用户名: 密码: 验证码:
AP65镁合金在氯化钠溶液中电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
AP65是一种用于大功率海水电池阳极的镁合金,其名义成分为Mg-6%A1-5%Pb(除特殊说明,文中均指质量分数)。性能较好的AP65镁合金在实际使用过程中通常要求具备较强的放电活性和较高的库伦效率,能在短时间内迅速激活并在较负的放电电位下工作。本论文采用电化学方法结合显微组织的表征,从活化机理、均匀化退火、合金化、塑性变形和电解质溶液等五个方面研究AP65镁合金在氯化钠溶液中的电化学行为,目的在于提高其综合放电性能。本论文的具体研究工作如下:
     1)研究AP65镁合金中主要合金元素铝和铅对镁电极的活化机理。结果表明铝和铅单独存在时并不能显著增强镁电极的放电活性,但当两者共存时则使放电活性明显增强。铝和铅对镁电极的活化属于溶解-再沉积机制,且两者之间存在协同效应:在放电过程中溶解的Pb2+离子很容易以铅的氧化物形式沉积在电极表面,这一过程能促进溶解的A13+离子以A1(OH)3的形式在电极表面沉积,同时以2Mg(OH)2·Al(OH)3的形式剥落放电产物Mg(OH)2,并带动其他Mg(OH)2从电极表面脱落,对镁电极起到活化作用。
     2)研究均匀化退火对AP65镁合金显微组织及放电行为的影响。结果表明铸态合金中的β-Mg17Al12目能使电极在10mA/cm2电流密度下具有较为平稳的放电电位和较高的库伦效率。但在180和300mA/cm2电流密度下该P-Mgl7Al12相能抑制电极的放电过程并延长其激活时间,且大量的该相在放电过程中从电极表面脱落,导致电极库伦效率降低。经400℃均匀化退火24h后β-Mg17Al12相溶解,合金表现为单相均匀的等轴晶组织,致使电极在180和300mA/cm2电流密度下放电电位负移且激活时间缩短,同时拥有较高的库伦效率。
     3)研究微量合金元素对均匀化退火态AP65镁合金放电性能的影响。结果表明添加1%的锌能细化合金的晶粒,对电极在10mA/cm2电流密度下放电性能的提高无明显作用,但能使电极在180和300mA/cm2电流密度下的放电电位负移、激活时间缩短且库伦效率提高;添加1%的锡同样能细化合金的晶粒,且不能提高电极在10mA/cm2电流密度下的放电性能,但能增强电极在180和300mA/cm2电流密度下的放电活性、缩短电极的激活时间同时降低电极的库伦效率;添加1%的铟对合金晶粒的尺寸无明显影响,但能维持电极在10mA/cm2电流密度下较负的放电电位,同时使电极在180和300mA/cm2电流密度下的放电活性增强、激活时间缩短且库伦效率提高;添加0.6%的锰能在合金中形成Al11Mn4和Al8Mn5两种第二相,这两种相对电极在10mA/cm2电流密度下放电电位的负移无显著影响,但能明显增强电极在180和300mA/cm2电流密度下的放电活性,同时导致电极的激活时间相对较长且库伦效率较低。
     4)研究多道次热轧及后续退火和单道次热挤压对添加0.6%锰的AP65镁合金显微组织及放电行为的影响。结果表明在400℃多道次热轧和450℃单道次热挤压均能细化合金的晶粒、促进镁基体成分的均匀化并破碎Al-Mn相,同时在合金中形成{0001}基面织构,且单道次热挤压对晶粒的细化和Al-Mn相的破碎效果更明显。经单道次热挤压后合金中的位错分布较为均匀且位错的数量减少。多道次热轧则在合金中形成大量的位错和孪晶,热轧后在150℃退火4h能减少位错的数量同时维持合金较为细小的晶粒和{0001}基面织构,而350℃退火4h则导致晶粒长大和{0001}基面织构削弱。在多道次热轧及后续退火和单道次热挤压过程中形成的细小晶粒、较少且分布均匀的位错和成分均匀的镁基体能维持电极在大电流密度下较负且平稳的放电电位,并缩短电极的激活时间;而细小的晶粒、破碎的Al-Mn相、较少且分布均匀的位错以及{0001}基面织构则能提高电极在大电流密度下放电时的库伦效率。
     5)研究氯化钠溶液的盐度和温度对添加0.6%锰的热挤压态AP65镁合金腐蚀电化学行为的影响。结果表明盐度的升高能增强电极在不同电流密度下的放电活性并缩短电极的激活时间,但导致电极库伦效率降低。此外,盐度的升高有利于促进电极在放电过程中的均匀溶解,在300mA/cm2电流密度下当盐度为1.5%时电极的局部溶解较严重;当盐度升高到3.5%时电极则发生均匀溶解,同时存在丝状腐蚀;当盐度达到5.5%时电极的溶解更为均匀且丝状腐蚀消失。此外,氯化钠溶液的温度对电极的电化学行为同样具有重要影响。随温度的升高在不同电流密度下电极拥有更强的放电活性和更短的激活时间。在10mA/cm2电流密度下,电解液温度的升高导致电极库伦效率降低;在180和300mA/cm2电流密度下电极在35℃电解液中具有最低的库伦效率。电解液温度的降低有利于促进电极在放电过程中的均匀溶解,当电流密度为300mA/cm2时在0℃的电解液中电极表面仅有细小的金属颗粒脱落,当温度升高到25℃时电极发生丝状腐蚀,在35℃电解液中电极则发生明显的点蚀。
AP65with a nominal composition of Mg-6%Al-5%Pb (hereafter in mass fraction, except for special illustration) is a magnesium alloy used as anode for high-power seawater activated battery. When used for practical applications, AP65alloy possessing good performance is required to exhibit strong discharge activity, high Columbic efficiency, and operate at a negative discharge potential with a short activation