用户名: 密码: 验证码:
两段式厌氧工艺产甲烷发酵特性及微生物生态调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的迅猛发展,石化能源日趋枯竭,环境污染日益加重。亟待开发以高效利用各种废弃物能源化、资源化的新技术。目前,利用有机废弃物厌氧消化产甲烷技术已得到部分地区应用和推广,并取得了一定的经济效益和生态效益。然而,实际上普遍应用的厌氧发酵技术仍依靠传统经验实施,缺乏对厌氧消化微生物过程深入的机理研究。因此造成厌氧消化装置和运行工艺简单,系统运行效率低及稳定性差等。尤其在一些高寒地区,受发酵温度制约,更加难以应用和推广。此外,厌氧消化过程产生的大量残液处理不当还会造成对环境的二次污染,而作为生物有机肥应用在加工及施灌等技术方面还不成熟。
     本文围绕沼气应用中的实际问题及待深入研究的理论问题,构建一套两段式厌氧发酵系统,以北方农村典型的废弃物牛粪和水稻秸秆为产甲烷基质,开展了以利用单一底物牛粪的产甲烷特性研究,以及利用水稻秸秆和糖浆废水混合底物共发酵产甲烷特性的研究。同时,为探索低温条件对厌氧消化微生物作用的抑制机理,采取两种研究技术路线,即从自然生境筛选低温复合产甲烷菌群的传统培养技术,结合两段发酵产甲烷相降温驯化适低温产甲烷菌群的技术途径,探求低温条件下的产甲烷效能及微生物特性。此外,在沼液资源化利用方面,提出了以厌氧消化产甲烷残液作为生产生物絮凝剂的廉价替代底物,证实并获得较理想絮凝率和絮凝剂产量的可行性。论文取得研究结果如下。
     发现了结合MFC技术构建的复合产酸系统,可显著促进牛粪降解、产酸速率及有利于末端液相有机挥发酸的定向转化。以单一底物牛粪8%TS稳定运行时,末端液相发酵产物以乙酸为主,占挥发酸总量的78.7%,并显著抑制丙酸浓度积累。生物膜表面优势细菌种群为Acinetobacter sp.、Pseudomonas sp.和Flavobacterium sp.。利用复合产酸系统运行40d的酸化物料作为产甲烷相进料基质,以HRT为40d,OLR为2.5kg VSaddm-3d~(-1)运行时,产甲烷相的沼气容积产量可达1.21±0.047m~3m-3reactord~(-1),甲烷产量为252.6±8.4L kg~(-1)VSfed。产甲烷相优势细菌类群为Lutaonella sp.、Sedimentibacter sp.、Proteiniphilum sp.、和Clostridium sp.;优势产甲烷菌为Methanosaeta sp.、 Methanosarcina sp.和Methanobacterium formicicum。
     利用水稻秸秆和糖浆废水混合底物共发酵考察两段发酵系统产甲烷特性,结果发现,8%TS的CSTR产酸系统运行至30d时,pH迅速降为6.42,乙酸浓度为3210mg/L,占挥发酸总量72.2%。产酸相优势细菌为Firmicutes,其次是Bacteroidetes和Proteobacteria,占微生物总数的90%以上。以产酸相运行30d酸化物料为产甲烷相底物基质,HRT为40d,OLR为3.0kg VSaddm~(-3)d~(-1)和3.5kg VSaddm~(-3)d~(-1)运行时,沼气容积产量分别达1.04±0.025m~3m_(reactor)~(-3)d~(-1)和1.12±0.046m~3m_(reactor)~(-3)d~(-1)。产甲烷相的优势细菌属γ-Proteobacteria和Clostridia;优势产甲烷菌为Methanosaeta sp.。
     为研究低温对厌氧发酵产甲烷效能的影响,从自然生境筛选了两组低温产甲烷复合菌群,经6次转代富集培养周期累积沼产气量稳定,分别为180ml和195ml。两组低温菌群均在18°C时产气效率最高,最大沼气产量为0.26m~3m_(reactor)~(-3)d~(-1);18°C时低温复合产甲烷菌群利用牛粪酸化液最大沼气产量为48mld~(-1)。低温复合产甲烷菌群的优势细菌属Firmicutes和Bacteroidetes,可鉴定的产甲烷菌属Methanomicrobiaceae和Methanobacterium sp.。两段发酵产甲烷相降温产甲烷研究发现,25°C和22°C稳定运行时沼气产量可达511.2±15.5和410.1±10.8ml L~(-1)reactord~(-1)。当温度降至20°C以下时,产气波动大且运行不稳定。产甲烷相在30°C、25°C和22°C稳定运行时,优势细菌类群属Proteobacteria、Firmicutes和Bacteroidetes;20°C时过度为以Proteobacteria为绝对优势种群的群落组成,占微生物群落总数的71.36%。低温运行时Methanosarcina sp.和Methanobacterium sp.始终存在,Methanosarcina sp.属最优势产甲烷菌。寒地海林沼气发酵系统夏、冬季沼气产量分别为0.625和0.35m~3m~(-3)digesterd~(-1),池内优势细菌为Proteiniphilum sp.、Spirochaeta sp.和Wolinella sp.,均属动物消化系统常见菌群,Methanosaeta sp.和Methanosarcina sp.是优势产甲烷古菌。
