用户名: 密码: 验证码:
Ti_3AlC_2可加工导电陶瓷及其铜基复合材料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Ti、Al、C元素粉末为原料,详细阐述了采用机械合金化法制备三元层状可加工陶瓷Ti_3AlC_2;同时,采用热处理工艺对机械合金化后混合粉体进行提纯以获得高纯Ti_3AlC_2粉体,为Ti_3AlC_2粉体材料的制备提供了新的技术途径。另外,采用机械合金化结合放电等离子烧结技术制备Ti_3AlC_2块体,解决了Ti_3AlC_2块体制备的关键科学问题即烧结温度较高或保温时间较长等。利用合成的高纯Ti_3AlC_2粉体与Cu制备出具有优异性能的Cu/Ti_3AlC_2金属陶瓷复合材料,并研究了其磨损行为。
     通过系统地研究机械合金化参数、原料配比和掺杂Si对合成Ti_3AlC_2的影响,优化并给出了机械合金化法制备Ti_3AlC_2的最佳工艺参数,合成混合粉体中Ti_3AlC_2的含量最高可达95.1wt.%。球磨粉体的热处理研究结果表明,对不同球磨参数下获得的不同Ti_3AlC_2含量的球磨混合粉体在热处理温度为1000℃,保温时间为10min均可合成纯度>99wt.%的高纯Ti_3AlC_2粉体;适当延长球磨时间对随后热处理得到高纯的Ti_3AlC_2粉体几乎没有影响,但球磨时间过长,反而不利于合成高纯的Ti_3AlC_2粉体。此外,采用机械活化放电等离子烧结技术可以在低温合成高纯、甚至单相的Ti_3AlC_2或Ti3Al(Si)C2固溶体块体。放电等离子烧结制备Cu/Ti_3AlC_2复合材料发现,在较低的烧结温度,Ti_3AlC_2与Cu便发生微弱的反应,并且这种反应随保温时间的延长和烧结温度的升高,反应变得剧烈;反应主要是通过Ti_3AlC_2中的Al和Cu的相互扩散完成的,由于Cu的诱发作用,导致Ti_3AlC_2失去Al原子而分解为TiC,而Al扩散并固溶到Cu基体中形成Cu-Al合金,使复合材料具有高的强度。在磨损过程中,随Ti_3AlC_2含量的增加,Cu/Ti_3AlC_2复合材料的耐磨性明显增强。
Recently, Ti_3AlC_2 (titanium aluminum carbide) attracts increasing interest owing to its unique properties. It is a new structural/functional material, combining unusual properties of both metals and ceramics. Such as good electrical and thermal conductivity, high strength and modulus, high thermal shock, high-temperature oxidation resistance, low density, and being machainable with conventional high-speed tools without lubrication. In addition, in contrast to the normal brittle ceramics, Ti_3AlC_2 exhibits some abnormal room-temperature compressive plasticity. Due to above excellent properties, the applications of this material are very potential. For example, it can be used as a high-temperature structural material, and also to process abrasion-resistant components and rotating parts, and so on.
     However, Ti_3AlC_2 has a very narrow zone of stability in Ti-Al-C ternary phase diagram, therefore, preparation of high purity Ti_3AlC_2 has been the difficulties of its research. Since 1994, a variety of sintering methods were used to synthesize Ti_3AlC_2. Such as hot isostatic pressing (HIP), hot-pressing (HP), self-propagating high temperature synthesis (SHS), spark plasma sintering (SPS). Though high-purity, even single-phase Ti_3AlC_2 were synthesized, higher synthesis temperatures, longer holding time were required in these methods.
     In this paper, Ti, Al and C were selected as raw materials. Preparation of layered machinable ternary ceramics Ti_3AlC_2 by mechanical alloying is detailed for the first time; at the same time, the milled powders were heated treatment in order to obtain high-purity Ti_3AlC_2 powder. In addition, high-purity, even single-phase Ti_3AlC_2 bulks were synthesized by mechanical alloying and spark plasma sintering for the first time. The key scientific problems on preparation of Ti_3AlC_2 are solved, e.g. higher sintering temperature or longer holding time. High-purity Ti_3AlC_2 powder and Cu powder are used to synthesize Cu/ Ti_3AlC_2 metal-ceramic composites with excellent properties, and wear behavior is investigated. The major research efforts of the present study are as follows:
     (1) Research on preparation of Ti_3AlC_2 powder by mechanical alloying
     Effects of mechanical alloying parameters, raw material ratio and Si addition on preparation of Ti_3AlC_2 by mechanical alloying were investigated systematically. XRD, SEM, EDX and TEM are used to identity phase and observed microstructure. The study results show that high content Ti_3AlC_2 was successfully obtained after ball milling of powder mixture at 600 rpm, charge ratio of 5:1 only for 3 h. The milled products consist of powder and a coarse granule with 8 mm in diameter, and both are mainly composed of Ti_3AlC_2 with TiC as impurity. It is believed that a mechanically induced self-propagating reaction (MSR) was triggered to form Ti_3AlC_2 and TiC during mechanical alloying process. Through adjusting mechanical alloying parameters and raw material ratio, the best process is as follows: the rotation speed is set as 600 rpm, and the weight ratio of balls to powders is 5:1, milling time is 3.5h. The obtained Ti_3AlC_2 content is 92.2 wt.%. Adding a small amount of Si in the starting material remarkably improves the content of Ti_3AlC_2 in the final products. High-content Ti_3AlC_2 powders with a phase purity of 94.2 wt.% and 95.1 wt.%could be fabricated by mechanical alloying of 3Ti/Al/0.1Si/2C and 3Ti/Al/0.1Si/1.8C, respectively.