time for the potential to reach the steady state. This paper investigates the discharge behavior of AP65alloy in sodium chloride solution using electrochemical techniques and microstructure characterizations based on the following five aspects:mechanism of activation, homogenization annealing, alloying, plastic deformation, and electrolyte solution. The aim of this paper is to enhance the comprehensive discharge performance of AP65alloy. The main work in this paper is summarized as follows:
     1) The activation mechanism for the main alloying elements, i.e., aluminium and lead, to the magnesium electrode is investigated. The results indicate that aluminium and lead cannot significantly enhance the discharge activity of the electrode when only one of the alloying elements exists in magnesium. However, the magnesium electrode can be dramatically activated when both of the alloying elements are added into the electrode. The activation mechanism for aluminium and lead to the magnesium electrode is dissolution-reprecipitation, and there is a synergistic effect between aluminium and lead for activating magnesium:the dissolved Pb2+cations during the discharge process can easily precipitate on the electrode surface in the form of lead oxides, and this process facilitates the precipitation of the dissolved Al3+cations in the form of Al(OH)3, which detaches the precipitated Mg(OH)2film via2Mg(OH)2·Al(OH)3and promotes the self-peeling of the discharge products; thus the discharge activity of the magnesium electrode can be enhanced.
     2) The effect of homogenization annealing on the microstructure and discharge behavior of AP65alloy is studied. The results show that the β-Mg17Al12phase in the as-cast alloy makes the electrode operating at a stable discharge potential and enhances its Columbic efficiency in the course of discharge at10mA/cm2. However, when the current density increases to180and300mA/cm2, the β-Mg17Al12phase hinders the discharge process and prolongs the activation time of the electrode. Moreover, a large number of the β-Mg17Al12phase particles are detached from the electrode surface during the discharge process, resulting in a decrease of the Columbic efficiency. When the as-cast alloy is homogenized at400℃for24h, the αMg17Al12phase dissolves into the magnesium matrix and the alloy presents as a single-phase equiaxed grain structure. As a result, the electrode operates at more negative discharge potentials, exhibits high Columbic efficiencies, and can be quickly activated during galvanostatic discharge at180and300mA/cm2.
