999, 47(3):529-535.
    30 Xu Y, Tao YX. Involvement of the NMDA receptor/nitric oxide signal pathway in platelet-activating factor-induced neurotoxicity.Neuroreport, 2004,15(2): 263-266.
    31 Prescott SM, Zimmerman GA, Stafforini DM, et al. Platelet-activating factor and related lipid mediators. Annu Rev Biochem, 2000,69:419-445.
    32 Bito H, Nakamura M, Honda Z, et al.Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca~(2+) in hippocampal neurons.Neuron,1992, 9(2):285-294.
    33 Kato K, Clark GD, Bazan NG, et al.Platelet-activating factor as a potential retrograde messenger in CA1 hippocampal long-term potentiation. Nature, 1994, 367(6459):175-179.
    34 Wieraszko A, Li G, Kornecki E, et al.Long-term potentiation in the hippocampus induced by platelet-activating factor. Neuron, 1993, 10(3):553-557.
    35 Chen C, Magee JC, Marcheselli V, et al.Attenuated LTP in hippocampal dentate gyrus neurons of mice deficient in the PAF receptor. J Neurophysiol, 2001, 85(1):384-390.
    36 Heusler P, Boehmer G.Platelet-activating factor contributes to the induction of long-term potentiation in the rat somatosensory cortex in vitro. Brain Res, 2007,1135(1):85-91.
    37 Packard MG, Teather LA, Bazan NGEffects of intrastriatal injections of platelet-activating factor and the PAF antagonist BN 52021 on memory. Neurobiol Learn Mem, 1996, 66(2):176-182.
    38 Row BW, Kheirandish L, Li RC,et al.Platelet-activating factor receptor-deficient mice are protected from experimental sleep apnea-induced learning deficits. J Neurochem,2004, 89(1):189-196.
    39 Bate C, Kempster S, Williams A.Platelet-activating factor antagonists protect amyloid-beta damaged neurons from microglia-mediated death. Neuropharmacology, 2006,51(2):173-181.
    40 Li J, Hu J, Shao B,et al.Protection of PMS777, a New AChE Inhibitor with PAF Antagonism, Against Amyloid-beta-induced Neuronal Apoptosis and Neuroinflammation. Cell Mol Neurobiol, 2009 Feb 5. [Epub ahead of print]
    41 Faden AI, Tzendzalian PA.Platelet-activating factor antagonists limit glycine changes and behavioral deficits after brain trauma. Am J Physiol, 1992, 263(4 Pt 2):R909-914.
    42 Xiao J, Zhao D, Jia L.Effect of platelet activating factor receptor at spinal cord neurocyte membrane on secondary damage after spinal cord injury.Zhonghua Yi Xue Za Zhi,1996,76(2):120-123.
    43 Li S, Meng Q, Zhang L.Experimental therapy of a platelet-activating factor antagonist (ginkgolide B) on photochemically induced thrombotic cerebral ischaemia in tree shrews. Clin Exp Pharmacol Physiol, 1999, 26(10):824-825.
    44 Wang X, Qin ZH, Shi H, et al.Protective effect of Ginkgolids (A+B) is associated with inhibition of NIK/IKK/IkappaB/NF-kappaB signaling pathway in a rat model of permanent focal cerebral ischemia.Brain Res, 2008, 1234:8-15.
    45 Belayev L, Khoutorova L, Atkins K, et al.LAU-0901, a novel platelet-activating factor receptor antagonist, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat. Brain Res, 2009,1253:184-190.
    46 Perry SW, Hamilton JA, Tjoelker LW, et al.Platelet-activating factor receptor activation.An initiator step in HIV-1 neuropathogenesis. J Biol Chem, 1998, 273(28):17660-17664.
    47 Bate C, Salmona M, Williams A.The role of platelet activating factor in prion and amyloid-beta neurotoxicity. Neuroreport, 2004, 15(3):509-513.
    48 Bate C, Salmona M, Williams A.Ginkgolide B inhibits the neurotoxicity of prions or amyloid-betal-42. J Neuroinflammation, 2004,1(1):4.
    49 Bate C, Tayebi M, Williams A.Ginkgolides protect against amyloid-betal-42-mediated synapse damage in vitro. Mol Neurodegener, 2008, 3:1.