     (2) Research on preparation of high-purity Ti_3AlC_2 powder by heating treatment the mechanically alloyed mixture
     High-purity Ti_3AlC_2 powder (99 wt.%) is obtained by heating treatment the mechanically alloyed mixture. The best raw material ratio, heat treatment temperature and holding time is Ti:Al:C=3:1.1:1.8, 1000℃, 10 min, respectively. In addition, powder of lower content Ti_3AlC_2 was heated treatment in the same ball-milling process, high-purity Ti_3AlC_2 powder was also obtained. However, longer milling time doesn’t obtained high-purity Ti_3AlC_2 powder. When the milled powders with appropriate Si addition are heated treatment at 1000℃, high-purity Ti3Al(Si)C2 solid solution powder is synthesized. And Si atoms substitute for Al atoms in solid solution distribute unevenly.
     (3) Preparation of Ti_3AlC_2 bulk by mechanically activated spark plasma sintering
     3Ti/xAl/2C(x=1, 1.1, 1.2, 1.3) raw material powders were milled at 400 rpm for 9 h and 9.5 h, respectively. For mixed powders of milling for 9 h, no new phase was formed, it was called no-phase transformation group. For mixed powders of milling for 9.5 h, Ti_3AlC_2 and TiC were formed, it was called phase transformation group. The milled powders of both groups were selected to spark plasma sintered. And dual activation mechanism of low temperature synthesis of high purity, even single-phase Ti_3AlC_2 is explored the mechanical alloying and spark plasma sintering (MA-SPS).
     For no-phase transformation group, high-purity and dense Ti_3AlC_2 was synthesized at lower sintering temperature by spark plasma sintering of mechanically milled elemental powders. It was found that elemental powders mechanically milled to superfine sizes and excess Al in the starting materials can obviously decrease sintering temperature for the synthesis of Ti_3AlC_2 during subsequent SPS. For mechanically milled mixtures of composition 3Ti/1.1Al/2C and 3Ti/1.2Al/2C in molar ratio, Ti_3AlC_2 with a purity of >99 wt.% and a relative density of >98% were obtained at 1100℃and 1050℃for 10 min, respectively. The reaction path for the formation of Ti_3AlC_2 is revealed as follows: Ti, Al and C mixtures induced chemical reactions to form TiC, Ti-Al intermetallics like Ti3Al and TiAl, and carbide Ti3AlC at low temperature of 600℃; the amorphous C further diffused in the Ti-Al intermetallics to form carbide Ti2AlC at elevated temperature; at last, the reactions between Ti2AlC and TiC yielded Ti_3AlC_2.
     For phase transformation group, fully dense bulks Ti_3AlC_2 with > 99 wt.% phase purity were obtained at the relatively low temperature and appropriate holding times by subsequent spark plasma sintering of mechanically alloyed powders from a starting mixtures of composition Ti:Al:C = 3:1.1:2 in molar ratio. But with the increasing holding time, the typical layered grain sizes of Ti_3AlC_2 increased and the Vickers hardness decreased. In addition, single-phase Ti_3AlC_2 and Ti3Al(Si)C2 solid solution were obtained by sintering the milled 3Ti/(1.1-y)Al/ySi/1.8C(y=0, 0.1, 0.2, 0.3) powder at 1000℃for 10 min. With Si content increasing, the Vickers hardness increased.
     (4) Preparation of Cu/Ti_3AlC_2 composites and wear behavior
     High-purity Ti_3AlC_2 powder was selected to prepare Cu/Ti_3AlC_2 composites, and to study the wear behavior. Friction and wear properties and wear mechanism of Cu/Ti_3AlC_2 composites at different content Ti_3AlC_2 and test load. The results show that Ti_3AlC_2 and Cu occurred reaction at lower temperature. Moreover, this reaction became increasing serious with increasing sintering temperature. The reaction was mainly completed through diffusion of Al in Ti_3AlC_2 and Cu. As a result of the induced function of Cu, resulting in the loss of Al atoms in Ti_3AlC_2 decomposed into TiC. And Al diffused into Cu matrix to form Cu-Al alloy. During the wear process, Wear mechanism of copper is mainly plough wear and adhesive wear. With increasing Ti_3AlC_2 content, Cu/Ti_3AlC_2 composite wear rate and friction coefficient decreased, wear resistance was improved significantly. When volume fraction of Ti_3AlC_2 is lower (5-10vol.%), The wear mechanism is mainly adhesive wear, at the same time, accompanying by abrasive wear; With volume fraction of Ti_3AlC_2 further increasing (15-30vol.%), Furrows of the worn surface has become shallow and small, reducing the surface roughness. At the load of 100N, wear resistance of Cu/30vol.% Ti_3AlC_2 composites is the best.
     In a word, the studies of this paper provide a new technical path and the process parameters as reference for preparation of Ti_3AlC_2 powder and bulk material. The work in this paper is of rather available values in theory and practical application.
引文
[1]张玉军,张伟儒等.结构陶瓷材料及其应用[M].北京,化学工业出版社, 2004.
    [2] BARSOUM M W. The MN+1AXN phases: A new class of solid; thermodynamically stable nanolaminates [J]. Prog. in Solid State Chem., 2000, 28: 201-281.
    [3] JEITSCHKO W and NOWOTNY H. Crystal structure of Ti3SiC2, a new type of complex carbide [J]. Monatsch. Chem., 1967, 98: 329–37.
    [4] ZHAI H X, HUANG Z Y, AI M X, et al. Tribophysical properties of polycrystalline bulk Ti3AlC2[J]. J. Am. Ceram. Soc., 2005, 88(11): 3270–3274.
    [5] ZHAI H X, HUANG Z Y, ZHOU Y, et al. Ti3AlC2– A soft ceramic exhibiting low friction coefficient [J]. Mater. Sci. Forum, 2005, 475-479: 1251-1254.