     3) The effect of trace alloying elements on the discharge performance of the homogenized AP65alloy is investigated. The results reveal that the addition of1%zinc refines the grains of the alloy and cannot improve the discharge performance of the electrode at10mA/cm2. However, adding1%zinc shifts the discharge potentials to more negative values, shortens the activation times, and enhances the Columbic efficiencies when the electrode is discharged at180and300mA/cm2; The addition of1%tin also refines the grains of the alloy and cannot enhance its performance at10mA/cm2, however, tin strengthens the discharge activities, shortens the activation times, but decreases the Columbic efficiencies of the electrode during galvanostatic discharge at180and300mA/cm2; There is no obvious effect on the grain size of AP65alloy when added with1%indium, but indium sustains the negative discharge potential of the electrode at10mA/cm2and enhances its discharge activities and Columbic efficiencies together with shortens its activation times when the electrode is discharged at180and300mA/cm2; The addition of0.6%manganese promotes the formation of Al11Mn4and Al8Mn5phases in the alloy. The two phases cannot shift the discharge potential of the electrode to a more negative value at10mA/cm2but significantly enhace its discharge activities in the course of discharge at180and300mA/cm2. However, adding0.6%manganese prolongs the activation times and decreases the Columbic efficiencies of the electrode when discharged at180and300mA/cm2.
     4) The effect of multi-pass hot rolling together with subsequent annealing and single-pass hot extrusion on the microstructure and discharge behavior of AP65alloy added with0.6%manganese is studied. The results show that both multi-pass hot rolling at400℃and single-pass hot extrusion at450℃refine the grains, facilitate the compositional homogeneity of the magnesium matrix, fracture the Al-Mn phases, and produce the{0001} basal texture in the alloy. In addition, single-pass hot extrusion plays a greater role in refining the grains and fracturing the Al-Mn phases compared with multi-pass hot rolling. The dislocations arrange themselves homogeneously in the alloy and the density of dislocations decreases after single-pass hot extrusion. By contrast, multi-pass hot rolling produces a large number of dislocations and twins in the alloy. The subsequent annealing at150℃for4h decreases the dislocation density, sustains the fine grains and the{0001} basal texture caused by hot rolling. However, the subsequent annealing at350℃for4h enlarges the fine grains and weakens the{0001} basal texture. The fine grains, low density of dislocations, and good compositional homogeneity of the magnesium matrix produced by multi-pass hot rolling together with subsequent annealing and single-pass hot extrusion exert an effect on shifting the discharge potential to a more negative value, sustaining a stable discharge potential, and shortening the activation time when the electrode is discharged at a large impressed current density. Furthermore, the fine grains, fractured Al-Mn phases, low density of dislocations, and{0001} basal texture play a vital role in enhancing the Columbic efficiency of the electrode during galvanostatic discharge at a large current density.
     5) The effect of the salinity and temperature of the sodium chloride solution on the electrochemical corrosion behavior of the hot extruded AP65alloy added with0.6%manganese is investigated. The results indicate that the rising of the salinity enhances the discharge activities of the electrode at different current densities, making the electrode be quickly activated during the discharge process. However, the Columbic efficiencies of the electrode decrease with increased salinity. In addition, the increase of the salinity favors a uniform dissolution of the electrode during galvanostatic discharge. It is observed that when the electrode is discharged at300mA/cm2, local dissolution occurs in1.5%sodium chloride solution, and the electrode dissolves uniformly but suffers filiform corrosion when the salinity increases to3.5%, whereas the filiform corrosion disappears and only uniform dissolution takes place when the electrode is discharged in5.5%sodium chloride solution. Moreover, the temperature of the sodium chloride solution also exerts a significant effect on the electrochemical discharge behavior of the electrode. The rising of the temperature promotes the discharge activities of the electrode at different current densities, leading to a quick activation of the electrode in the course of discharge. However, when the electrode is discharged at10mA/cm2, the rising of the temperature causes a decrease of the Columbic efficiency. Besides, the electrode exhibits the lowest Columbic efficiencies in35℃electrolyte when discharged at the current densities of180and300mA/cm2. Furthermore, the decreasing in temperature favors a uniform dissolution of the electrode. It is observed that when the electrode is discharged at300mA/cm2, only small metallic particles are detached from the electrode surface in0℃electrolyte, and the electrode suffers filiform corrosion when the temperature of the electrolyte rises to25℃, whereas pitting corrosion occurs on the electrode surface when discharged in35℃electrolyte.
