用户名: 密码: 验证码:
心肌微环境诱导间充质干细胞通道蛋白表达及丹参酮的干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     随着干细胞研究的逐渐深入,成体干细胞的心肌分化潜能给心肌损伤的治疗带来了新的希望。其中骨髓来源的间充质干细胞(Bone-derived Mesenchymal StemCells,BMSCs)具有取材方便、易于分离和体外培养扩增;免疫原性低、易于外源基因的导入和表达、可进行基因修饰;能分化为心肌细胞,内皮细胞和血管平滑肌细胞等诸多优势,成为治疗心脏疾患极有前景的种子细胞。诱导BMSCs向心肌分化的因素很多,其中胞嘧啶类化学物质5-氮胞苷(5-azachtine,5-aza)是最常用的化学诱导剂,除此之外,心肌的微环境是影响BMSCs在心脏局部存活和分化的重要因素。BMSCs和搏动心肌的接触,心肌细胞分泌的各种细胞因子都会影响BMSCs的分化。既往研究结果已经证实了,BMSCs移植后可以改善心功能。但是,人们更希望用有收缩力的细胞来替代坏死的心肌细胞,并且能与心肌同步收缩。同步收缩的前提是要产生同步兴奋。BMSCs是否具有产生生物电的基础,这是首先需要明确的问题,但这方面的研究较少。正常心脏的心电活动与节律性收缩,还有赖于心肌细胞之间信息通道传递的完整性,其结构基础是细胞间的间隙连接。连接蛋白43(connexin,Cx43)作为心肌细胞间隙连接组成中主要的连接蛋白,在维持心肌细胞的连接通讯功能,电信号传导和正常的节律性收缩中起重要作用。
     在近几年对BMSCs的研究中,研究者发现,移植单纯的BMSCs之后,移植细胞在宿主细胞局部的存活率低,影响长期治疗效果。如果BMSCs与SCF、G-CSF以及AKT等细胞因子联合,或将BMSCs修饰后再进行移植,其治疗效果会明显提高。丹参是临床上治疗心血管病的最常用中药之一,丹参酮ⅡA是其脂溶性成分。现代药理研究显示,丹参酮ⅡA具有扩张冠脉,抗心肌急性缺氧、抗心律失常、抗心肌肥厚和抗血小板聚集等作用。鉴于以上原因,我们拟在体外条件下,模拟心肌微环境,研究正常和缺氧心肌上清液对BMSCs细胞膜上离子通道和连接蛋白43的影响;观察丹参酮ⅡA和心肌的上清液联合治疗是否有助于提高BMSCs之间Cx43的表达。
     研究目的
     1、研究SD大鼠BMSCs的体外分离、纯化和扩增,建立成熟而稳定的BMSCs培养体系,为后续的实验研究提供充足的细胞来源。
     2、研究在未分化的BMSCs细胞膜上,5-aza诱导之后,正常心肌上清液和缺氧心肌上清液诱导之后,BMSCs细胞膜上的钠通道基因SCN2a、钾通道基因Kv1.4、Kv2.1、Kir1.1、EAG1和钙通道α亚单位基因CCHL2α的mRNA表达,推测心肌微环境对移植的BMSCs电生理特性的影响,为移植细胞在心肌局部微环境的作用下可能发生的离子通道的变化提供实验支持。
     3、研究5-aza诱导后,正常心肌上清液和缺氧心肌上清液诱导后Cx43的表达量的变化;探讨心肌微环境在促进BMSCs之间电通讯连接的作用;进一步观察丹参酮ⅡA是否可促进BMSCs之间Cx43的建立以及与心肌上清液联合应用后的效果。探讨在BMSCs移植治疗心肌梗死的时候,丹参酮ⅡA是否具有协同作用,为中药联合细胞移植提高治疗效果提供实验基础。
     研究方法
     1、BMSCs的体外分离,纯化、扩增和鉴定。采用全骨髓贴壁筛选法分离培养SD大鼠的BMSCs,用免疫荧光染色法和流式细胞技术来检测BMSCs表面蛋白标志CD34、CD29、CD44和CD45抗原的表达情况,以鉴定BMSCs和判断BMSCs的纯化效果。
     2、心肌微环境对大鼠BMSCs离子通道mRNA表达的影响。体外培养乳鼠心肌细胞,制备缺氧心肌细胞模型。取培养的正常心肌细胞和缺氧心肌细胞的上清液诱导BMSCs3周,同时用10μmol/L5-aza诱导。用逆转录-集合酶链式反应(reversetranscription-polymerase chain reaction,RT-PCR)法分别检测BMSCs细胞膜上与心肌细胞动作电位相关的离子通道的mRNA表达情况,包括钠通道基因SCN2a、钾通道基因Kv1.4、Kv2.1、Kir1.1、EAG1和钙通道α亚单位基因CCHL2α。
     3、心肌微环境对BMSCsCx43的影响以及丹参酮ⅡA的干预作用。采用RT-PCR技术观察5-aza诱导后,正常心肌细胞和缺氧心肌上清液对BMSCsCx43mRNA表达的影响。采用Westernblotting和免疫荧光技术检测其Cx43蛋白的表达,分别观察高、低剂量丹参酮ⅡA是否可促进BMSCs之间Cx43的建立。将不同剂量的丹参酮ⅡA与缺氧心肌上清液联合应用,观察其促进Cx43表达的作用是否更佳。
     研究结果
     1、采用全骨髓贴壁筛选法分离BMSCs。原代取材后48h首次换液,即可去除未贴壁的血细胞和部分造血干细胞。3天后细胞进入对数生长期,增殖迅速,形态多为长梭形。原代第9-10天细胞可铺满瓶底,90%以上的细胞发生融合,呈放射状或漩涡形。传代后的细胞较快贴壁,无潜伏期,迅速进入生长期。5天左右即可进行下一次传代。在传代后的生长过程中,细胞排列较规律,多呈旋涡状。随着代数的增加,其他非BMSCs细胞逐渐减少,传代至第3代细胞时,细胞已比较纯化。传代到第6代之后,细胞的增殖能力开始下降,形态变扁平,折光性变差。部分细胞在形态上出现向脂肪细胞分化的趋势。取第3代细胞进行鉴定,用免疫荧光染色法检测表面蛋白标志CD44(BMSCs表面标志)和CD45抗原(造血干细胞表面标志),结果为CD44阳性表达、CD45阴性表达。用流式细胞技术检测表面蛋白标志CD29(BMSCs细胞表面标志)和CD34抗原(造血干细胞及内皮细胞表面标志),结果为送检细胞CD29阳性率占99.27%,CD34阴性率为1.28%。
     2、取第3代BMSCs进行RT-PCR实验。结果显示,未分化的BMSCs细胞膜上表达与心肌动作电位相关的离子通道基因mRNA,包括钠通道基因SCN2a,钾通道基因Kv2.1、Kv1.4、Kir1.1,EAG1和钙通道α亚单位基因CCHL2α,但对于同一目的基因而言,在BMSCs上的表达量要低于心肌细胞(p<0.01)。经10μmol/L5-aza诱导之后,BMSCs首先发生形态上的改变。细胞体积较前增大,由长梭形逐渐变为短棒状或不规则。2周后细胞开始融合,3周后形成肌管样结构,部分细胞形成球状。采用RT-PCR技术检测离子通道mRNA的改变,结果显示,SCN2a、Kv2.1、Kir1.1、EAG1和CCHL2α表达增加(p<0.01),Kv1.4表达量变化不明显。经心肌细胞培养液和缺氧心肌细胞培养液诱导后,形态上的改变不明显。RT-PCR检测结果为,经正常心肌上清液诱导之后,SCN2a和Kv2.1mRNA的表达升高(p<0.05),Kv1.4变化不明显,Kit1.1,EAG1和CCHL2αmRNA的表达明显升高(p<0.01)。缺氧心肌上清液诱导后,各离子通道基因的mRNA表达与对照组相比,表达量均升高。在整个实验过程中,未见到BMSCs自发收缩现象。
     3、取第3代BMSCs进行RT-PCR实验。BMSCs诱导3周后,可见未分化的BMSCs上Cx43mRNA有弱的表达;经5-aza诱导之后,正常心肌上清液以及缺氧心肌上清液诱导之后Cx43mRNA的表达量升高,P<0.01。经丹参酮高剂量(1.5×10~(-7)mol/L)处理之后的BMSCs,其Cx43mRNA的表达量增加(P<0.05),经丹参酮低剂量组(1.5×10~(-8)mol/L)处理之后,Cx43的表达明显升高(P<0.01);经缺氧心肌上清液和丹参酮共同干预后,Cx43较对照组均有明显升高。但仍是丹参酮低剂量组作用更加显著(P<0.01);缺氧心肌上清液和丹参酮低剂量组联合干预之后Cx43的表达接近心肌细胞组(p>0.05),阳性对照组心肌细胞有强的Cx43的表达。与不同浓度丹参酮诱导BMSCs比较,缺氧心肌上清液和丹参酮的联合作用更强(p<0.05)。Cx43mRNA在心肌细胞上有强表达。经western-blotting结果显示,各组均有不同强度的特异性条带出现,分子量约为43KD。进一步发现,在未分化的BMSCs上有Cx43蛋白的出现,经5-aza诱导之后,正常心肌上清液以及缺氧心肌上清液诱导之后Cx43的表达量升高;丹参酮ⅡA作用之后的变化与RT-PCR的结果一致,说明在蛋白质水平,丹参酮ⅡA仍可以上调Cx43的表达。采用Cx43抗体免疫荧光标记后的检测结果表明,各组细胞在荧光显微镜下均可见大致的细胞轮廓,细胞核呈蓝色(DAPI染色),胞浆和胞膜中有不同强度的点状绿色荧光。不同组间荧光强度的变化与RT-PCR和westernblotting的结果一致。
     结论
     1、本研究建立了成熟的SD大鼠BMSCs的体外培养方法,细胞增殖迅速,状态良好,生物学性状稳定,无过多的非BMSCs的干扰,经细胞形态和表面蛋白标志鉴定为BMSCs。
     2、本研究证明了5-aza可诱导BMSCs细胞膜钠通道基因SCN2a,钾通道基因Kv2.1,Kv1.4,EAG1和Kir1.1和钙通道α亚单位CCHL2αmRNA表达量增加,从离子通道方面说明了5-aza可诱导BMSCs向心肌细胞方向分化;正常心肌上清液和缺氧心肌上清液在不依赖化学诱导剂的作用下,可促进BMSCs细胞膜上以上离子通道基因mRNA的表达,说明心肌细胞分泌的可溶性细胞因子可促进BMSCs表达离子通道蛋白,提示BMSCs移植后,心肌微环境有助于BMSCs在心脏局部分化,产生与心肌动作电位相关的离子通道蛋白。
     3、本研究证实了5-aza可诱导BMSCs表达Cx43,证明了正常心肌上清液和缺氧心肌上清液均可促进Cx43在BMSCs上的表达,心肌微环境也有助于BMSCs之间连接蛋白的建立。不同浓度丹参酮ⅡA可上调BMSCs表达Cx43的作用,但丹参酮ⅡA和缺氧心肌上清液联合诱导作用更强。提示在BMSCs移植时联合应用丹参酮ⅡA可以提高细胞间的电信号通讯,在电生理改善方面提高移植效果。
     成果与创新点
     我们在体外条件下,从离子通道和连接蛋白角度探讨了化学诱导剂,心肌分泌的可溶性因子和中药丹参酮对BMSCs的作用。实验结果①本实验从与心肌动作电位产生相关的离子通道角度,证实了5-aza可诱导BMSCs向心肌细胞方法分化,丰富了5-aza作为心肌定向分化诱导剂的理论研究内容。②我们通过采用正常心肌/缺氧心肌的培养液对BMSCs的影响作用观察,来更加方便在体外观察心肌细胞的分泌环境对BMSCs的作用,了解移植细胞在宿主微环境下的变化。本研究证实了心肌可通过其分泌的细胞因子调节移植细胞离子通道和连接蛋白的表达,且此作用不依赖化学诱导剂的作用。这对于移植细胞在心肌局部因素作用下细胞膜离子通道和连接蛋白的改变提供了实验依据,为移植细胞在宿主局部是否会产生生物电以及具有致心律失常作用提供一定的理论参考。③国内研究中药单体或复方在BMSCs的影响方面,多集中在是否具有和5-aza同样的诱导分化作用,但诱导率比较低。本课题的创新之处在于,证明了丹参酮联合缺氧心肌上清液可明显提高BMSCsCx43的表达,作用要强于单独一种因素的作用。说明在细胞移植治疗心肌梗死过程中,联合应用活血化瘀中药,不仅有利于移植细胞在宿主局部的存活,而且可以提高细胞之间的电生理通讯,有助于移植细胞和宿主细胞发生同步兴奋,进而提高移植效果。为扩展中药的临床用途,为中医药进入细胞移植领域提供了新的切入途径。