    [6] PIETZKA M A and SCHUSTER J C. Summary of constitutional data on the AI-C-Ti system [J]. J. Phase Equilibria, 1994, 15(4): 392-405.
    [7] IVANOVSKII A and MEDVEDEVA N I. Electronic structure of hexagonal Ti3A1C2 and Ti4A1N3 [J]. Mendeleev Commun., 1999, 1: 36-38.
    [8] MYHRA S, CROSSLEY J A A and BARSOUM M W. Ti4A1N3 layered Physics and Chemistry Crystal-chemistry of the Ti3AlC2 carbide/nitride phases-characterization by XPS [J]. J. Phy. Chem. Solids, 1998, 59: 1437-1443.
    [9] ZHOU Y C, WANG X H, SUN Z M, et al. Electronic and structural properties of the Layered ternary carbide Ti3AlC2 [J]. J. Mater. Chem., 2001, 11(9): 2335-2339.
    [10] WU E and KISI E H. Synthesis of Ti3AlC2 from Ti/Al4C3/C studied by in situ neutron diffraction [J]. J.Am. Ceram. Soc., 2006, 89 (2): 710–713.
    [11] TZENOV N V, BARSOUM M W. Synthesis and characterization of Ti3AlC2 [J]. J. Am. Ceram. Soc., 2000, 83 (4): 825-832.
    [12] FINKEL P, BARSOUM M W, EL-RAGHY T. Low temperature dependencies of the elastic properties of Ti3AlC2, Ti4A1N3 and Ti3SiC2 [J]. J. Appl. Phys., 2000, 87: 1701-1703.
    [13] BARSOUM M W. Oxidation of Tin+1A1Xn (n=1-3 and X=C, N) Part I. Model [J]. J. Electrochem. Soc., 2001, 148 (8): 544-550.
    [14] BARSOUM M W. Oxidation of Tin+1A1Xn (n=1-3 and X=C, N) Part II. Experimental results [J]. J. Electrochem. Soc., 2001, 148 (8):551-562.
    [15] LOPACINSKI M, PUSZYNSKI J, LIS J. Synthesis of ternary titanium aluminumcarbides using self-propagating high-temperature synthsis technique [J]. J. Am. Ceram. Soc., 2001, 84 (12): 3051-3053.
    [16] KHOPTIAR Y, GOTMAN I and ELAZAR Y G. Pressure-assisted combustion synthesis of dense layered Ti3AlC2 and its mechanical properties [J]. J. Am. Ceram. Soc., 2005, 88 (1): 28–33.
    [17] ZHOU A G, WANG C A, GE Z B, et al. Preparation of Ti3AlC2 by self-propagating high-temperature synthesis [J]. J. Mater. Sci. Lett., 2001, 20: 1971-1973.
    [18]李小雷,周爱国,汪长安等.自蔓延高温合成Ti3AlC2和Ti2AlC及其反应机理[J].硅酸盐学报,2002, 30 (3): 407-410.
    [19]陈克新,郭俊明,葛振斌等.燃烧合成热压烧结制备Ti3AlC2陶瓷[J].稀有金属材料工程,2002, 31(增刊1): 20-23.
    [20]郭俊明,陈克新,葛振斌等.添加TiC和Ti2AlC对燃烧合成Ti3AlC2粉体的影响[J].无机材料学报,2003, 18: 253-256.
    [21] GE Z B, CHEN K X, et al. Combustion synthesis of ternary carbide Ti3AlC2 in Ti-Al-C system [J]. J. Eur. Ceram. Soc., 2003, 23: 567-574.
    [22] LIU G H, CHEN K X, ZHOU H P. Layered growth of Ti2AlC and Ti3AlC2 in combustion synthesis [J]. Mater. Lett., 2006, 61: 779-784.
    [23] YEH C L, SHEN Y G. Combustion synthesis of Ti3AlC2 from Ti/Al/C/TiC powder compacts [J]. J. Alloy. Compd., 2008, 466: 308-313.
    [24] WANG X H, ZHOU Y C. Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic [J]. J. Mater.Chem., 2002, 12: 455-460.
    [25] WANG X H, ZHOU Y C. Microstructure and properties of Ti3A1C2 prepared by the solid-liquid reaction synthesis and simultaneous In-situ hot pressing process [J]. Acta Mater., 2002, 50: 3141-3149.
    [26] ZHU J Q, MEI B C, LIU J, et al. Synthesis of high-purity Ti3SiC2 and Ti3AlC2 by hot-pressing (HP) [J]. J. Mater. Sci. Lett., 2003, 22: 1111-1112.
    [27] ZHU J Q, MEI B C, XU X W, et al. Synthesis of single-phase polycrystalline Ti3SiC2 and Ti3AlC2 by hot pressing with the assistance of metallic Al or Si [J]. Mater. Lett., 2004, 58: 588-592.
    [28] ZHOU A G, WANG C A, HUANG Y. A possible mechanism on synthesis of Ti3AlC2 [J]. Mater.Sci. Eng. A, 2003, 352: 333-339.
    [29] HAN J H, HWANG S S, LEE D, et al.. Synthesis and mechanical properties ofTi3AlC2 by hot pressing TiCx/Al powder mixture [J]. J. Eur. Ceram. Soc., 2008, 28: 979–988.
    [30] ZHOU A G, WANG C A, HUANG Y. Synthesis and mechanical properties of Ti3AlC2 by spark plasma sintering [J]. J. Mater. Sc., 2003, 38: 3111-3115.
    [31] ZHOU W B, MEI B C, ZHU J Q, et al. Synthesis of high-purity Ti3SiC2 and Ti3AlC2 by spark plasma sintering (SPS) technique [J]. J. Mater. Sci. Lett., 2005, 40: 2099-2100.
    [32] ZHOU W B, MEI B C, ZHU J Q, Fabrication of high-purity ternary carbide Ti3AlC2 by spark plasma sintering (SPS) technique [J]. Ceram. Inter., 2007, 33: 1399-1402.