     利用不同底物厌氧发酵残液制取生物絮凝剂可行性的研究,结果表明,以水稻秸秆高浓度厌氧发酵100d的残液,1:1混合配比传统产絮培养基形成复合培养基,絮凝效率可达92.5%,产量为4.28±0.13g/L。对厌氧发酵系统产酸旺盛期细菌群落分析表明,Firmicutes为绝对优势种群,占微生物总序列的92.51%,Clostridiales目Peptostreptococcaceae科的Sporacetigenium属占微生物总量的46.7%。利用海林沼气池残液、以牛粪为底物两段发酵工艺产甲烷残液,以及水稻秸秆与糖浆废水混合底物两段发酵产甲烷残液,分别以1:1配比混合传统产絮培养基,絮凝率分别可达52.3%、91.3%和92.1%,絮凝剂产量分别为1.75±0.03g/L、4.21±0.05g/L和4.18±0.04g/L。
The depletion of fossil fuel sources and environmental pollution caused by thedevelopment of world economy. It is urgent to seek novel resource utilizationtechnique of using organic wastes to produce renewable energy. Recently, anaerobicdigestion is widely applied to convert biomass waste into methane worldwide, and ithas received considerable economic and environmental benefits. However,application of anaerobic digestion technique mainly depended on traditionalexperience, and lacked of deep mechanism research on microorganisms. Therefore,the anaerobic digester operated at low efficiency and instability due to simpleconfiguration and process tequenology. It was hard for industrial application in lowtemperature regions. Furthermore, biogas slurry was disposed inappropriately couldcaused secondary pollution to environment. Disposal of biogas slurry to producebioorganic fertilizer was inhibited by technique of granulation and irrigation.
     Thus, based on practical problems and detailed studies during the anaerobicdigestion process, this study designed a two-stage anaerobic digestion system formethane production from cattle dung and co-digestion of rice straw and molasseswastewater. The research discussed the effect of psychrophilic conditions onmethane production and microorganisms via two technique route. The psychrophilicmethanogens were cultivated from natural habits, and domesticated frommethanogenic phase of two-stage anaerobic digesion. Futhermore, the feasibility ofusing of biogas slurry as substrate to produce bioflocculant was discussed. The mainresults obtained by this study were as follow.