Research background
     With the deep study of stem cells,Adult stem cell for the potency which differentiate into cardiomyocyte lineage has a perspective for the therapy of myocardial damage.Bone-derived mesenchymal stem cells(BMSCs)has considered as a promising candidate for their some characteristics such as obtain easily,the less immunogenicity,easiness to separation and amplification in vitro,because it accepted exogenous gene importing and expression,gene would be modified,differentiation into the myocardial cell, endotheliocyte and vascular smooth muscle cell.Therefore,BMSCs are thought to be a suitable source of cell transplantation for the therapy of infarcted myocardium.There are many induced methods that made BMSCs differentiate into myocardial cells.5-azacytidine is frequently used the chemical inductor.Besides,the myocadial environment is the most important factor that affect the survival and differentiation of BMSCs in the local heart,including the contact between BMSCs and jumping myocardium,kinds of cytokine secreted by myocardial cell.It' s confirmed than BMSCs Transplantation improved the heart function.But,researchers hope that using the contractile cell substitute the damage myocardial cell,and then generate the synchronous contraction with myocardium,synchronous excitation would be the key foundation.This must be verified firstly whether BMSCs has this foundation for produce bioelectricity,but there were less exploration.The normal heart electrophysiological activity and rhythmic contraction depend on the integrity of message transmit between myocardial cell.The gap junction is the important message channel.Connexin 43(Cx43) is the main connexin in the gap junction,act as the structural and functional coupling of cardiomyocytes.
     In recent years,researchers had discovered that transplantation cells would have lower survival rate in the local host after transplantating single BMSCs,that method might affect the long term therapeutic efficacy.The therapeutic efficacy would be improved if BMSCs transplantation combine the cytokines including SCF、G-CSF and AKT and so on,or modified BMSCs before transplantation.After BMSCs transplanting into the infarcted area of myocardium,the microenvironment might effect on the BMSCs for its survival and differentiation,as for electrophysiological property,the cell factor of myocardium secreted would be a important factor,salvia miltiorrhizae is the most commonly used Chinese materia medical to treat cardiovascular disease clinically.TanshenoneⅡA is liposoluble constituent of salvia miltiorrhizae. TanshenoneⅡA have some pharmacological action of cardiovascular system, such as relaxing coronary artery,anti-myocardium ischemia acutely, anti-arrhythmia,anti-myocardial hypertrophy and anti-platelet aggregation. So,we would aim to study the effects of myocardial microenvironment in vitro on the ion channels and Cx43 of BMSCs membrane,meanwhile,to observe the effects of TanshenoneⅡA on Cx43.
     Research objective
     1、To study the separation,purification and amplification of the BMSCs of Sprague Dawley(SD) rat in vitro,to establish the mature and stable culture system of BMSCs,to provide sufficient cell support for posterior experimental research.
     2、To study the expression of some gene mRNA on the undifferentiated of BMSCs membrane induced by 5-aza,the normal and hypoxia myocyte supernatant during myocardium cultured,respectively,including SCN2a,sodium channel;Kv1.4, transient outward current channel;Kv2.1 and EAG-1,voltage-gated potassium channel;Kir1.1,inward rectifier potassium channel;CCHL2α,L-type calcium channelα-2 subunit.To infer the effects of myocardial microenvironment on the electrophysiological property of BMSCs,to provide the experimental evidence for the change of ionic channel on the transplanting cell affected by myocardial local infarcted environment.
     3、To study the Cx43 expression of BMSCs induced by 5-aza,the normal and hypoxia myocyte supernatant respectively,to observe the effects of TanshenoneⅡA on the Cx43 expression of BMSCs and the synergistic effect between TanshenoneⅡA and BMSCs for the treatment of infarcted myocardium.
     Research methods
     1、The methods of the separation,purification,amplification and identification of the BMSCs of SD rat in vitro.To culture the rat BMSCs using the adherence screening method,to detect the antigenic expression of CD34,CD29,CD44 and CD45 using respectively the immunofluorescence staining method and flow cytometry.