    [33] ZOU Y, SUN Z M, HASHIMOTO H, et al. Low temperature synthesis of single-phase Ti3AlC2 through reactive sintering Ti/Al/C powders [J]. Mater. Sci. Eng. A, 2008, 473: 90-95.
    [34] ZOU Y, SUN Z M, HASHIMOTO H, et al. Synthesis of high-purity polycrystalline Ti3AlC2 through pulse discharge sintering Ti/Al/TiC powders [J]. J. Alloy. Compd., 2008, 456: 456-460.
    [35] ZOU Y, SUN Z M, TADA S J, et al. Synthesis reactions for Ti3AlC2 through pulse discharge sintering Ti/Al4C3/TiC powder mixture [J]. Scripta Mater., 2006, 55: 767-770.
    [36] ZOU Y, SUN Z M, TADA S J, et al. Rapid synthesis of single-phase Ti3AlC2 through pulse discharge sintering a TiH2/Al/TiC powder mixture [J]. Scripta Mater., 2007, 56: 725-728.
    [37] PENG C Q, WANG C A, SONG Y, et al. A novel simple method to stably synthesize Ti3AlC2 powder with high purity [J]. Mater. Sci. Eng. A, 2006, 428: 54–58.
    [38] AI M X, ZHAI H X, et al. Synthesis of Ti3AlC2 powders using Sn as an additive [J]. J. Am. Ceram. Soc., 2006, 89(3): 1114-1117.
    [39] LI S B, W H XIANG, ZHAI H X, et al. Formation of a single-phase Ti3AlC2 from a mixture of Ti,Al and TiC powders with Sn as an additive [J]. Mater. Res.Bull., 2008, 43: 2092-2099.
    [40] BARSOUM M W and EI-RAGHY T. Synthesis and characterisation of a remarkable ceramic: Ti3SiC2 [J]. J. Am. Ceram. Soc., 1996, 79(7): 1953-1956.
    [41] LI J F, SATO F and WATANABE R. Synthesis of Ti3SiC2 polycrystals by hot isostatic pressing of elemental powders [J]. J. Mater. Sci. Lett., 1999, 18: 1595-1597.
    [42] BARSOUM M W, WL-RAGHY T. Processing and characterization of Ti2A1C,Ti2AlNand Ti2AlC0.5N0.5 [J]. Metall. Mater. Trans. A, 2000, 31(7):1857-1864.
    [43] LI J T and MIYAMOTO Y. Fabrication of monolithic Ti3SiC2 ceramic through reactive sintering of Ti/Si/2TiC [J]. J. Mater. Syn. Process., 1999, 7(2): 91-96.
    [44] RADHAKRISHNAN R, WILLIAMS J J and AKINC M. Synthesis and high- temperature stability of Ti3SiC2 [J]. J. Alloy. Compd., 1999, 285: 85-88.
    [45] LUO Y M, PAN W, LI S Q, et al. Synthesis and mechanical properties of In-situ hot-pressed Ti3SiC2 polycrystals [J]. Ceram. Inter., 2002, 28: 227-230.
    [46] SUN Z M, ZHANG Y and ZHOU Y C. Synthesis of Ti3SiC2 powders by a solid-liquid reaction process [J]. Scripta Mater., 1999, 41(1): 61-66.
    [47] BAO Y W, CHEN X, WANG X H et al. Shear strength and shear failure of layered machinable Ti3A1C2 ceramics [J]. J. Eur. Ceram. Soc., 2004, 24: 855-860.
    [48] BAO Y W, ZHOU Y C. Evaluating high-temperature modulus and elastic recovery of Ti3SiC2 and Ti3AlC2 ceramics [J]. Mater. Lett., 2003, 57: 4018-4022.
    [49] BARSOUM M W, YOO H I, POLUSHINA I K, etal. Electrical conductivity, thermopower, and hall effect of Ti3AlC2, Ti4AlN3 and Ti3SiC2 [J]. Phy. Rev. B, 2000, 62(15): 10194-10198.
    [50] HO J C, HAMDEH H H, BARSOUM M W, etal. Low temperature heat capacities of Ti3AlC2, Ti4AlN3 and Ti3SiC2 [J] J. Appl. Phy., 1999, 86(7): 3609-3611.
    [51] BARSOUM M W and EL-RAGHY T. The MAX Phases: Unique new carbide and nitride materials [J]. Am. Sci., 2001, 89 (4): 334-343.
    [52] WANG X H, ZHOU Y C. Oxidation behavior of TiC-containing Ti3A1C2 basedmaterial at 500-900℃in air [J]. Mater. Res. Innov., 2003, 7: 381-390.
    [53] WANG X H, ZHOU Y C, Oxidation behavior of Ti3A1C2 at 1000-1400℃in air [J]. Corros. Sci., 2003, 45: 891-907.
    [54] WANG X H, ZHOU Y C. Oxidation behavior of Ti3AlC2 powders in flowing air [J]. Mater. Chem., 2002, 12(9): 2781-2785.
    [55] LEE D B, PARK S W. High-temperature oxidation of Ti3AlC2 between 1173 and 1473K in air [J]. Mater. Sci. Eng. A, 2006, 434: 147-154.
    [56]黄振莺,翟洪祥,王轶凡等. Ti3AlC2的滑动摩擦系数与摩擦表面的氧化行为[J].稀有金属材料与工程,2005, 36,增刊1: 401-404.
    [57]川刘涛,丽仔剑,凌国平等.颗粒增强铜基复合材料研究进展[J].材料导报,2004, 18 (4): 53-55.
    [58]王俊,孙宝德,周尧和.颗粒增强金属基复合材料的发展概况[J].铸造技术, 1998,20 (3): 37-38.