     The acidification-phase using MFC technique could promote degradation andVFA production of cattle dung obviously, and which was beneficial to directionalconversation of VFA. The main VFAs found was acetate which occupied78%oftotal VFAs operated at8%TS, and the propionate concentration was inhibited.Microbial comminity of biofilm analysis revealed that bacteria were dominated byAcinetobacter sp., Pseudomonas sp., and Flavobacterium sp.. The acidified cattledung from40-d operation of acidification-phase were used for IC reactor. Biogasproduction reached1.21±0.047m~3m_(reactor)~(-3)d~(-1), and methane production was252.6±8.4L kg~(-1)VSfedwhich operated at an OLR of2.5kg VSaddm~(-3)d~(-1)and a HRTof40d. The dominant bacteria were Lutaonella sp., Sedimentibacter sp.,Proteiniphilum sp, and Clostridium sp., and archaea dominated by Methanosaeta sp.,Methanosarcina sp. and Methanobacterium formicicum during methanogenesis.
     Methane production from co-digestion of rice straw and molasses wastewaterwas studied. The ph of acidification-phase decreased dramatically to6.42, and concentration of acetate was3210mg/l which occupied72.2%of total VFAsoperated at8%TS after30days of operation. The dominant bacteria wereFirmicutes, Bacteroidetes and Proteobacteria. Biogas production reached1.12±0.046m~3m_(reactor)~(-3)d~(-1), which operated at a HRT of40d and an OLR of3.5kgVSaddm~(-3)d~(-1). The dominant bacteria were γ-Proteobacteria and Clostridia. Thedominant archaea were Methanosaeta sp..
     Two group of psychrophilic methanogens were collected from nature habitat.Cumulative biogas production maintained stability after6generations cultivation,and biogas production reached180ml and195ml. The optimum biogas productionwas0.26m~3m~3reactord~(-1)operated at18°C. The dominant bacteria of psychrophilicmicrooganisms were Firmicutes and Bacteroidetes. Archaea could be identified wereMethanomicrobiaceae and Methanobacterium sp.. The effect of decreasingtemperature gradually on biogas production of IC reactor was studied. The biogasproduction achieved511.2±15.5and410.1±10.8ml L~(-1)reactord~(-1)while operating at25°C and22°C, respectively. The biogas production was fluctuant whiletemperature decreased to20°C. The dominant bacteria were Proteobacteria,Firmicutes and Bacteroidetes while operating at a temperature of30°C,25°C and22°C during a stable process. The most predominant bacteria were Proteobacteria at20°C, accounted for71.36%of total populations. Methanosarcina sp. dominatedduring low temperature operation process. The biogas production of Hailin biogasdigester in cold region reached0.625and0.35m~3m_(reactor)~(-3)d~(-1)in winter and summerof operation. The domiant bacteria belonged to Proteiniphilum sp.、Spirochaeta sp.and Wolinella sp., which were found in animal digestive system. Methanosaeta sp.and Methanosarcina sp. were the dominant archaea.
     Fermentation liquor from different substrates were used to producebioflocculants. The maximum flocculation activity,92.45%was achieved when100-day fermentation liquor of rice straw during a dry fermentation process andconventional bioflocculants medium were mixed at an equal ratio. The bioflocculantyield was4.28±0.13g/L. Notably, Sporacetigenium sp.(46.7%) was the dominantmicrobial population during VFA accumulation time. Use of biogas slurry toproduce bioflocullant, which collected from Hailin digester, two-stage anaerobicdigestion of cattle dung and co-digestion of rice straw and molasses wastewater. Theflocculation activity were52.3%,91.3%and92.1%, while fermentation liquor andconventional bioflocculants medium were mixed at an equal ratio. The bioflocculantyield were1.75±0.03g/L,4.21±0.05g/L and4.18±0.04g/L, respectively.
引文
[1] BP公司. BP世界能源统计2008. BP公司,2008.
    [2] Cantrell K B, Ducey T, Ro K S, et al. Livestock Waste-to-BioenergyGeneration Opportunities[J]. Bioresource Technology,2008,99(17):7941-7953.