     2、The effects of myocardial supernatant on the ionic mRNA expression of BMSCs.The cadiocyte of neonate rat were isolated by enzyme and cultured,and then make the hypoxia myocardial cell model.BMSCs were induced by the normal and hypoxia myocyte supernatant during myocardium cultured.,10μmol/L 5-aza, After 3 weeks,to detect the expression of ionic channel gene mRNA that concerned with the action potential of myocardium on BMSCs,which include SCN2a,Kv1.4、Kv2.1、Kir1.1、EAG1 and CCHL2αusing RT-PCR.
     3、The effects of myocardial supernatant and TanshenoneⅡA on Cx43 expression of BMSCs.RT-PCR technique was used to detect Cx43 mRNA expression of BMSCs that induced by 5-aza,the normal and hypoxia cadiocyte supernatant during myocardium cultured,to study the protein expression of Cx43 on BMSCs using westernblotting and immunofluorescence staining methods after applying the different concentration TanshinoneⅡA,and to proof the promoting effects of TanshenoneⅡA on the Cx43 establishment inside BMSCs.
     Results
     1、BMSCs were isolated by the whole bone marrow adherent cultivation.We operate the first medium change after 48 hours,to removal unadherent blood cells and a part of hemopoietic stem cell.The cells begin to enter the exponential phase of growth phase after 3days,cell begin rapid proliferation, as well as the majority of cells displayed spindle-like shape.The cell would spread out fully at the ninth or tenth day for original generation,above 90% cells get fusion,they have radiation or swirl shape.After the cell carried out passage,they adhere the culture dish quickly,no eclipse period,entering the growth period,at the fifth day cell might enter the next passage.The BMSCs array of shows a regular pattern,most are whirlpool shape.With continuous passage,other non-BMSCs were decreased gradually.The cell have been depurated at passage 3.The reproductive activity of BMSCs began to descend at passage 6,cell' s shape grow into thin and flat,poor refractive activity. Part of BMSCs have a trend of differentiating into adipose cell.cells of passage 3 were used identification.The results of CD44 and CD45 using the immunofluorescence staining are positive expression of CD44,negative expression of CD45(this is a cell-surface marker of hematopoietic cell) on BMSCs.The cell-surface marker of CD29(expressed BMSCs) and CD34 antigen (positive expression on the hemopoietic stem cell and endothelia cell)using flow cytometry,the results are 99.27%positive cell of CD29 and 1.28%negative cell of CD34.
     2、Passage 3 were used to experiment through RT-PCR amplification.The results show that there were basic expression of SCN2a(sodium channel gene),Kv2.1,Kir1.1,EAG1 and Kv1.4 mRNA(potassium channel gene),CCHL2αmRNA of L-type calcium channelα-2 subunit on the undifferentiating BMSCs.There were lower expression level on BMSCs than myocardial cell as for the same gene(p<0.01).After 10μmol/L 5-aza induced,The morphous of BMSCs changed gradually,BMSCs were larger in size,from fusiform shape change into rod-shape or irregular form.After 2 weeks,the BMSCs began to fusion into each other,3 weeks later,myotulule-like structure formed,a part of BMSCs form some global-like shape.The results of ionic channel mRNA expression detected by RT-PCR are that SCN2a、Kv2.1、Kir1.1、EAG-1 and CCHL2αmRNA increase significantly at the expressing level(p<0.01),no obvious variance on Kv1.4 mRNA expression.The shape of BMSCs have no more change induced by normal myocyte and hypoxia myocyte culture fluid.In contrast of control group,the expression of SCN2a,Kv2.1 and Kv1.4 mRNA respectively increase induced by normal myocardial supernatant after 3 weeks,that had statistically significant(p<0.05),and the expression of Kir1.1,EAG-1 and CCHL2αmRNA also increase obviously(p<0.01).The expression of ionic channel mRNA have the same variation as the normal myocardial supernatant after induced by hypoxia myocardial supernatant,at expressing level just lower,but no statistically significant between two groups.There are no spontaneous contraction phenomenon on the BMSCs during the whole experimental process.
     3、The result of RT-PCR show that the expression of Cx43 mRNA on undifferentiating of BMSCs is lower.However,the level of Cx43mRNA had been increased after induced by 5-aza,normal and hypoxia myocardial supernatant respectively(P<0.01).The effects of different TanshenoneⅡA on the Cx43mRNA of BMSCs are great,that are the Cx43 expression had more raise treated by 1.5×10~(-7)mol/L TanshenoneⅡA(P<0.05),significant increase treated by 1.5×10~(-8)mol/L TanshenoneⅡA(P<0.01).To compare with another groups,the increasing degree of Cx43 mRNA change very significantly after allying treated by 1.5×10~(-8)mol/L TanshinoneⅡA and hypoxia myocardial supernatant.The expression level of Cx43 after combining hypoxia myocadial supernatant and low-dose Tanshinone got close to the myocardium group(p>0.05).Certainly, there are obvious expression of Cx43 on myocardium.Meanwhile,The results detected by Westernblotting are there are special straps of different intensity on each group,molecular weight is 43KD.further,the Cx43 protein straps of BMSCs had increased after affected 5-aza,normal and hypoxia myocardial supernatant respectively contrast to the undifferentiating BMSCs. The effects of TanshenoneⅡA on Cx43 of BMSCs using Western blotting had same changes as the findings of RT-PCR.That to say,TanshenoneⅡA might also up regulate the expression of Cx43 on protein level.Furthermore,we observed the Cx43 variation between each group through antibody immunofluorescence labeling.That' s to found vague cell contour under fluorescence microscope in each group,cell nucleus is blue(DAPI dyeing),there are spot or strip green fluorescence on the endochylema and cell membrane,no same fluorescence were found on the blank control group(no Cx43 antibody),the results confirmed the specificity fluorescence massage from Cx43.The distribution of fluorescence on the cytoplasm and membrane of undifferentiating BMSCs were thin and weak intensity.After induced respectively by 5-aza,normal and hypoxia myocardial supernatant and therapied by Tanshinone,the fluorescence of Cx43 grew dense, increased fluorescence intensity.The change of fluorescent intensity among various groups had the same as RT-PCR and westernblotting.
     Conclusion
     1、We have established a successful culture system for BMSCs of SD rat in vitro.The cell were rapid proliferation,good condition and stable biological character,more purification,the cell identified by cell appearance and cell-surface marker was BMSCs.
     2、5-aza would induce the gene mRNA expression increase on BMSCs membrane, which include SCN2a genefor sodium channel,Kv2.1,Kv1.4,Kir1.1 and EAG1 gene for potassium channel,CCHL2αof L-type calcium channelα-2 subunit.That indicate 5-aza would induce BMSCs differentiate into cardiomyocyte lineage on ionic channel respect.The normal and hypoxia myocardial supernatant respectively also promote the above-mentioned gene expression,and no depend on chemical induction.Our finding would infer that dissoluble cell factor secreted by local myocardium promote the ionic channel expression on BMSCs membrane,when BMSCs were transplanted into the infarcted myocardium.The occurrence of ionic channel on BMSCs membrane might contribute to generate resting potential and action potential.
     3、5-aza would induce the Cx43 expression on BMSCs,meanwhile normal myocardial supernatant promote the Cx43 expression,hypoxia myocardial supernatant did alsoo Solo TanshenoneⅡA could up regulate the Cx43 expression of BMSCs,If TanshenoneⅡA and hypoxia myocardial supernatant were associated,the stimulating action would more powerful.This experimental results indicate that might improve the therapeutic efficacy of cell therapy if BMSCs transplantation would combine with TanshenoneⅡA.That would provide the new pathway for Chinese materia medical applying the cell transplantation. Achievement and innovative points
     We have detected the effects of chemical inductor,soluble factor secreted myocardium and Chinese materia medica-Tanshenone on BMSCs from ionic channel and connexin aspect in vitro.The results are as follows:①many studies focus on whether or not BMSCs differentiating into the myocardial cells and expressing the specific myocardial protein on BMSCs by 5-aza.Our results confirmed that 5-aza would induce BMSCs differentiate into myocardium on ionic channels relating to action potential of myocardium.This findings raise to the level of theoretical research on 5-aza inductor.②We have observed the effects on BMSCs using the normal and hypoxia myocardial supernatant,and to detect conveniently the effects of myocardial microenvironment on BMSCs in vitro,furthermore to understand the change of grafting calls in local host microenvironment.This experiment confirmed that the cytokine secreted myocardium would regulate the expression of ionic channel and connexion43 proteins,and this action didn't depend on the chemical inductor.So,the findings would provide the experimental evidence for the change of electrophysiological proteins of BMSCs in local myocardial factor,and provide the theoreticai reference for grafting cell creating the bioelectricity and inducing arrhythmia.③The study of Chinese materia medica monomers or compound recipe on BMSCs in the domestic researcher focus on the induced effects of materia medica as so as 5-aza,but the results indicate the lower induced rate for them.The innovative points of our findings is that proved the high expression level of BMSCs Cx43 after treated Tanshenone and hypoxia myocardial supernatant,and this action has be higher than other factors.The results would indicate that the therapy for method cell transplantation combined the drug activating blood circulation to dissipate blood stasis,not only increasing the grafting cell survive,but also improving the electrical signal communication between cells,that contribute to the synchronous excitation,furthermore,to increase the transplanting effect. Also,our findings might provide a new therapy pathway for improving the effect of BMSCs.