引文
[1]徐河,刘静安,谢水生.镁合金制备与加工技术[M].北京:冶金工业出版社,2007.1
    [2]余琨,黎文献,王日初,等.变形镁合金的研究,开发及应用[J].中国有色金属学报,2003,13(2):277~288.
    [3]曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673~685.
    [4]陈振华.变形镁合金[M].北京:化学工业出版社,2005.1-6
    [5]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.1-10
    [6]冯艳,王日初,彭超群.海水电池用镁阳极的研究与应用[J].中国有色金属学报,2011,21(2):259~268.
    [7]邓姝皓,易丹青,赵丽红,等.一种新型海水电池用镁负极材料的研究[J].电源技术,2007,31(5):402~405.
    [8]Cao D, Wu L, Wang G, et al. Electrochemical oxidation behavior of Mg-Li-Al-Ce-Zn and Mg-Li-Al-Ce-Zn-Mn in sodium chloride solution [J]. Journal of Power Sources, 2008,183 (2):799-804.
    [9]Cao D, Wu L, Sun Y, et al. Electrochemical behavior of Mg-Li, Mg-Li-Al and Mg-Li-Al-Ce in sodium chloride solution [J]. Journal of Power Sources,2008,177 (2): 624-630.
    [10]周丽萍,曾小勤,常建卫,等.AZ31与NZ30K合金作为镁电池负极材料的电化学性能[J].中国有色金属学报,2011,21(6):1308~1313.
    [11]慕伟意,李争显,杜继红,等.镁电池的发展及应用[J].材料导报,2011,25(13):35~39.
    [12]孙丽美,曹殿学,王贵领,等.作为水下电源的金属半燃料电池[J].电源技术,2008,32(5):339~342.
    [13]Ma Y, Li N, Li D, et al. Performance of Mg-14Li-lAl-0.1 Ce as anode for Mg-air battery [J]. Journal of Power Sources,2011,196 (4):2346-2350.
    [14]林登,雷迪.电池手册[M].汪继强等.译.北京:化学工业出版社,2007.149-156
    [15]马正青,曹军纪.海水介质中高活性镁合金负极的电化学性能[J].材料保护,2002,35(012):16~18.
    [16]Koontz RF, Lucero RD. Magnesium water-activated batteries [M]. Handbook of Batteries,2002,17.11-17.27.
    [17]刘勇,陈洪钧.鱼雷电池进展[J].电源技术,2012,36(3):444~445.
    [18]马正青,庞旭,左列,等.镁海水电池阳极活化机理研究[J].表面技术,2008,37(1):5-7.
    [19]姜忆初.电动鱼雷用动力电源及其发展方向[J].船电技术,2005,(5):46~48.
    [20]宋玉苏,王树宗.海水电池研究及应用[J].鱼雷技术,2004,12(2):4-8.
    [21]Wilcock WS, Kauffman PC. Development of a seawater battery for deep-water applications [J]. Journal of Power Sources,1997,66 (1):71-75.
    [22]Hasvold O, Lian T, Haakaas E, et al. CLIPPER:a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea [J]. Journal of Power Sources,2004, 136 (2):232-239.
    [23]Hasvold O, Henriksen H, Citi G, et al. Sea-water battery for subsea control systems [J]. Journal of Power Sources,1997,65 (1):253-261.
    [24]Hasvold O, Sterkersen N. Electrochemical power sources for unmanned underwater vehicles used in deep sea survey operations [J]. Journal of Power Sources,2001,96 (1): 252-258.
    [25]李华伦.镁燃料电池[J].中国金属通报,2012,(35):19~21.
    [26]吴瞳,鞠克江,刘长瑞.空气电池阳极材料及制备工艺对性能的影响研究[J].华南师范大学学报:自然科学版,2009,(A01):60~63.
    [27]唐有根,彭胜峰,曹泽华.镁电极材料的应用研究[J].2004年中国材料研讨会论文摘要集,2004,157~162
    [28]Khoo T, Howlett PC, Tsagouria M, et al. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries [J]. Electrochimica Acta, 2011,58583-588.