    [59] IBRAHIM I A, MOHAMED F A, LAVERNIA E J. Particulate reinforced metal matrixcomposites-a review [J]. J. Mater. Sci., 1991, 26 (2): 1137
    [60]孙国雄,廖恒成.颗粒增强金属基复合材料的制备技术和界面反应与控制[J].特种铸造及有色合金, 1998, 19 (4): 12-14.
    [61] ZHANG Y, SUN Z M, ZHOU Y C. Cu/Ti3SiC2 composite: a new electrofriction material [J]. Mater. Res. Innov., 1999, 3: 80–84.
    [62] WU J Y, ZHOU Y C, WANG J Y. Tribological behavior of Ti2SnC particulate reinforced copper matrix composites [J]. Mater. Sci. Eng. A, 2006, 422: 266-271.
    [63] PENG L M. Fabrication and properties of Ti3AlC2 particulates reinforced copper composites [J]. Scripta Mater., 2007, 56: 729–732.
    [64] ZHANG J, WANG J Y, ZHOU Y C. Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu–Ti3AlC2 composites [J]. Acta Mater., 2007, 55: 4381-4390.
    [65]戴起勋.金属材料学[M].北京,北京化学工业出版社, 2005: 45-48.
    [66]谭毅,李敬锋.新材料概论,北京冶金工业出版社,2004: 56-57.
    [67]谢国宏.搅拌铸造法制造颗粒增强铝基复合材料的研究与发展[J].材料导报,1994, 5 (1): 69-73.
    [68] ICHIKAWA K and ACHIKITA M. Electrical conductivity and mechanical properties of carbide dispersion-strengthened copper prepared by compocasting [J]. Mater. Trans., 1993, 34 (8): 718-724.
    [69]金凤浩.国外铜基复合材料的开发进展[J].世界有色金属, 1993, 8 (11): 28-30.
    [70]崔春翔.原位金属基复合材料的制备原理及工艺[J].材料开放与应用, 1996, 11 (10): 5-7.
    [71]王武孝,袁森等. Al2O3/Cu复合材料的研究进展[J].特种铸造及有色金属, 1998, 2 (5): 50-52.
    [72] BEJAMIN J S. Dispersion strengthened superalloys by mechanical alloying [J]. Metall. Trans., 1970, l: 2943-2947.
    [73] YERMAKOV A E, YURCHIKOV E E and BARINOV V A. Amorphous transition in intermetallic compounds induced by high ball milling [J]. Phys. Met. Metallogr., 1981, 52 (6): 50-57.
    [74] YERMAKOV A E, YURCHIKOV E E and BARINOV V A. Ferromagnetism in Y-Copowders produces by machine grinding [J]. Phys. Met. Metallogr., 1982, 54 (5): 935-941.
    [75] KOCH C C, CAVIN O B, MEKAMAY C G, et al. Scarbraugh, Preparation of“Amorphase”Ni60Nb40 by Mechanical Alloying [J]. Appl. Phys. Lett., 1983, 43: 1017-1023.
    [76] GILMAN P S and BENJAMIN J S. Mechanical Alloying [J]. Annu. Rev, Mater. Sci., 1983, 13: 279-283.
    [77]张伟,王树林.机械合金化的研究和发展[J].矿山机械,2003, 8: 50.
    [78] KOCH C C. Materials synthesis by mechanical alloying [J]. Annu. Rev. Mater. Sci., 1989, 19: 121.
    [79] DAVIS R M, MCDERMOTT B T and KOCH C C, Mechanical Alloying of Brittle Materials [J]. Metall. Trans., 1988, 19A: 2867-2872.
    [80]李清斌,王晓春编译,徐景春校对.合金中的扩散性相变与合金热力学.沈阳,辽宁科学技术出版社, 1984.
    [81] MOSHKSAR M M, MIRZAEE M. Formation of NiAI intermetallic by gradual and explosive exothermic reaction mechanism during ball milling [J]. Intermetallics, 2004, 12: 1361-1366.
    [82] REZA A, YAVARI. Mechanically prepared nanocrystalline materials [J]. Mater. Trans., 1995, 36 (2): 228-239.
    [83] MERZHANOV A G. Combustion progress in chemical technology and metallurgy [M]. 1975: 1.
    [84] MUNIR Z A. Synthesis of high-temperature materials by self-propagating combustion methods [J]. Am. Ceram. Soc. Bull., 1988, 67: 342-349.
    [85] L. TAKACS. Self-sustaining reactions induced by ball milling [J]. Prog. Mate. Sci., 2002, 47 (4): 355-414.
    [86] ATZMON M. In situ thermal observation of explosive compound formation reaction during mechanical alloying [J]. Phys. Rev. Lett., 1990, 64 (3): 487-490.
    [87] TAKACS L. Ball milling-induced combustion in powder mixtures containing Titanium Zirconium, or Hafnium [J]. J. Solid State Chem., 1996, 125: 75-84.
    [88] GRAS C, VREL D, GAFFET E, et al. Mechanical activation effect on the self-sustaining combustion reaction in the Mo-Si system [J]. J. Alloy Compd., 2001, 314: 240-250.
    [89] MA M L, LIU X K, XI S Q, et al. Effect of material characteristics on the ignition ofthe combustion reactions induced by ball milling [J]. J. Mater. Process. Tech., 2001, 116: 124.
    [90] ZHU X K, ZHAO K Y, CHENG B C, et al. Synthesis of nanocrystalline TiC powder by mechanical alloying [J]. Mater. Sci. Eng. C, 2001, 16: 103-105.
    [91] SURYANARAYANA C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1.
    [92] SCHAFFER G B, MCCORMICK P G. Combustion synthesis by mechanical alloying [J]. Scripta Metall., 1989, 23: 835-838.
    [93]殷声.燃烧合成[M].北京,冶金工业出版社, 1999.