引文
[1]Pfeffer MA.Left ventricular remodeling after acute myocardial infarction.Annu Rev Med,1995;46:455-466
    [2]干细胞原理、技术与临床.赵春华主编,化学工业出版社,2006;第一版
    [3]Jos(?) J.Minguell,Alejandro Erices.Mesenchymal Stem cells and the Treatment of Cardiac Disease.Exp Biol Med(Maywood).2006;231(1):39-49
    [4]Aggarwal S,Pittenger MF.Human mecsenchymal stem cells modulate allergenic immune cell responses.Blood,2005;105:1815-1822.
    [5]Schuleri KH,Boyle AJ,Hare M.Mesenchymal stem cells for cardiac regenerative therapy.Spring-Verlag Berlin Heidelberg;2007;180:195-218
    [6]Wojakowski W,Tendera M:Mobilization of bone marrow-derived progenitor cells in acute coronary syndromes.Folia Histochem Cytobiol.2005;43(4):229-32.
    [7]Shake JG,Gruber PJ,Baumgartner WA,et al.Mesenchymal stem cell implantation in a swine myocardial infaract model:engraftment and functional effects.Ann Thoac Surg,2002;73:1919-1925
    [8]Reinecke H,Macdonald GH,Hauschka SD,et al.Electromechanical coupling between skeletal and cardiac muscle.Implication fol-infarct repair.J Cell Biol,2000;3:731-740
    [9]Roell W,Lewalter T,Sasse P,et al.Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia.Nature.2007 Dec 6;450(7171):819-24.
    [10]范英昌,华声瑜,姚雅娟.丹酚酸B诱导体外培养大鼠骨髓基质细胞向心肌样细胞分化的研究.天津中医学院学报,2005;24(1):10-12
    [11]陈嘉,孙京臣,邹移海等.丹酚酸B诱导骨髓间充质干细胞向心肌样细胞分化.第四军医大学学报,2007;28(23):2152-2155
    [12]钟鸣,苏海.心肌损伤时复方丹参滴丸的骨髓动员作用.浙江中西医结合杂志,2008:18(9):529-531
    [13]余勤,罗依,鄂艳等.丹参酮诱导间质干细胞分化为神经元样细胞的研究.中医药学刊,2004;22(8):1410-1413
    [14]陈晓锋,唐礼江,朱敏等.丹参酮Ⅱ A对外周血内皮祖细胞增殖、粘附和迁移功能的影响.中国药理学通报,2007;23(2):274-5
    [15]黄光琦,宋毅,张洁等.丹参酮Ⅱ A增强HSV-tk/GCV旁观者效应及其与Cx43 mRNA 表达的关系.中华肿瘤杂志,2004;26(3):146-150
    [16]Martin,GR.Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells.Proc Natl Acard.Sci USA,1981;78:7634-7638
    [l7]Doetshman T,Eistetter H,Katz M.et al.The in vitro development of blastocyst-derived embryonic stem cell lines:formation of visceral yolk sac,blood islands and myocardium.J Embyol Exp Morph,1985;87:27-35
    [18]Maltsev VA,Rohwedel J,Hescheler J,et al.Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal,atrial and ventricular cell types.Mech Dev,1993;44:41-50
    [19]Buttery LD,Bourne S,Xynos JD.et al.Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells.Tissue Eng,2001;7:89-99
    [20]Fraichard A,Chassande O,Bilbaut G.et al.In vitro differentiation of embryonic stem cells into glial cells and functional neurons Cell Sci,1995;108:3181-3188
    [21]Dani C,Smith AG,Dessolin S.et al.Differentiation of embryonic stem cells into adipocytes in vitro.J.Cel Sci,1997;110:1279-1285
    [22]Lumelsky N,Blondel O,Laeng P,et al.Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.Science,2001;292:1389-1394
    [23]Evans MJ and Kaufman MH.Establishment in culture of pluripotential cells from mouse embryos.Nature,1981;292:154-156
    [24]0dorico JS,Kaufman DS,Thomson JA,et al.MultilinEAGle differentiation from human embryonic stem cell lines.Stem cells,2001;19:193-204
    [25]Johansson,CB,Momma,S,Clarke,DL,et al.Identification of a neural stem cell in the adult mammalian central nervous system.Cell,1999;96:25-34
    [26]Brazelton,TR,Rossi,FM,Keshet,GI et al.From marrow to brain:expression of neuronal phenotypes in adult mice.Science,2000;290:1775-1779
    [27]Thorgeirsson,S.Hepatic stem cells.Am.J Pathol,1993;142:1331-1333
    [28]Crosby,HA and Strain,AJ.Adult liver stem cells:bone marrow,blood,or liver derived?Gut,2001;48:153-154
    [29]Kuznetsov,SA,Mankani,MH,Gronthos,S,et al.Circulating skeletal stem cells.J Cell Biol,2001;153:113-1140
    [30]Zulewski,H.Abraham,EJ,Gerlach,MJ.et al.Multipotential nestln-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine,exocrine,and hepatic phenotypes.Diabetes,2001;50:521-533
    [31]Weissman,IL.Stem cells:units of development,units of regeneration,and units in evolution.Cell,2000;100:157-168
    [32]Bjomson SR,Rietze RL,Reynolds BA,et al.Turning brain to blood:a hematopoietic fate adopted by adult neural stem cell in vivo.Science,1999;283:534-537
    [33]Alison MR,Poulson R et al.Hepatacytes from non-hepatic adult stem cells.Nature,2000;406(6793):257-266
    [34]Orlic D,Hill JM & Arai AE.Stem cells for myocaidial regenetation.Circ Res,2002;1092-1102
    [35]Tmoa C,Pettenger MF,Chahill KS,et al.Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult heart.Circulation,2002;105:93-98
    [36]Soonpaa MH,Koh GY,Klug MG,Field LJ.Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium.Science,1994;264(5155):98-101
    [37]Li RK,Jia ZQ,Weisel RD,et al.Cardiomyocyte transplantation improves heart function.Ann Thorac Surg,1996;62(3):654-660
    [38]Liu J,Sluijter JP,Goumans MJ,et al.Cell therapy for myocardial regeneration.Curr Mol Med.2009 Apr;9(3):287-98.
    [39]SanM artin A,Borlongan CV.Cell Transplantation:toward cell therapy.Cell Transplant,2006;15(7):665-673
    [40]Itskovitz-Eidor J,Schuldiner M,Karsenti D.et al.Differentiation of human embryonic stem cells into embryoid bobies comprising the three embryonic germlayers.Mol.Med,2000;6:88-95
    [41]Kehat I,Kenyagin-Karsenti D,Druchmann M.et al.Human embryonic stem cells can differentiate into myocytes portraying cardiomyocytic structural and functional properties Clin Invest,2001;108(3):407-14.