    [29]杨守春.镁空气燃料电池[J].现代材料动态,2003,(11):10~11.
    [30]李学海,王宇轩,黄雯.金属过氧化氢电池的发展及现状[J].电源技术,2011,35(8):1009~1012.
    [31]吴林.镁锂基合金在NaCl溶液中电化学行为的研究[D].哈尔滨:哈尔滨工程大学,2010
    [32]杨维谦,杨少华,孙公权,等.镁燃料电池的发展及应用[J].电源技术,2005,29(3):182~186.
    [33]Lv Y, Xu Y, Cao D. The electrochemical behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in sodium chloride solution [J]. Journal of Power Sources,2011,196 (20): 8809-8814.
    [34]Medeiros MG, Bessette RR, Deschenes CM, et al. Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing [J]. Journal of Power Sources,2001,96 (1):236-239.
    [35]Medeiros MG, Dow EG. Magnesium-solution phase catholyte seawater electrochemical system [J]. Journal of Power Sources,1999,80 (1):78-82.
    [36]Lv Y, Liu M, Xu Y, et al. The electrochemical behaviors of Mg-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in sodium chloride solution [J]. Journal of Power Sources,2012,225 124-128
    [37]尧玉芬,陈昌国,刘渝萍,等.镁电池的研究进展[J].材料导报,2009,23(10):119~121.
    [38]熊碧云.国外镁电池最新发展[J].电源技术,2012,36(8):1250~1251.
    [39]杨雷雷,李法强,贾国凤,等.可逆镁电池正极材料的研究进展[J].无机盐工业,2012,44(2):6-8.
    [40]张海朗,王文继.镁二次电池研究评述[J].现代化工,2002,22(11):13~16.
    [41]沈健,彭博,陶占良,等.镁二次电池正极材料和电解液研究[J].化学进展,2010,22(2/3):515~521.
    [42]Kakibe T, Hishii J, Yoshimoto N, et al. Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries [J]. Journal of Power Sources,2012,203 195-200.
    [43]Zheng Y, NuLi Y, Chen Q, et al. Magnesium cobalt silicate materials for reversible magnesium ion storage [J]. Electrochimica Acta,2012,66 75-81.
    [44]Quach NC, Uggowitzer PJ, Schmutz P. Corrosion behaviour of an Mg-Y-RE alloy used in biomedical applications studied by electrochemical techniques [J]. Comptes Rendus Chimie,2008,11 (9):1043-1054.
    [45]Liu M, Schmutz P, Zanna S, et al. Electrochemical reactivity, surface composition and corrosion mechanisms of the complex metallic alloy Al3Mg2 [J]. Corrosion Science,2010, 52 (2):562-578.
    [46]Liu L, Schlesinger M. Corrosion of magnesium and its alloys [J]. Corrosion Science, 2009,51 (8):1733-1737.
    [47]余刚,刘跃龙.Mg合金的腐蚀与防护[J].中国有色金属学报,2002,12(6):1087~1098.
    [48]刘新宽,向阳辉,王渠东,等.Mg合金的防蚀处理[J].腐蚀科学与防护技术,2001,13(4):211~213.
    [49]Zhao MC, Schmutz P, Brunner S, et al. An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing [J]. Corrosion Science,2009,51 (6):1277-1292.
    [50]Song G, Atrens A, Stjohn D, et al. The electrochemical corrosion of pure magnesium in 1 N NaCl [J]. Corrosion Science,1997,39 (5):855-875.
    [51]Balasubramanian R, Veluchamy A, Venkatakrishnan N. Gasometric corrosion-rate studies of magnesium alloy in magnesium batteries [J]. Journal of Power Sources,1994,52 (2):305-308.
    [52]曹楚南.腐蚀电化学原理(第三版)[M].北京:化学工业出版社,2008.
    [53]Yu K, Tan X, Hu Y, et al. Microstructure effects on the electrochemical corrosion properties of Mg-4.1% Ga-2.2% Hg alloy as the anode for seawater-activated batteries [J]. Corrosion Science,2011,53 (5):2035-2040.
    [54]Zhao J, Yu K, Hu Y, et al. Discharge behavior of Mg-4wt% Ga-2wt% Hg alloy as anode for seawater activated battery [J]. Electrochimica Acta,2011,56 (24):8224-8231.