    50 Tsuda M, Ishii S, Masuda T, et al. Reduced pain behaviors and extracellular signal-related protein kinase activation in primary sensory neurons by peripheral tissue injury in mice lacking platelet-activating factor receptor. J Neurochem, 2007,102(5): 1658-1668.
    51 Morita K, Morioka N, Abdin J, et al. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain ,2004, 111(3):351-359.
    52 Morita K, Kitayama T, Morioka N, et al.Glycinergic mediation of tactile allodynia induced by platelet-activating factor (PAF) through glutamate-NO-cyclic GMP signalling in spinal cord in mice.Pain, 2008, 138(3):525-536.
    53 Marotta DM, Costa R, Motta EM, et al.Mechanisms underlying the nociceptive responses induced by platelet-activating factor (PAP) in the rat paw. Biochem Pharmacol, 2009,77(7):1223-1235.
    54 Zhang Q, Sitzman LA, Al-Hassani M, et al. Involvement of platelet-activating factor in ultraviolet B-induced hyperalgesia.J Invest Dermatol, 2009, 129(1):167-174.
    55 Teather LA, Magnusson JE, Wurtman RJ. Platelet-activating factor antagonists decrease the inflammatory nociceptive response in rats. Psychopharmacology (Berl),2002,163(3-4):430-433.
    1 Watkins LR, Maier SF. Beyond neurons:evidence that immune and glial cells contribute to pathological pain states. Physiol Rev, 2002, 82(4):981-1011.
    2 Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia.Trends Neurosci, 2005, 28(2):101-107.
    3 Hansson E.Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf), 2006, 187(1-2):321-327.
    4 Bezzi P, Volterra A. A neuron-glia signalling network in the active brain. Curr Opini Neurobiol, 2001, 11(3):387-394.
    5 Schreiber KL, Beitz AJ, Wilcox GL.Activation of spinal microglia in a murine model of peripheral inflammation-induced, long-lasting contralateral allodynia. Neurosci Lett, 2008, 440(1):63-67.
    6 Eliasson C,Sahlgren C, Berthold CH, et al. Intermediate filament protein partnership in astrocytes. J Biol Chem, 1999, 274(34):3996-4006.
    7 Fu KY, Light AR, Matsushima GK, et al.Microglial reactions after subcutaneous forma-lin injection into the rat hind paw. Brain Res, 1999, 825(l-2):59-67.
    8 Deleo JA, Colburn RW. Proinflammatory cytokines and glial cells: their role in neuropathic pain. In:Watkins LR eds.Cytokines and pain. Birkhauser, 1999, 159-182.
    9 Sweitzer SM, Colburn RW, Rutkowski M, et al. Acute peripheral inflammation induces moderate glial activation and spinal IL-1 beta expression that correlates with pain behavior in the rat. Brain Res, 1999, 829(1-2):209-221.
    10 Raghavendra V, Tanga FY, DeLeo JA.Complete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS.Eur J Neurosci, 2004, 20(2):467-473.
    11 Watkins LR, Maier SF.The pain of being sick: implications of immune-to-brain communication for understanding pain. Annu Rev Psychol, 2000, 51:29-57.
    12 Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci,1999, 19 (24):10886-10897.
    13 Zhang RX, Liu B, Wang L, et al.Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain, 2005,118(1-2):125-136.
    14 Hashizume H, DeLeo JA, Colburn RW, et al. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine, 2000, 25(10):1206-1217.
    15 Tanga FY, Raghavendra V, DeLeo JA. Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain.Neurochem Int, 2004, 45(2-3):397-407.
    16 Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol, 1997, 377(3):443-464.
    17 Colburn RW, Rickman AJ, DeLeo JA. The effect of site and type of nerve injury on spinal glial activation an neuropathic pain behavior. Exp Neurol, 1999,157(2):289-304.
    18 Milligan ED, O'Connor KA, Nguyen KT, et al. Intrathcal HIV-1 envelope glycol-protein gp 120 enhanced pan states mediated by spinal cord proinflammatory cytokines. J Neurosci, 2001, 21(8):2808-2819.
    19 Moalem G, Tracey DJ.Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev, 2006, 51(2):240-264.
    20 Hu P, Bembrick AL, Keay KA, et al.Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun, 2007, 21(5):599-616.
    21 Song P, Zhao ZQ. The involvement of glial cells in the development of morphine tolerance. Neurosci Res, 2001, 39(3):281-286.