    [42]Ranco D,Moreno N,Ruiz-Lozano P No-Resident stem cell populations in regenerative cardiac medicine.Cell Mol Life Sci,2007;64(6):683—691
    [43]Yanagi K,Takano M,Narazaki G et al.Hyperdolarization-activated cyclic nucleotide-gated channels and T-type calcium channels confer automaticity of embryonic stem cell-derived cardiomyocytes.Stem cells,2007;25(1):2712-2719
    [44]Fu JD,Yu HM,Wang R,et al.Developmental regulation of intracellular calcium transient during cardiomyocyte differentiation of mouse embryonic stem cell.Acta Pharmacol Sin,2006;27(7):901-910
    [45]Kapur N,Banach K.Inositol-1,4,5-triphosphate-mediated spontaneous activity in mouse embryonic stem cell-derived cardiomyocytes.J Physiol,2007;581(Pt3):1113-1127
    [46]Cai j,Yi FF,Yang XC,et al.Transplantation of embryonic stem cell-derived cardiomyocytes cardiac function in infarcted rat heart.Cytotheraphy,2007;9(3):283-291
    [47]Singla DK,Lyous GE,Kamp TJ.Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling.Am J Physil Heart Circ Physiol,2007;293(2):H1308~1314
    [48]Xie CQ,Zhang J,Xiao Y,et al.Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model.Stem cells,Dev 2007;16(1):25-29
    [49]Hendry SL 2nd,van der Bogt KE,Sheikh AY Multimodal evaluation of in vivo magnetic resonance imaging of myocardial restoration by mouse embryonic stem cells.J Thorac Cardiovasc Surg,2008;136(4):1028-1037
    [50]Caspi O,Huber I,Kehat I,et al.Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infracted rat hearts.J Am Coll Cardiol,2007;50(19):1894-5.
    [51]Fijnvandraat AC,Lekanne Deprez RH,Mooaman AFM.Development of heart muscle cell diversity:a help of a hindrance for phenotyping embryonic stem cell derived cardiomyocytes.Cardiovasc Res,2003;58:303-402
    [52]He Q,Trindade PT,Stumm M,Li J,Fate of undifferentiated mouse embryonic stem cells within the rat heart:role of myocardial infarction and immune suppression J Cell Mol Med,2009;13(1):188-201.
    [53]Wobus AM.Potential of embryonic stem cells.Mol Aspects Med,2001;22:149-155
    [54]Collins CA,Olsen I,Zammit PS,Heslop L,Petrie A,et al.Stem cell function,self-renewal,and behavioral heterogeneity of cells from the adult muscle satellite cell niche.Cell,2005;122:289-301.
    [55]Kao RL,Rizzo C,Magovern GJ.Satellite cells for myocardial regeneration.Physiologist.1989;32:220.
    [56]Hutcheson KA,Atkins BZ,Hueman MT,et al.Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts.Cell Transplant,2000;9:359-368.
    [57]Horackova M,Arora R,Chen R,et al.Cell transplantation for treatment of acute myocardial infarction:unique capacity for repair by skeletal muscle satellite cells.Am J Physiol Heart Circ Physiol,2004;287:H1599-1608.
    [58]Tamaki T,Akatsuka A,Okada Y Cardiomyocyte formation by skeletal muscle-derived multi-myogenic stem cells after transplantation into infarcted myocardium,,PLoS ONE,2008;3(3):el789
    [59]Winitsky SO,Gopal TV,Hassanzadeh S,Takahashi H,Gryder D,et al.Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.PLoS Biol,2005;3:e87.
    [60]Reinecke H,Poppa V,Murry CE.Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting.J Mol Cell Cardiol,2002;34:241-249
    [61]Menasche P,Hagege A,Scorsin M,et al.Myoblast transplantation for heart failure.Lancet,2001;357:279-280
    [62]Menasche P,Hagege A,Vilquin JT,et al.Autologous skeletal myoblast transplantation for severe post infarction left ventricular dysfunction.J Am Coll Cardiol,2003;41:1078-1083.
    [63]Smits PC.Myocardial repair with autologous skeletal myoblasts:a review of the clinical studies and problems.Minerva Cardioangiol,2004;52(6):525-35
    [64]Dib N,MiehlerRE,PaganiFD,etal.Safety and feasibility of autologous myoblast transplantation in patient with ischemia cardiomyopathy:four-year follow-up.Circulation,2005;112:1748-1755
    [65]Pagani FD,DerSimonian H,Zawadzka A,et al.Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans.Histological analysis of cell survival and differentiation.J Am Coll Cardiol.2003;41(5):879-88
    [66]Mills WR,Mal N,Kiedrowski MJ Stem cell therapy enhances electrical viability in myocardial infarction.J Mol Cell Cardiol,2007;42(2):304-14.
    [67]Orlic D,Kajstura J,Chimenti S,Jakoniuk I,Anderson SM,et al.Bone marrow cells regenerate infarcted myocardium.Nature,2001;410:701-705.
    [68]Balsam LB,Wages AJ,Christensen JL,et al.Hema topoietic stem cells adopt mature hematopoietic fates in ischemic myocardium.Nature 2004,428(6983):668-673
    [69]Jackson KA,Majka SM,Wang H,et al.Regeneration of ischemic cardiac and endothelium by adult stem cell.J Clin Invest,2001;i07:1395-1402
    [70]Murry CE,Soonpaa MH,Reinecke H,et al.hematopoietic stem cells do not transdifferentiate into cardic myocytes in myocardial infarcts.Nature,2004:428(6983):664-668
    [71]Friedenstein AJ.Precursor cells of mechanocytese.Int Rev Cytol,1976;47:327-355
    [72]Minguell JJ,Erices A,Conger P.Mesenchymal stem cells.Exp Biol Med,2001:226:507- 520,
    [73]Oswald J,Boxberger S,Jorgensen B,et al.Mesenchymal stem cells can be differentiated into endothelial cells in vitro.Stem Cells,2004:22:377-384.
    [74]Shimaoka H,Dohi Y,Ohgushi H.et al.Recombinant growth-differentiation factor 5(GDF 5)stimulates osteogenic differentiation of marrow mesenchymal stem cells in porous hydroxyapatite ceramic.J Biomed Mater Res,2004:68A:168-176.
    [75]Makino S,Fukuda K,Miyoshi S,et al.Cardiomyoytes can be generated from-marrow stromal cells in vitro.Clin Invest,1999:103(5):697-705
    [76]Nagaya N,Fujii T,lwase T,et al Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis.Am J Physiol Heart Circ Physiol,2004;287(6):H2670-H2676
    [77]姚青,宋治远,仝识非等.大鼠骨髓间充质干细胞体外诱导分化为心脏起搏样细胞的研究.中国心脏起搏与心电生理杂志,2007;21(1):55-58
    [78]Kamhata H,Matsubara H,Nishiue T,et al Implantation of bone marrow mesenchymal stem cells into ischemic myocardium enhance collateral lxer fusion and regional function via side supply of angioblasts,angiogensis,ligandsand cytokines.Circulation,2001:104:1046- 1052
    [79]Tomita S,Mickle DA,Weisel RD,et al.Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation.Thorac Cardiovasc Surg,2002,;123(6):1132-1140
    [80]Oh JY,Kim MK,Shin MS etal.The Anti-inflammatory and Anti-angiogenic Role of Mesenchymal Stem Cells in Corneal Wound Healing Following Chemical Injury.Stem Cells.2008 Apr;26(4):1047-55
    [81]Chen SL,Fang ww,Ye F,et al.Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction.Am J Cardiol,2004;94(1):92-95.
    [82]Katritsis DG,Sotiropoulou D,Giazitzoglou E.et al.Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells.Europace,2007;9(3):167-171
    [83]Kawamoto A,Gwon HC,Iwagura H,et al.Therapeutic potential of ex vitro expanded endothelial progenitor cells for myocardial ischemia.Circulation,2001;103:634-637
    [84]Kalka C,Masuda H,Takahashi T,et al.Transplantation of ex-vivo expands endothelial progenitor cells for therapeutic neovascularization.Proc Natl Acad USA,2000;107(11):1395-1402
    [85]Tepper OM,Galiano RD,Capla JM,et al.Human endothelial progenitor cells from type Ⅱ diabetes exhibit impaired proliferation,adhesion and incorporation into vascular structures.Circulation,2002;106:2781-2786
    [86]Zuk PA,Zhu M.Mizuno H,et al.MultinEAGle cells from human adipose tissue:implication for cell-based therapies.Tissue Eng,2001;7:211-228
    [87]Hicok KC,Du Laney TV,Zhou YS,et al.Human adipose-derived adult stem cells produce osteois in vivo.Tissue Eng,2004;10(3~4):371-380
    [88]Miraxille A,Heeschen C,Sengenes C,et al.Improvement of postnatal neovascularization by human adipose tissue-derived stem cells.Circulation,2004;110(3):349-355
    [89]Safford KM,HicokKC,Safford SD,et al.Neurogenic differentiation and murine and human adipose-derived stromal cells.Biochem Biophys Res Coummun,2002;294:371-379
    [90]Rangappa S,Fen C,Lee EH,et al.Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes.Ann Thorac,2003;75:775-779
    [91]El-Ghalbzouri A,Van Den,Bogaerdt AJ,et al.Human adipose tissue-derived cells delay re-epithelialization in comparison with skin fibroblasts in organotypic skin culture.Br J Dermatol,2004;150(3):444-454
    [92]Winter A,Breit S,Parsch D,et al.Cartilage-like gene expression in differentiated human stem cell spheroids:a comparison of bone marrow-derived and adipose tissue-derived stromal cells.Arthrits Rheum,2003;48:418-429
    [93]Oh H,Bradfute SB,Gallardo TD,et al.Cardiac progenitor cells from adult myocardium:homing,differentiation,and fusion after infarction.Proc Natl Acad Sci USA,2003;100:12313-8.