    [55]Udhayan R, Bhatt DP. On the corrosion behaviour of magnesium and its alloys using electrochemical techniques [J]. Journal of Power Sources,1996,63 (1):103-107.
    [56]Feng Y, Wang R-C, Peng C-Q, et al. Influence of Mg21Ga5Hg3 compound on electrochemical properties of Mg-5% Hg-5% Ga alloy [J]. Transactions of Nonferrous Metals Society of China,2009,19 (1):154-159.
    [57]王乃光,王日初,余琨,等.合金化及热处理对镁合金阳极材料组织及性能的影响[J].中国有色金属学报,2009,19(1):38-43.
    [58]Yan F, Ri-chu W, Chao-qun P, et al. Aging behaviour and electrochemical properties in Mg-4.8 Hg-8Ga (wt.%) alloy [J]. Corrosion Science,2010,52 (10):3474-3480.
    [59]Feng Y, Wang R, Peng C. Influence of aging treatments on microstructure and electrochemical properties in Mg-8.8 Hg-8Ga (wt%) alloy [J]. Intermetallics,2012,33 120-125.
    [60]Zhao H, Bian P, Ju D. Electrochemical performance of magnesium alloy and its application on the sea water battery [J]. Journal of Environmental Sciences,2009,21 S88-S91.
    [61]殷立勇,黄锐妮,周威,等.镁系列海水电池中影响析氢因素分析[J].电源技术,2011,35(5):534~536.
    [62]Balasubramanian R, Veluchamy A, Venkatakrishnan N, et al. Electrochemical characterization of magnesium/silver chloride battery [J]. Journal of Power Sources,1995, 56 (2):197-199.
    [63]Song G, Atrens A, John DS, et al. The anodic dissolution of magnesium in chloride and sulphate solutions [J]. Corrosion Science,1997,39 (10):1981-2004.
    [64]Renuka R. AgCl and Ag2S as additives to CuI in Mg-CuI seawater activated batteries [J]. Journal of Applied Electrochemistry,1997,27 (12):1394-1397.
    [65]汪继强.化学与物理电源:信息化武器装备的动力之源[M].北京:国防工业出版社,2008.140
    [66]Song G, Atrens A, Dargusch M. Influence of microstructure on the corrosion of diecast AZ91D [J]. Corrosion Science,1999,41 (2):249-273.
    [67]Pardo A, Merino M, Coy A, et al. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media [J]. Electrochimica Acta,2008,53 (27):7890-7902.
    [68]Hiroi M. Pressure effects on the performance and the emf of the Mg-AgCl seawater battery [J]. Journal of Applied Electrochemistry,1980,10 (2):203-211.
    [69]冯艳.Mg-Hg-Ga阳极材料合金设计及性能优化[D].长沙:中南大学,2009
    [70]石凯,王日初,解立川,等.固溶处理对Mg6A15Pbl ZnO.3Mn阳极组织和性能的影响[J].中南大学学报(自然科学版),2012,43(10):3785~3792.
    [71]石凯,王日初,彭超群,等.退火温度对镁合金阳极板材组织和性能的影响[J].中国有色金属学报,2012,22(6):1642~1649.
    [72]Andrei M, di Gabriele F, Bonora P, et al. Corrosion behaviour of magnesium sacrificial anodes in tap water [J]. Materials and corrosion,2003,54 (1):5-11.
    [73]马正青,李晓翔.退火温度对镁合金阳极组织和性能的影响[J].电源技术,2012,35(12):1580~1582.
    [74]Zhao J, Yu K, Hu Y, et al. Discharge behavior of Mg-4wt% Ga-2wt% Hg alloy as anode for seawater activated battery [J]. Electrochimica Acta,2011,56 (24):8224-8231.
    [75]查全性.电极过程动力学导论[M].北京:科学出版社,2002.333
    [76]Candan S, Unal M, Turkmen M, et al. Improvement of mechanical and corrosion properties of magnesium alloy by lead addition [J]. Materials Science and Engineering:A, 2009,501(1):115-118.