    [94] MCCORMICK P G. Application of mechanical alloying to chemical refining [J]. Mater. Trans., JIM 1995, 35(2): 161.
    [95]张修庆,朱心坤等.反应球磨技术制备纳米材料[J].材料科学与工程, 2001, 19 (2): 95.
    [96] EL-EAKANDRANY M S. Synthesis of nanocrystalline titanium carbide alloy powders by mechanical solid state reaction [J]. Metall.Mater.Trans.A, 1996, 27: 2374-2384.
    [97] PATANKAR S N, XIAO S Q, LEWANDOWSKI J J, et al. The mechanism of mechanical alloying of MoSi2 [J]. J. Mater. Res., 1993, 8: 1311-1316.
    [98] BYUN C S, BOPARK S, LEE W, et al. Formation mechanism of titanium silicide by mechanical alloying [J]. J. Mater. Sci., 2001, 36: 363-369.
    [99] TAKACS L, SOIKA V, BALAZ P. The effect of mechanical activation on highly exothermic powder mixtures [J]. Solid State Ionics, 2001, 141-142: 641-647.
    [100] BAKHSHAI A, SOIKA V, SUSOL M A, TAKACS L. Mechanochemical reactions in the Sn-Zn-S System: Further Studies [J]. J. Solid State Chem., 2000, 153: 371-380.
    [101] PALLONE E M J A, TROMBINI V, BOTTA W J et al. Synthesis of A12O3-NbC by reactive milling and production of nanocomposites [J]. J. Mater. Process. Tech., 2003, 143-144: 185-190.
    [102] GOCCO G, MULSS G, SCHIFFINI L. Mechanical alloying processes and reactive millings [J]. Mater. Trans., JIM, 1995, 36 (2): 150-160.
    [103] SCHAFFER G B, MCCORMICK P G. Displacement reactions during mechanical alloying [J]. Metall.Trans., 1990, 21A: 2789-2794.
    [104]刘长松,殷声.自蔓延高温合成反应机械合金化[J].稀有金属, 1999, 23 (2): 1370.
    [105]刘志坚,曲选辉.机械合金化反应合成TiN[J].粉末冶金技术, 1997, 15 (2):
    [106]陈华辉,邓海金,李明.现代复合材料[M].北京:中国物资出版社. 1998.
    [107]娄燕,彭大暑,王孟君.机械合金化法制备弥散铜电极[J].南华大学学报(理工版), 2002, 16(2).
    [108]罗丽娟.机械合金化制备纳米晶钛氢化物电极[J].新材料新工艺—应用开发, 2003, 1: 21.
    [109]杨红川,张久兴,周美玲. NdFe10.5Mo1.5Nx的机械合金化过程和磁性能的研究[J].稀有金属材料与工程, 2002, 31(1).
    [110] POLITIS C. Amorphous superconducting Nb3Ge and Nb3GexAlx powders prepared by mechanical alloying [J]. Physica B: Physics of Condensed Matter. & C: Atomic, Molecular and Plasma Physics, Optics, 1985, 135(1-3): 286-289 .
    [111] INOUE K, KIKUCHI A. Development of RHQ-processed Nb3Ga wire [J]. IEEE Trans. Appl. Supercon., 2004, 14 (2):956-960.
    [112] SCHULZ R, HUOT J, LIANG G, et al. Recent developments in the applications of nonocrystalline materials to hydrogen technologies [J]. Mater. Sci. Eng. A, 1999, 267 (2): 240-245.
    [113]李法兵,蒋利军,詹锋等.机械合金化直接合成镁基复合储氢材料研究[J].稀有金属材料与工程, 2005, 34 (5): 750-754.
    [114] TERRY M T, KANATZIDIS M, MAHAN G, et al. Thermoelectric materials: the next generation materials for small scale refrigeration and powder generation applications [J]. MRS Proc., 1997, 545: 47-54.
    [115] BELYAEV E, MANYLOV O, LOMOVSKY. Mechanochemical synthesis and properties of thermoelectric materialβ-FeSi2 [J]. J. Mater. Sci., 2000, 35 (10): 2029-2035.
    [116]李成川,任维丽,潘志军等.热点材料CoSi化合物的机械合金化合成[J].上海交通大学学报, 2006, 40 (6): 889-894.
    [117]雷景轩,马学鸣,余海峰.机械合金化制备电触头材料进展[J].材料科学与工程, 2002, 20: 457-460.
    [118]张代东,秦亮.电触头材料的应用与制备研究[J].科技情报开发与经济, 2004, 14 (10): 188-190.
    [119]张代东,郑建玉.机械合金化制备纳米材料[J].铸造设备研究, 2004, 4:18-20.
    [120] OMORI M. Sintering, consolidation, reaction and crystal growth by the spark plasmasystem (SPS), Mater. Sci. Eng. A, 2000, 287: 183-188.
    [121] ZHAN G D, KUNTZ J, WAN J, et al. Alumina-based nanocomposites consolidated by spark plasma sintering [J]. Scripta. Mater, 2002, 47: 737-741.
    [122] MORITA K, HIRAGA K, KIM B N, et al. Synthesis of dense nanocrystalline ZrO2–MgAl2O4 spinel composite [J]. Scripta Mater., 2005, 53 (9): 1007-1012.
    [123] ANSELMI-TAMBURINI U, GARAY J E and MUNIR Z A. Fast low-temperature consolidation of bulk nanometric ceramic materials [J]. Scripta Mater., 2006, 4 (5): 823-828.
    [124] LEE S H, KYOUNG, HONG H S, et al. Microstructural and mechanical properties of nanocrystalline (Al+12.5at.%Cu)3Zr alloys synthesized by planetary ball milling and spark plasma sintering [J]. Intermetallics, 2003: 1039-1045.