    [94]0h H,Chi X,Bradfute SB,et al.Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells.Ann NY Acad Sci,2004;1015:182-9.
    [95]Urbanek K,Torella D,Sheikh F,et al.Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure.Proc Natl Acad Sci USA,2005;102:8692-8697.
    [96]Laugwitz KL,Moretti A,Lam J,et al.Postnatal isll+ cardioblasts enter fully differentiated cardiomyocyte linEAGles.Nature,2005;433:647-53.
    [97]Pittenger F,Mackay A,Beck S,et al.MultilinEAGle potential of adult human mesenchymal stem cells..Science,1999;284:143-147.
    [98]Conger PA,Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells.J Cell Physiol,1999;181;67-73.
    [99]NoB(u|¨)hring HJ,Battula VL.markers for the prospective isolation of human BMSC.Ann N Y Acad Sci.2007 Jun;1106:262-71.Epub 2007 Mar 29.
    [100]Wakitani S,Saito T,Caplan AL.et al Myogenic cells derived from rat bone mesenchymal stem cells exposed to 5-azacytidine.Muscle Nerve,1995;18(12):1417-1426.
    [101]Yu Liu,Jian Song,Weixin Liu,et al.Growth and differentiation of rat bone marrow stromal cells:does 5-azacytidine trigger their cardiomyogenic differentiation? Cardiovascular Research,2003;58:460-468
    [102]Tomita S,Li RK,Weisel RD,et al.Autologus transplantation of bone marrow cells improves damaged heart function.Circulation,1999;100(19):247-256
    [103]Dai W,Hale S L,Martin B J,et al.Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short-and long-term effects.Circulation,2005;112(2):214-223
    [104]Wang JS,Shum-Tim D,Chedrawy E,et al The coronary delivery of marrow stromal cells for myocardial regeneration:pathophysiolgic and therapeutic implications.Thorac Cardiovasc Surg,2001;122(4):699-705
    [105]Hashemi SM,Ghods S,Kolodgie FD A placebo controlled,dose-ranging,safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction.Eur Heart J,2008;29(2):251-260
    [106]Olic D,Kajstura J,Chimenti S,et al.Mobilized bone marrow cells repair the infracted heart,improving function and survival.Proc Natl Acad Sci USA,2001;98(18):10344-10349
    [107]Hahn JY,Cho HJ,Kang HJ et al.Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation,cytoprotective effect on cardiomyocytes,and therapeutic efficacy for myocardial infarction.J Am Coll Cardiol,2008;51(9):933-43
    [108]Jiang S,Haider HKh,Idris NM et al Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair.Circ Res,2006;99(7):776-84.
    [109]Gnecchi m,He H,Ling OD,et al.Paracrine action accounts for marked protein of ischemic heart by AKT-modified mesenchymal stem cell.Nat Med,2006;11:367-368
    [110]Noiseux N,Gnecchi M,Lopez-Ilasaca M Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation.Mol Ther,2006;14(6):840-50.
    [111]Cheng Z,Ou L,Zhou X et al。Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance.Mol Ther,2008;16(3):571-9.
    [112]Li W,Ma N,Ong LLBcl-2 engineered BMSCs inhibited apoptosis and improved heart function.Stem Cells,2007;25(8):2118-27。
    [113]Sun L,Cui M,Wang Z Mesenchymal stem cells modified with angiopoietin-1improve remodeling in a rat model of acute myocardial infarction。Biochem Biophys Res Commun,2007;357(3):779-84.
    [114]Tang YL,Tang Y,Zhang YC.et al.Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.J Am Coll Cardiol,2005;46:1339-1350
    [115]Perin EC,Geng YJ,Willerson JT.Adult stem cell therapy in perspective,2003;107(7):935-938
    [116]Heiddig B,Hattori K,Dias S.et al.Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand.Cell,2002;109(5):625-37
    [117]Guo YT,Li XY,Wu D et al.Bone marrow mesenchymal cell transplantation reduces left ventricular remodeling in heart failure following acute myocardial infarction..Zhonghua Xin Xue Guan Bing Za Zhi,2006;34(9):784-8
    [118]汪蕾,林国生,杨波等.心肌细胞共培养诱导骨髓间充质干细胞向心肌样细胞分化.基础医学与临床,2005;25(10):906-909
    [119]Chang SA,Lee EJ,Kang HJ et al.Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells:effect of acute myocardial infarction on stem cell differentiation.Stem Cells.2008 Jul;26(7):1901-12.
    [120]Barbash IM.Chouraqui P,Baron J,et al.Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium:feasibility,cell migration,and body ditribution.Circulation,2003;108:863-868
    [121]Hu X,Yu S P,Fraser JL,et al.Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angenesis.J Thorac Cardiovase Surg,2008;135(4):799-808.
    [122]Engler AJ,Sen S,Sweeney HL,et al.Matrix elasticity directs stem cell lineage specification.Cell,2006;126(4):677-89.
    [123]Wollert KC,Meyer GP,Lotz J,etal.Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomized controlled clinicaltrial.Lancet 2004,364:141-148.
    [124]Perin EC,Dohmann H FR,Borojevic R,et al.Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy.Circulation,2004,110(1lsuppl 1):Ⅱ213-218.
    [125]Wollert KC,Drexler H.Clinical applications of stem cells for the heart.Circ Res,2005;96:151-63.
    [126]Khakoo AY,Finkel T.Endothelial progenitor cells.Annu Rev Med,2005;56:79-101.
    [127]Cogle CR,Scott EW.The hemangioblast:cradle to clinic.Exp Hematol,2004;32:885-90.
    [128]Amado LC,Saliars AP,Schuleri KH,et al.Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.Proc Natl Acad Sci USA,2005;102:11474-11479
    [129]Valiunas V,Doronin S,Valiuniene L,et al.Human mesenchymal stem cells make cardiac connexins and form function gap junctions.J Physiol,2004;555:671-626.
    [130]Tang J,Xie Q,Pan G Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion.Eur J Cardiothorac Surg,2006;30(2):353-61.
    [131]Halkos ME,Zhao ZQ,Kerendi F,Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction.Basic Res Cardiol,2008;103(6):525-36
    [132]Unzek S,Zhang M,Mal N,et al.SDF-1 recruits cardiac stem cell-like cells that depolarize in vivo Cell Transplant,2007;16(9):879~86
    [133]Guo Y,He J,Wu J,et al.Locally overexpressing hepatocyte growth factor prevents post-ischemic heart failure by inhibition of apoptosis via calcineurin-mediated pathway and angiogenesis.Arch Med Res,2008;39(2):179-88.
    [134]Zhang M,Mai N,Kiedrowski M,et al.SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction.FASEB J,2007;21(12):3197-207.
    [135]X,XU z,Xu Y,et al.Effects of mesenchymal stem cell transplantation on extra cellular matrix after myocardial infarction in rats.Coron Artery Dis,2005;16:245-255.
    [136]Berry MF,Engler AJ,Woo YJ.et al.Mensenchymal stem cell injection after myocardial infarction improves myocardial compliance.Am Physiol Heart Circ Physiol,2006;290:H2196-2203.
    [137]Breithbach M,Bostani T,Roell W.et al.Poentential risks of bone marrow cell transplantation into infarcted hearts.Blood,2007;110(4):1362-9
    [138]Vulliet PR,Greeley M,Halloran SM,MacDonald KA,Kittleson MD.Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs.Lancet,2004;363:783-784.
    [139]Poh KK,Sperry E,Young RG,et al.Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells:safety of a high dose,"off-the-shelf”,cellular cardiomyoplasty strategy.Circ Res.2006;99(7):776-84.