    [77]McCafferty E. Validation of corrosion rates measured by the Tafel extrapolation method [J]. Corrosion Science,2005,47 (12):3202-3215.
    [78]Shi Z, Liu M, Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corrosion Science,2010,52 (2):579-588.
    [79]Kim JG, Koo SJ. Effect of alloying elements on electrochemical properties of magnesium-based sacrificial anodes [J]. Corrosion,2000,56 (4):380-388.
    [80]Rashid K. Effect of Mixing Speed And Solution Temperature On Cathodic Protection Current Density of Carbon Steel Using Magnesium As Sacrificial Anode [J]. Eng &Tech Journal,2009,27 1640-1653.
    [81]Kim J-G, Joo J-H, Koo S-J. Development of high-driving potential and high-efficiency Mg-based sacrificial anodes for cathodic protection [J]. Journal of Materials Science Letters, 2000,19 (6):477-479.
    [82]Zhao MC, Liu M, Song GL, et al. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41 [J]. Corrosion Science,2008,50 (11):3168-3178.
    [83]余琨,胡亚男,谭欣,等.海水激活电池用Mg-Hg-Ga合金阳极材料的腐蚀行为[J].中南大学学报(自然科学版),2012,43(2):466~471.
    [84]王萍,李建平,郭永春,等.Sn对Mg-Al-Sn-Zn系海水电池用镁阳极材料组织及电化学性能的影响[J].北京科技大学学报,2011,33(9):1116~1121.
    [85]Lin M, Tsai C, Uan J. Electrochemical behaviour and corrosion performance of Mg-Li-Al-Zn anodes with high Al composition [J]. Corrosion Science,2009,51 (10): 2463-2472.
    [86]Suresh Kannan A, Muralidharan S, Sarangapani K, et al. Corrosion and anodic behaviour of zinc and its ternary alloys in alkaline battery electrolytes [J]. Journal of Power Sources,1995,57 (1):93-98.
    [87]Srinivasan A, Pillai U, Pai B. Effect of Pb addition on ageing behavior of AZ91 magnesium alloy [J]. Materials Science and Engineering:A,2007,452 87-92.
    [88]Song Y, Shan D, Chen R, et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy [J]. Corrosion Science,2010,52 (5):1830-1837.
    [89]Jonsson M, Thierry D, LeBozec N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe [J]. Corrosion Science,2006,48 (5):1193-1208.
    [90]王萍,李建平,郭永春,等.Zn对Mg-Al-Pb-Zn系镁阳极材料组织结构及电化学性能的影响[J].硅酸盐学报,2011,39(012):1988~1992.
    [91]金和喜,王日初,彭超群,等.Sn对AP65镁阳极显微组织和电化学性能的影响[J].矿冶工程,2011,31(5):97~101.
    [92]Jin H, Wang R, Peng C, et al. Effect of indium addition on corrosion of AP65 magnesium alloy [J]. Journal of Central South University of Technology,2012,19 (8): 2086-2093.
    [93]Wang N, Wang R, Peng C, et al. Influence of zinc on electrochemical discharge activity of Mg-6% Al-5% Pb anode [J]. Journal of Central South University of Technology, 2012,19(1):9-16.
    [94]Pardo A, Merino M, Coy A, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl [J]. Corrosion Science,2008,50 (3):823-834.
    [95]Ben-Haroush M, Ben-Hamu G, Eliezer D, et al. The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures [J]. Corrosion Science,2008,50 (6):1766-1778.
    [96]Aung NN, Zhou W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy [J]. Corrosion Science,2010,52 (2):589-594.
    [97]Hamu GB, Eliezer D, Wagner L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy [J]. Journal of Alloys and Compounds,2009,468 (1):222-229.
    [98]Alvarez-Lopez M, Pereda MD, Del Valle J, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids [J]. Acta Biomaterialia,2010,6 (5):1763-1771.
    [99]Nestoridi M, Pletcher D, Wood RJK, et al. The study of aluminium anodes for high power density Al/air batteries with brine electrolytes [J]. Journal of Power Sources,2008, 178 (1):445-455.
    [100]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.2-83
    [101]Song GL. Effect of tin modification on corrosion of AM70 magnesium alloy [J]. Corrosion Science,2009,51 (9):2063-2070.