    [125]李蔚,高濂,郭景坤.放电等离子快速烧结纳米3Y-TZP材料[J].无机材料学报, 2000, 15 (2): 269.
    [126] GAO L, WANG H Z, HONG J S, et al. Mechanical Properties and Microstructure of Nano-SiC–Al2O3 Composites Densified by Spark Plasma Sintering [J]. J. Eur. Ceram. Soc., 1999, 19 (5): 609-613.
    [127] HONG J F, GAO L, TORRE S D D L, et al. Spark plasma sintering and mechanical properties of ZrO2(Y2O3)–Al2O3 composites[J]. Mater. Lett., 2000, 43 (1-2): 27-31.
    [128] GAO L, WANG H. Z, HONG J S, et al. SiC-ZrO2(3Y)-Al2O3 nanocomposites superfast densified by spark plasma sintering [J]. Nanostructured Mater., 1999, 11(1): 43-49.
    [129] LI W and GAO L. Fabrication of HAp–ZrO2(3Y) nano-composite by SPS [J]. Biomaterials, 2003, 24(6): 937-940.
    [130] ZHANG Y F, WANG L J, JIANG W, et al. Microstructure and properties of Al2O3–TiC nanocomposites fabricated by spark plasma sintering from high-energy ball milled reactants [J]. J. Eur. Ceram. Soc., 2006, 26: 3393-3397.
    [131] WAN J L, DUAN R G and MUKHERJEE A K. Spark plasma sintering of silicon nitride/silicon carbide nanocomposites with reduced additive amounts [J]. Scripta Mater., 2005, 53 (6): 663-667.
    [132] LI J L, WANG L J, BAI G Z and JIANG W. Microstructure and mechanical properties of in situ produced TiC/C nanocomposite by spark plasma sintering [J]. Scripta Mater., 2005, 52 (9): 867-871.
    [133] CHAE J H, KIM K H, CHOA Y H, et al. Microstructural evolution of Al2O3–SiCnanocomposites during spark plasma sintering [J]. J. Alloy. Compd., 2006, 413, 259-264.
    [134] KUMAR R, PRAKASH K H, CHEANG P, et al. Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders [J]. Acta Mater., 2005, 53 (80): 2327-2335.
    [135] ZHENG Y, WANG S X, YOU M, et al. Fabrication of nanocomposite Ti(C, N)-based cermet by spark plasma sintering [J]. Mater. Chem. Phy., 2005, 92 (1): 64-70.
    [136] TOKITA M, KAWAHARA M, SONODA M, et al. Preparation and triborogical characterization of ZrO2(3Y)+20wt%Al2O3/SUS410l stainless steel composite functionally graded materials fabricated by spark plasma sintering method [J].粉体および粉末冶金, 1999, 46 (3): 269-276.
    [137] KIKUCHI K, KANG Y S, KAWASAKI A. Fabrication of disk shaped symmetric functionally graded Materials of Ni/Al2O3 system by SPS process [J].粉体および粉末冶金, 2000, 47(3): 302-307.
    [138] KIMURA H, TODA K. Design and development of functionally graded materials by pulse discharge resistance consolidation with temperature gradient control [J]. Powder Metall., 1996: 39 (1): 59-62.
    [139]大塚愛子,川崎亮,渡辺龍三ら.放電プラズマ焼結法によるCu/Al2O3/Cu対称型傾斜機能材料の作製[J].粉体および粉末冶金. 1998, 45(3): 220-224.
    [140] GUO H B, KHOR K A, BOEY Y C, et al. Laminated andfunctionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering [J]. Biomaterials, 2003, 24: 667–675.
    [141] LUO Y M, PAN W, LI S Q, et al. A novel functionally graded material in the Ti-Si-C system [J]. Mater. Sci. Eng. A, 2003, 345: 99-105.
    [142] TOKITA M. Development of large size ceramic/ metal bulk FGM fabricated by Spark Plasma sintering [J]. Materials Science Forum,1998-1999, 308-311, Sponsored by: DFG; Freistaat Sachsen, Trans Tech Publ: 83-88.
    [143] ZHANG J X, LU Q M, LIU K G.. Synthesis and thermoelectric properties of CoSb3 compounds by spark plasma sintering [J]. Mater. Lett., 2004, 58: 1981– 1984.
    [144] JIANG J, CHEN L D, BAI S Q. Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering [J]. Scripta Mater., 2005, 52: 347–351.
    [145] KAKEGAWA K, UEKAWA N, WU Y J, et al. Change in the compositional distribution in perovskite solid solutions during the sintering by SPS [J]. Mater. Sci. Eng. B, 2003, 99: 11-14.
    [146] GOPALAN R, KUNDIG A A, OHNUMA M. Mechanically milled and spark plasma sintered FePt-based bulk magnets with high coercivity [J]. Scripta Mater., 2005, 52: 761–765.
    [147] LEE S Y, YOO S I, KIM Y W, et al. Preparation of Dense MgB2 Bulk Superconductors by Spark Plasma Sintering [J]. J. Am. Ceram. Soc., 2003, 86 (10): 1800–1802.
    [148] KIMIHIRO O. Spark plasma consolidation of Al based amorphous powder prepared by mechanical alloying [J]. J. Jap. Soc. Powder Powder Metall., 1997, 44 (12): 1126-1130.
    [149] KIMIHIRO O. Preparation of amorphous Mg2Ni2Y alloy by mechanical alloying and pulsed current sintering [J]. J. Jap. Soc. Powder Powder Metall., 2000, 47(4): 423-426.
    [150] KIM C K, LEE H S, SHIN S Y, et al. Microstructure and mechanical properties of Cu-based bulk amorphous alloy billets fabricated by spark plasma sintering [J]. Mater. Sci. Eng: A, 2005, 406 (1-2): 293-299.