    [140]Zhang YM,Hartzell C,Narlow M.et al.Stem cells-derived cardiomyocytes demonstrate arrhythmic potential.Circulation,2002;106:1294-1299
    [141]Tes WT,Pendleton JD,Beyer WM,et al.Suppression of T-cell proliferation by human marrow stromat cells:implication in transplantation.Transplantation,2003;75:389-397
    [142]Ohlssom LB,Varas L,Kjellman C et al.mensenchymal progenitor cell-mediated inhibited of tumor growth in vivo and in vitro in gelatin matrix.Exp Mol Pathol,2003;75:248-255
    [143]Djouad F,Plence P,Bony C,et al.Immunosuppressive effect of mesenchymal stem cells favors tumors growth in allogeneic animal.Blood,2003,102:3837-3844
    [144]Schuleri KH,Boyle AJ,Hare JM.Mesenchymal stem cells for cardic regenerative therapy.HEP,2007;180:195-218
    [145]贾敏,卢沛琦,冯若等.骨髓间充质干细胞不同移植方法对急性心肌梗死心功能的改善作用比较.中国组织工程研究与临床康复,2007;11(11):2068-2071
    [146]李莉,张发宝,高平进等.大鼠骨髓间充质干细胞向心肌样细胞诱导分化的体外条件研究.中国分子心脏病学杂志,2006:6(3):153-156
    [147]李城,方唯一,朱皓等.成年鼠骨髓间充质干细胞体外诱导分化为心肌样细胞.介入放射学杂志,2006;15(10):611-614
    [148]贾延劼,杨于嘉,周燕等.黄芩甙诱导大鼠骨髓基质细胞向神经细胞分化的研究.中华医学杂志,2002;82(19):1337-1341
    [149]许春姣,翦新春,成洪泉等.黄芪对兔骨髓基质细胞增殖和向成骨细胞分化的影响.中南大学学报(医学版),2004;29(4):489-491
    [150]肖鲁伟,武中庆,季卫风等.右归饮诱导胎兔骨髓基质细胞向软骨细胞分化的实验研究.中国中医药科技,2005;12(3):154-155
    [151]孔晓丹,曲鹏,王彦等.三七皂甙诱导骨髓基质细胞分化为心肌样细胞的实验研究.中国心血管病研究杂志,2005;3(7):528-530
    [152]李志泉,冼绍祥,汪朝晖等。三七总皂苷对骨髓间充质干细胞增殖和向心肌样细胞分化的影响.广州中医药大学学报 2007;24(6):470-475
    [153]汪朝晖,冼绍祥,杨忠奇等.人参总皂甙诱导骨髓间充质干细胞分化为心肌样细胞的实验研究.广州中医药大学学报,2006;23(2):100-103
    [154]冼绍祥,杨忠奇,汪朝晖等.黄芪甲苷体外诱导骨髓间充质干细胞分化为心肌样细胞的实验研究.广州中医药大学学报,2007;24(1):37-40
    [155]杨敏,陈广玲,陈畅等.人参皂苷Rg1对大鼠急性心肌梗死的治疗作用.中西医结合心脑血管病杂志,2007;5(11):1075-1078
    [156]王文,王宗仁,张金洲等.芪丹通脉片联合骨髓间充质干细胞移植对急性心肌缺血大鼠心肌细胞凋亡及心功能的影响.中国中医药信息杂志,2007:14(9):24-26
    [157]杨庆有,陆曙,龚少愚等.益气温阳活血方对心肌梗死模型大鼠骨髓干细胞的动 员作用和左室重构的影响.中国中医药信息杂志,2007;14(3):24-25
    [158]黄熙 臧益民.丹参酮ⅡA磺酸钠心血管药理.国外医学中医中药分册,1995;17(1):9-12
    [159]Himi Y.Hiroi J,Kudoh S.et al.Two distinct mechanisms of angitensin Ⅱ-induced negative regulation of the mitogen-activated protein kinases in cultured cardiac myocytes.Hypertens Res.2001;24(4):385-394.
    [160].Frey N.Katus HA.Olson EN.Hill JA.Hypertrophy of the heart:a new therapeutic target? Circulation,2004;109(13):1580-1589.
    [161]谢辉,郑智.丹参酮ⅡA对血管紧张素Ⅱ诱导的心肌细胞肥大、凋亡的影响.高血压杂志,2004;12(4):359-361
    [162]龚丽娅,郑智,黄俊等.丹参酮ⅡA对心肌肥厚的作用及其机制研究.中国急救医学,2004;24(2):116-118
    [163]江凤林,冯俊,郑智等.丹参酮ⅡA对AngⅡ诱导的心肌肥大中c-fos、c-myc和c-jun mRNA表达的影响.中国药理学通报,2007;23(1):55-9
    [164]江凤林,冯俊,郑智等.丹参酮ⅡA磺酸钠对诱导的心肌肥大反应中磷酸化细胞信号调节激酶1/2的作用.中国药理学通报,2008:24(3):307-413
    [165]冯俊,江凤林,梁黔生等.丹参酮ⅡA磺酸钠对AngⅡ诱导的心肌细胞肥大反应中磷酸化MAPK的作用.中国急救医学,2006;26(12):917-920
    [166]孙联平 郑智.丹参酮ⅡA对肥厚心肌细胞核因子-KB的影响.实用老年医学,2004:18(1):25-27
    [167]李永胜,王照华,王进等.丹参酮ⅡA对高血压肥厚心肌细胞游离钙离子及一氧化氮合酶基因表达的影响.中国急救医学,2008;2(28):143-146
    [168]张磊 张丽梅 安丰方.稳心颗粒联合丹参酮ⅡA磺酸钠注射液缺血性心律失常的临床研究.中国新医学论坛,2008;8(8):7-8
    [169]曹耀金 谢永平 付桂莲等.丹参酮ⅡA磺酸钠对不稳定型心绞痛患者QT离散度的影响.中国新医学论坛,2008;8(2):6-8
    [170]张长翼,邱汉婴.丹参酮ⅡA磺酸钠对兔在体心室电生理及实验性心律失常的影响。汕头大学医学院学报,2008;21(1):33-35
    [171]朱利民,曾秋棠.丹参酮ⅡA磺酸钠对家兔在体心脏单相动作电位影响的研究.山东医药,2005;15(20):22-23
    [172]于海波,徐长庆,单宏丽等.丹参酮ⅡA对大鼠心室肌细胞膜钾电流的影响.哈尔滨医科大学学报,2002;36(2):112-114
    [173]徐长庆,娄延平,杨宝峰等.丹参酮ⅡA抑制豚鼠单个心肌细胞L-型钙电流和缩短动作电位时程效应的相关性分析.中国药理学通报,1998;14(5):428-431.
    [174]何望安,曾秋棠.丹参酮ⅡA磺酸钠预处理对大鼠心肌缺血再灌注损伤的保护作用.中华实用中西医杂志,2005;18(24):1890-1892
    [175]李欣,社俊蓉,白波等.丹参酮ⅡA抑制大鼠血管平滑肌细胞增殖及其机制研究.中国中药杂志,2008;9(33):2146-2149
    [176]吴焕明 尹为华.丹参酮ⅡA硫酸钠对低氧诱导肺血管平滑肌细胞增殖的影响.同济医科大学学报,2001;4(30):106-108
    [177]陆璐,李新荣,邓湘蕾.丹参酮ⅡA对高糖培养的大鼠血管平滑肌细胞p38 MAPK 信号通路的影响.东南大学学报(医学版),2008;27(2):130-133
    [178]陈玉成,张海宏,粱玉佳等.丹参酮ⅡA抑制体外培养兔血管平滑肌细胞迁移及机制.西部医学,2008;1(20):7-9
    [179]王维蓉,林蓉,彭宁等.丹参酮ⅡA对过氧化氢损伤人血管内皮细胞的保护作用.中药材,2006;29(1):49-51
    [180]陈海明,叶攀.丹参酮ⅡA对血管内皮细胞氧化应激损伤的保护作用.中药材,2008:31(4):569-572
    [181]李永胜,王照华,梁黔生等.丹参酮ⅡA对血管紧张素Ⅱ所致主动脉内皮细胞游离钙离子及产生一氧化氮的影响.中华高血压杂志,2006;14(11):882-887
    [182]陈文瑛,唐富天,陈少锐等.丹参酮ⅡA对动脉粥样硬化的防御作用研究.中国药房,2008;19(12):884-887
    [183]张发艳,华声瑜,范英昌.丹酚酸B及丹参酮ⅡA对家兔动脉粥样硬化IL-8及VCAM -1的影响.山东中医药大学学报,2006;30(2):152-154
    [184]吕炳强,范英昌,孙连胜.丹酚酸B、丹参酮ⅡA对动脉粥样硬化家兔血清一氧化氮及甘油三酯的影响.天津中医学院学报,2006;25(1):32-34
    [185]张洁,曾晓荣,杨艳等.丹参酮ⅡA磺酸钠和丹参素对猪冠状动脉平滑肌细胞钙激活钾通道的激活机制.中国药理学与毒理学杂志,2005;19(4):270-273
    [186]周建,余斌伟,程子安.丹参酮注射液对糖尿病微血管病变的影响.现代中西医结合杂志,2008;17(28):4414-4415.