    22 Meller ST, Dykstra C, Grzybycki D, et al. The possible role of glia in nociceptive processing and hyperalgisia in the spinal cord of the rat.Neuropharmacology, 1994, 33(11):1471-1478.
    23 Watkins LR, Maier SF.The case of the missing brain: arguments for a role of brain-to-spinal cord pathways in pain facilitation. Behav Brain Sci, 1997, 20(3):469-470.
    24 Milligan ED, Mehmert KK, Hinde JL, et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the Human Immunodeficiency Virus-1 (HIV-1)envelope glycoprotein, gp120. Brain Res, 2000, 861(1): 105-116.
    25 Watkins LR, Milligan ED, Maier SF. Glial activation:a driving force for pathological pain. Trends Neurosci, 2001, 24(8):450-455.
    26 Watkins LR, Milligan ED, Maier SF. Glial proinflammatory cytokines mediate exaggerated pain states:implications for clinical pain.Adv Exp Med Biol,2003,521:1-21.
    27 Sweitzer SM, Schubert P, Deleo JA. Propentofylline, a glial modulating agent, exhibits anti-allodynic properties in a rat model of neuropathic pain. J Pharmacol Exp Ther,2001, 297(3):1210-1217.
    28 Obata H, Eisenach JC, Hussain H, et al.Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain, 2006, 7(11):816-22.
    29 Clark AK, Gentry C, Bradbury EJ, et al.Role of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain, 2007, 11(2):223-230.
    30 Haydon PG. Glia: listening and talking to the synapse. Nat Rev Neurosci 2001,2(3):185-193.
    31 Ren K, Dubner R.Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol, 2008, 21(5):570-579.
    32 Kettenmann H, Ransom BR. Neuroglia. In: New York: Oxford University Press, 1995.
    33 Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996, 19(8):312-318.
    34 Lu VB, Biggs JE, Stebbing MJ, et al.Brain-derived neurotrophic factor drives the changes in excitatory synaptic transmission in the rat superficial dorsal horn that follow sciatic nerve injury. J Physiol, 2009, 587(Pt 5): 1013-1032.
    35 Xu JT, Xin WJ, Zang Y, et al.The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain, 2006,123(3):306-321.
    36 Kiguchi N, Maeda T, Kobayashi Y, et al.Up-regulation of tumor necrosis factor-alpha in spinal cord contributes to vincristine-induced mechanical allodynia in mice.Neurosci Lett, 2008, 445(2): 140-143.
    37 Vitkovic L, Bockaert J, Jacque C. "Inflammatory" cytokine: neuromodulators in normal brain? J Neurochem, 2000, 74(2):457-471.
    38 Ignatowski TA, Covey WC, Knight PR, et al. Brain-derived TNFa mediates neuropathic pain. Brain Res, 1999, 841(1-2):70-77.
    39 Ramer MS, Murphy PG, Richardson PM, et al. Spinal nerve lesion-induced mechanoallodynia and adrenergic sprouting in sensory ganglia are attenuated in interleukin-6 knockout mice. Pain, 1998, 78(2):115-121.
    40 Tadano T, Namioka M,Nakagawasai O, et al. Induction of nociceptive responses by intrathecal injection of interleukin-1 in mice. Life Sci, 1999, 65(3): 255-261.
    41 Murphy PG, Ramer MS, Borthwick L, et al. Endogenous interleukin-6 contributes to hypersensitivity to cutaneous stimuli and changes in neuropeptides associated with chronic nerve constriction in mice. Eur J Neurosci, 1999, 11(7):2243-2253.
    42 Covey WC, Ignatowski TA, Knight PR, et al.Brain-derived TNFalpha: involvement in neuroplastic changes implicated in the conscious perception of persistent pain. Brain Res, 2000, 859(1):113-122.
    43 Deleo JA, Rutkowski MD, Stalder AK, et al.Transgenic expression of TNF by astrocytes increases mechanical allodynia in a mouse neuropathy model. Neuroreport,2000, 11(3):599-602.
    44 Laughlin TM, Bethea JR, Yezierski RP, et al. Cytokine involvement in dynorphin-induced allodynia. Pain, 2000, 84(2-3): 159-167.
    45 Arruda JL, Sweitzer S, Rutkowski MD, et al. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res, 2000, 879(1-2):216-225.