    [151] KIM T S, LEE J K, KIM H J, et al. Consolidation of Cu54Ni6Zr22Ti18 bulk amorphous alloy powders [J]. Mater. Sci Eng. A, 2005, 402 (1-2): 228-233.
    [152] YE L L, LIU Z G., RAVIPRASAD K, et al. Consolidation of MA amorphous NiTi powders by spark plasma sintering [J]. Mater. Sci. Eng: A, 1998, 241 (1-2): 290-293.
    [153] OZAKI K, NISHIO T, MATSUMOTO A, et al. Preparing Mg–Ni–Si amorphous powders by mechanical alloying and consolidation by pulsed current sintering [J]. Mater. Sci. Eng: A, 2004, 375-377: 857-860.
    [154]平井敏雄. SPS研究会を振り返つて[C]. SPS研究会论文集, 2003, 1-2.
    [155]大橋修.パルス通電接合[C]. SPS研究会论文集, 2003,40-41.
    [156]古畑,大橋修. SUS304ステンレス鋼のパルス通電接合[C]. SPS研究会论文集, 2003, 36-37.
    [157]宮坂好人,唐沢均.パルス通電接合法による応用実例その2[C]. SPS研究会论文集,2003, 38-39.
    [158] WANG C A, ZHOU A G., et al. Quantitative phase analysis in the Ti-Al-C ternary system by X-ray diffraction [J]. Powder Diffr., 2005, 20: 218-223.
    [159] .LI J F, MATSUKI T and WATANABE R. Combustion Reaction during mechanicalalloying synthesis of Ti3SiC2 ceramics from 3Ti/Si/2C powder mixture [J]. J. Am. Ceram. Soc., 2005, 5: 1318–1320.
    [160] ORTHNER H R, TOMASI R, BOTTAF W J. Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling [J]. Mater. Sci. Eng. A, 2002,336: 202–208.
    [161] LI S B and ZHAI H X. Synthesis and reaction mechanism of Ti3SiC2 by mechanical alloying of elemental Ti, Si, and C powders [J]. J. Am. Ceram. Soc., 2005, 88 (8): 2092–2098.
    [162] LI S B, ZHAI H X, BEI G. P, et al. Formation of Ti3AlC2 by mechanically induced self-propagating reaction in Ti–Al–C system at room temperature [J]. Mater. Sci. Technol., 2006, 22(6): 667-672.
    [163] YE L L, LIU Z G., LI S D, et al. Thermochemistry of combustion reaction in Al–Ti–C system during mechanical alloying [J]. J. Mater. Res. 1997, 12 (3), 616-618.
    [164] WANG X H, ZHOU Y C. Solid-liquid reaction synthesis of layered machinable Ti3AlC2 ceramic [J]. J. Mater. Chem., 2002, 12: 455-460.
    [165] NOWOTNY H, UACCARO C. The ternary systems: Cr-Al-C, V Al-C and Ti-Al-C and the behavior of the H-phases (M2A1C) [J]. J. Solid State Chem., 1980, 32: 213-216.
    [166] NOWOTNY H, ROGL P, SCHUSTER J C. Structural chemistry of complex carbides and related compounds [J]. J. Solid. St. Chem., 1982, 44: 126-133.
    [167] BARSOUM M W, ALI M, EL-RAGHY T. Processing and characterization of Ti2A1C, Ti2A1N and Ti2AlC0.5N0.5 [J]. Met. Mater. Trans., 2000, 31A (7): 1857-1865.
    [168] GANGULY A, ZHEN T, BARSOUM M W, Synthesis and mechanical properties of Ti3GeC2 and Ti3SixGe1-xC2 (x =0.5, 0.75) solid solutions [J]. J. Alloy. Compd., 2004, 376: 287-295.
    [169] LI S B, BEI G. P, LI C W, et al. Synthesis and deformation microstructure of Ti3SiAl0.2C1.8 solid solution [J]. Mater. Sci. Eng. A, 2006, 441: 202-205.
    [170] LI C W, ZHAI H X, DING Y, et al. Synthesis of Ti3Si0.8Al0.4C1.8 solid solution from Ti–Si–Al–C powder mixture [J]. Mater. Lett., 2007, 61: 3575–3577.
    [171] CHEN J X, ZHOU Y C, ZHANG J. Abnormal thermal expansion and thermal stability of Ti3Al1-xSixC2 solid solutions [J]. Scripta Mater., 2006, 55: 675–678.
    [172] ZHOU Y C, CHEN J, WANG X J Y, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions [J]. Acta Mater., 2006, 54: 1317–1322.
    [173]果世驹.粉末烧结理论[M].北京:冶金工业出版社, 2002.
    [174] KIYOSHI I, MASAKAZU A. Electric Conductivity and Mechanical Properties of Carbide Dispersion-strengthened Copper Prepared by Compocasting [J]. Mater. Trans. JIM,1993, 34, 71 8-724.
    [175]赵乃勤,李园俊,王长巨等.粉末冶金真空热压法制WC/Cu复合电阻焊电极[J].兵器材料科学与工程, 1997, 20, 39-43.
    [176]陈民芳,赵乃勤,李国俊. WC对Cu/WCP复合材料性能及组织的影响[J].兵器科学与工程, 1998, 21, 22-26.
    [177] CHANG S Y, LIN S J. Fabrication of SiCw reinforced copper matric omposites by electroless copper plating [J]. Scripta M ater.1996, 35, 225 -231.
    [178]曾强,钟涛兴,王荣明. SiC颗粒影响SiCp/Cu复合材料物理性能的研究[J].航空材料学报, 1999, 19, No.1
    [179]艾明星.钛铝碳及铜/钛铝碳复合材料[D].北京交通大学,2006年.
    [180] RAPOPORT L. The competing wear mechanisms and wear maps for steels[J]. Wear, 1995, 181-183 : 280-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700