    [187]Fortier LA,Nixon AJ,Williams J.et al.Isolation and chondrocytic differentiation of equine bong marrow-derived mesenchymal stem cell.Am J Vet Res,1998:59(9):1182-1187
    [188]ZoharR,SodekJ,McCulloch CA.Characterization of stromal progenitor cells enriched by flow cytometry.J Blood,1997:90(9):3471-3481
    [189]GhilzonR,McCulloch CA ZoharR,et al.Stromal mecenchymal progenitor cells in process citation.J Leuk Lymphoma,1999:3(3-4):211-221
    [190]CongerPA,Minguell JJ.Phenotypical and function properties of human bone marrow progenitor cells.J Cell Physiol,1999;181:67-73
    [191]Fibbe WE,Noort WA.Mesenchymal stem cells and hematopoietic stem cell transplantation.Ann N Acad Sci,2003:996:235-244
    [192]Jorgensen C,Djouad F,Apparailly F,et al.Engineering mesenchymal stem cells for immunotherapy.Gene Ther,2003;10(10):928-931
    [193]心肌细胞电生理学.刘泰摓主编,2003年,人民卫生出版社.
    [194]MarbanE,Yamagishi T,Tomaselli GF,et al.Structure and function of voltage-gated sodium channels.J Pbysiol,1998:508:647-57
    [195]Chilton L,Ohya S,Freed D,et al.K~+ currents regulates the resting membranes potential,proliferation,and contractile responses in ventricular fibroblasts and myofibroblasts.Am J Phyiol Heart Circ Physiol,2005:288(6):H2931-2939
    [196]Gutman GA,Chandy KG,Grissmer S,et al.International union of pharmacology LⅢ nomenclature and molecular relationships of voltage-gated potassium channels.Pharmacologicaf Reviews。2005:57:473-508
    [197]Eisner DA,Trafford A,Diaz ME,et al.The control of Ca~(2+) release the cardiac sarcoplasmic reticulum:regulation verusautoregulation.Cardiovasc Res.1998:38(3):589-604
    [198]Li GR,Deng XL,Sun H et al.Ion Channels in Mesenchymal Stem Cells from Rat Bone Marrow.Stem Cell,2006:24(6):1519-28
    [199]Robertson KD,Jones PA.DNA methylation:past,present and future directions.J Carcinogenesis,2000:21:461-467.
    [200]Kamihata H,Matsubara H,Nishiue T,et al.Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblast,angiogenic ligands,and cytokines.Circulation,2001:104(9):1046-1052
    [201]Shim WS,Jiang S,Wong P.et al.Ex vivo differentiation of human adult bone marrow stem cells into cardiomyocyte-like cells.Biochem Biophys Res Commun,2004:324(2):481-488.
    [202]Xu M,Wani M,Dai YS,et al.Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes.Circulation,2004;110(117):2658-2665
    [203]袁岩,陈连风,张抒扬等.心肌细胞裂解液对骨髓间充质干细胞向心肌细胞分化诱导作用的研究。中华心血管病杂志,2005,33(2):170-173
    [204]吕学详,曾秋棠.心肌细胞裂解液诱导骨髓间充质干细胞向心肌细胞的分化作用。临床心血管病杂志,2008,24(3):217-219
    [205]Kacimi R,Long CS,Koudssi F,Karliner JS.Expression and regulation of adhesion molecules in cardiac cells by cytokines:Response to acute hypoxia.Circ Res,1998,82(5):576-586
    [206]Roberds SL,Knoth KM,Po S,et al.Molecular biology of the voltage-gated potassium channels of the cardiovascular system.J Cardiovasc Electrophysiol.1993;4:68-80
    [207]Rong Tao,Chu-Pak Lau,Hung-Fat Tse,et al.Functional ion channels in mouse bone marrow mesenchymal stem cells.Am J Physiol Cell Physiol,2007;293(5):C1561-7
    [208]Deng XL,Sun HY,Lau CP et al.Properties of ion channels in rabbit mesenchymal stem cells from bone marrow.Biochem Biophys Res Communm,2006;348(1):301-9.
    [209]J(u|¨) rgen F.Heubach,Eva M.Graf,Judith Leutheuser.et al.Electrophysiological properties of human mesenchymal stem cells.J Physiol,2003;554,3,pp659-672
    [210]吕民,王越辉,李玉林等.人骨髓间充质细胞L-型钙离子通道的研究.中国免疫学杂志,2005;21:656-659
    [211]韦育林,伍卫,王景峰等.骨髓间充质干细胞诱导分化为心肌细胞及其内向整流钾电流特征.中山大学学报(医学科学版),2005;26(4):396-399.
    [212]刘嘉祺,蔡本志,杨丽妲等.大鼠骨髓间充质干细胞电生理特性的研究.哈尔滨医科大学学报,2008;42(1):
    [213]Rose RA,Jiang H,Wang X,et al.Bone Marrow-Derived Mesenchymal Stromal Cells Express Cardiac-Specific Markers,Retain the Stromal Phenotype and do not Become Functional Cardiomyocytes In Vitro.Stem Cells.2008;26(11):2884-92.
    [214]Kenter HL,Saffitz JZ,Beyer EC.Cardiac myocytes express multiple gap junction proteins.Circ Res,1992;70:438-444.
    [215]YEAGler M.Structure of cardiac junction intercellular channels.Curr OP Struc Biol,1998;121:231-245
    [216]Patel PM,Plotnikov A,Kanangaratnam P,et al.Altering ventricular activation remodels gap junction distribution in canine heart.J Cardiocasc Electrophysiol,2001;12:570-577
    [217]Saffitz JE.Electrophysiologic remodeling:what happens to gap junctions?J cardiovasc electrophysiol 1999;10(12):1684-1687
    [218]Danik SB,Liu F,Zhang J,et al.Modulation of cardiac gap junction expression and arrhythmic susceptibility.Circ Res,2004;95:1035-1041
    [219]Peter NS,New insights into myocardial arrhythmogenesis:distribution of gap-junctional coupling in normal,ischemic and hypertrophied human hearts.Clin Sci(Lond),1996;90:447-452
    [220]Peters NS,Coromilas J,Severs NJ,et al.Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia,Circulation,1997;95:988-996
    [221]Daleau P,Boudriau S,MichaudM,et al.Preconditioning in the absence or presence of sustained ischemia modulates myocardial Cx43 protein levels and gap junction distribution.Can J Physiol Pharmacol,2001,79:371-378.
    [222]Pijnappels DA,Schalij MJ,van Tuyn J.et al.Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling.Cardiovasc Res 2006;72(2):282-291
    [223]尹戴佳佳,宋治远,农耀明.大鼠间充质干细胞体外诱导分化为心肌样细胞Cx43通讯连接功能检测.中国病理生理杂志,2007;23(10):1986-1989
    [224]齐晓勇,张军,李英尚等.自体骨髓间充质干细胞移植后心肌缝隙连接蛋白43表达与室性心动过速发生的关系.中国组织过程研究与临床康复,2007;11(50):10070-10073
    [225]Pedrotty DM,Klinger RY,Badie N,et al.Structural coupling of cardiomyocytes and noncardiomyocytes:quantitative comparisons using a novel micro patterned cell pair assay.Am J Physiol Heart Circ Physiol.2008 Jul;295(1):H390-400
    [226]Marvin G.Chang,BS;Leslie Tung,PhD et al.Proarrhythmic Potential of Mesenchymal Stem Cell Transplantation Revealed in an In Vitro Coculture Model.Circulation.2006;113:1832-1841.
    [227]Valiunas.V,Doronin S,Valiuniene L,et al.Human mesenchymal stem cells make cardiac connexins and form functional gap junctions.J Physiol.2004 Mar 16;555(Pt 3):617-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700