    46 Watkins LR,Hansen MK,Nguyen KT, et al. Dynamic regulation of the proinflam-matory cytokine, interleukin-lbeta:molecular biology for non-molecular biologists.Life Sci, 1999, 65(5):449-481.
    47 Watkins LR, Martin D, Ulrich P, et al. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain, 1997, 71(3):225-235.
    48 Schoenen J, Delree P, Leprince P, et al. Neurotransmitter phenotype plasticity in cultured dissociated adult rat dorsal root ganglia: an immunocytochemical study. J Neurosci Res, 1989, 22(4): 473-487.
    49 Minelli A, Brecha NC, Karschin C, et al.GAT-1, a high-affinity GABA plasma membrane transporters localized to neurons and astroglia in the cerebral cortex.J Neurosci,1995,15 (11):7734-7746.
    50 Qu H, Konradsen JR, van Hengel M, et al.Effect of glutamine and GABA on [U-(13)C]glutamate metabolism in cerebellar astrocytes and granule neurons. J Neurosci Res, 2001, 66 (5):885-890.
    51 Chapman GA, Moores K, Harrison D, et al. Fractalkine cleavage from neuronal membranes represents excitotoxic an acute event in the inflammatory response to brain damage. J Neurosci, 2000, 20(15):87.
    52 Milligan E, Zapata V, Schoeniger D, et al.An initial investigation of spinal mechanisms underlying pain enhancement induced by fractalkine, a neuronally released chemokine. Eur J Neurosci, 2005, 22(11):2775-2782.
    53 Milligan ED, Zapata V, Chacur M, et al. Evidence that exogenous and endogenous fractalkine can induce spinal nociceptive facilitation in rats. Eur J Neurosci, 2004, 20(9):2294-2302.
    54 Sun S, Cao H, Han M, et al.New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis.Pain, 2007, 129(1-2): 64-75.
    55 Watkins LR, Milligan ED, Maier SF. Glial proinflammatory cytokines mediate exaggerated pain states:implications for clinical pain. Adv Exp Med Biol, 2003,521:1-21.
    56 Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov, 2003, 2(12):973-985.
    57 Koltzenberg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci,1999, 22(3):122-127.
    58 Chacur M, Milligan ED, Gazda LS, et al. A new model of sciatic inflammatory neuritis (SIN): induction of unilateral and bilateral mechanical allodynia following acute unilateral peri-sciatic immune activation in rats. Pain, 2001, 94 (3):231-244.
    59 Milligan ED, Twining C, Chacur M, et al.Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci, 2003, 23(3):1026-1040.
    60 Ji RR, Suter MR.p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain,2007, 3:33.
    61 Terayama R, Omura S, Fujisawa N, et al. Activation of microglia and p38 mitogen-activated protein kinase in the dorsal column nucleus contributes to tactile allodynia following peripheral nerve injury. Neuroscience, 2008,153(4):1245-1255.
    62 Sorkin L, Svensson CI, Jones-Cordero TL, et al.Spinal p38 mitogen-activated protein kinase mediates allodynia induced by first-degree burn in the rat. J Neurosci Res,2009, 87(4):948-955.
    63 Wen YR, Suter MR, Ji RR, et al.Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology,2009, 110(1):155-165.
    64 Raghavendra V, Tanga F, Rutkowski MD, et al.Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain, 2003,104(3):655-664.
    65 Mika J, Osikowicz M, Makuch W, et al.Minocycline and pentoxifylline attenuate allodynia and hyperalgesia and potentiate the effects of morphine in rat and mouse models of neuropathic pain.Eur J Pharmacol, 2007, 560(2-3):142-149.
    66 Liu J, Li W, Zhu J, et al. The effect of pentoxifylline on existing hypersensitivity in a rat model of neuropathy.Anesth Analg, 2008, 106(2):650-653.
    67 Mielke R, Moller HJ, Erkinjuntti T, et al. Propentofylline in the treatment of vascular dementia and Alzheimer-type dementia: Overview of phase Ⅰ and phase Ⅱ clinical trials. Alzheimer Dis Assoc Disord, 1998,12(suppl 2): 29-35.
    68 Ledeboer A, Sloane EM, Milligan ED, et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation.Pain, 2005, 115(1-2):71-83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700