    [102]Xiang Q, Wu R, Zhang M. Influence of Sn on microstructure and mechanical properties of Mg-5Li-3Al-2Zn alloys [J]. Journal of Alloys and Compounds,2009,477 (1): 832-835.
    [103]Liu L, Qi X, Wu Z. Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element [J]. Materials Letters,2010, 64 (1):89-92.
    [104]Jiang B, Yin H, Yang Q, et al. Effect of stannum addition on microstructure of as-cast and as-extruded Mg-5Li alloys [J]. Transactions of Nonferrous Metals Society of China, 2011,21 (11):2378-2383.
    [105]Liang J, Srinivasan PB, Blawert C, et al. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy [J]. Electrochimica Acta,2010,55 (22):6802-6811.
    [106]Hsu C, Mansfeld F. Technical note:concerning the conversion of the constant phase element parameter Y0 into a capacitance [J]. Corrosion,2001,57 (9):747-748.
    [107]Harrington SP, Devine TM. Analysis of electrodes displaying frequency dispersion in Mott-Schottky tests [J]. Journal of the Electrochemical Society,2008,155 (8):C381-C386.
    [108]Munoz A, Saidman S, Bessone J. Corrosion of an Al-Zn-In alloy in chloride media [J]. Corrosion Science,2002,44 (10):2171-2182.
    [109]Zazoua A, Azzouz N. An investigation on the use of indium to increase dissolution of AlZn anodes in sea water [J]. Materials & Design,2008,29 (4):806-810.
    [110]Altun H, Sen S. Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy [J]. Materials & Design, 2004,25 (7):637-643.
    [111]Fidel G, Juan M, Ruben D, et al. Electrochemical study on magnesium anodes in NaCl and CaSO4-Mg (OH)2 aqueous solutions [J]. Electrochimic Acta,2006,51 1820-1830.
    [112]Ambat R, Aung NN, Zhou W. Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy [J]. Journal of Applied Electrochemistry,2000,30 (7):865-874.
    [113]李伟,费锡明,汪继红,等.高氢过电位Zn-In合金电沉积规律和性能的研究[J].材料保护,2004,37(5):11~13.
    [114]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.163-166
    [115]Qin GW, Ren Y, Huang W, et al. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys [J]. Journal of Alloys and Compounds,2010,507 (2):410-413.
    [116]Ye HZ, Liu XY. In situ formation behaviors of Al8Mn5 particles in Mg-Al alloys [J]. Journal of Alloys and Compounds,2006,419 (1):54-60.
    [117]Cao P, Qian M, StJohn DH. Effect of manganese on grain refinement of Mg-Al based alloys [J]. Scripta Materialia,2006,54 (11):1853-1858.
    [118]Wang R, Eliezer A, Gutman E. An investigation on the microstructure of an AM50 magnesium alloy [J]. Materials Science and Engineering:A,2003,355 (1):201-207.
    [119]Merino M, Pardo A, Arrabal R, et al. Influence of chloride ion concentration and temperature on the corrosion of Mg-Al alloys in salt fog [J]. Corrosion Science,2010,52 (5):1696-1704.
    [120]Sudholz A, Kirkland N, Buchheit R, et al. Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys [J]. Electrochemical and Solid-State Letters,2011,14 (2):C5-C7.
    [121]Chang TC, Wang JY, Lee S. Grain refining of magnesium alloy AZ31 by rolling [J]. Journal of Materials Processing Technology,2003,140 (1):588-591.
    [122]Song GL, Mishra R, Xu ZQ. Crystallographic orientation and electrochemical activity of AZ31 Mg alloy [J]. Electrochemistry Communications,2010,12 (8):1009-1012.
    [123]Song D, Ma AB, Jiang J, et al. Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution [J]. Corrosion Science,2010,52 (2):481-490.
    [124]Liu M, Qiu D, Zhao MC, et al. The effect of crystallographic orientation on the active corrosion of pure magnesium [J]. Scripta Materialia,2008,58 (5):421-424.
    [125]Zhang T, Shao Y, Meng G, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior [J]. Corrosion Science,2011, 53 (5):1960-1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700