    [3] Lovley D R. Live Wires: Direct Extracellular Electron Exchange for Bioenergyand the Bioremediation of Energy-related Contamination[J]. Energy&Environmental Science,2011,4(12):4896-4906.
    [4] Sterling J M C, Lacey R E, Engler C R, et al. Effects of Ammonia Nitrogen onHydrogen and Methane Production during Anaerobic Digestion of Dairy CattleManure[J]. Bioresource Technology,2001,77(1):9-18.
    [5] Martins das Neves L C, Converti A, Vessoni Penna T C. Biogas Production:New Trends for Alternative Energy Sources in Rural and Urban Zones[J].Chemical Engineering&Technology,2009,32(8):1147-1153.
    [6] Karagiannidis A, Perkoulidis G. A Multi-criteria Ranking of DifferentTechnologies for the Anaerobic Digestion for Energy Recovery of the OrganicFraction of Municipal Solid Wastes[J]. Bioresource Technology,2009,100(8):2355-2360.
    [7] Chen Y, Cheng J J, Creamer K S. Inhibition of Anaerobic Digestion Process: aReview[J]. Bioresource Technology,2008,99(10):4044-4064.
    [8] Li Y, Park S Y, Zhu J. Solid-state Anaerobic Digestion for Methane Productionfrom Organic Waste[J]. Renewable&Sustainable Energy Reviews,2011,15(1):821-826.
    [9]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005:16-26.
    [10] Schink B. Energetics of Syntrophic Cooperation in MethanogenicDegradation[J]. Microbiology and Molecular Biology Reviews,1997,61(2):262-280.
    [11] Veeken A, Kalyuzhnyi S, Scharff H, et al. Effect of pH and VFA on Hydrolysisand Organic Waste[J]. Journal of Environmental Engineering,2000,126(12):1076-1081.
    [12] Lo Y C, Saratale G D, Chen W M, et al. Isolation of CellulosehydrolyticBacteria and Applications of the Cellulolytic Enzymes for CellulosicBiohydrogen Production[J]. Enzyme Microbial Technology,2009,44(6-7):417-425.
    [13] Ghaniyari-Benis S, Borja R, Ali Monemian S, et al. Anaerobic Treatment ofSynthetic Medium-strength Wastewater Using a Multistage Biofilm Reactor[J].Bioresource Technology,2009,100(5):1740-1745.
    [14] Gibreel A, Sandercock J R, Lan J, et al. Fermentation of Barley by UsingSaccharomyces Cerevisiae: Examination of Barley as a Feedstock forBioethanol Production and Value-added Products[J]. Applied andEnvironmental Microbiology,2009,75(5):1363-1372.
    [15] Kuhner C H, Frank C, Griesshammer A, et al. Sporomusa Silvacetica sp. nov,an Acetogenic Bacterium Isolated from Aggregated Forest Soil[J].International Journal of Systematic Bacteriology,1997,47(2):352-358.
    [16] van der Wielen P W J J, Rovers G M L L, Scheepens J M A, et al. Clostridiumlactatifermentans sp. nov., a Lactate-fermenting Anaerobe Isolated from theCaeca of a Chicken[J]. International Journal of Systematic and EvolutionaryMicrobiology,2002,52(3):921-925.
    [17]任南琪,刘敏,王爱杰等.两相厌氧系统中产甲烷相有机酸转化规律[J].环境科学,2003,24(4):89-93.
    [18] Canganella F, Kuk S U, Morgan H, et al. Clostridium Thermobutyricum:Growth Studies and Stimulation of Butyrate Formation by AcetateSupplementation[J]. Microbiology Research,2002,157(2):149-156.
    [19] Worden R M, Grethlein A J, M Jain K, et al. Production of Butanol and Ethanolfrom Synthesis Gas via Fermentation[J]. Fuel,1991,70(5):615-619.
    [20] Nyanga L K, NOTU M J R, Gadaga T H et al. Yeasts and Lactic Acid BacteriaMicrobiota from Masau (Ziziphus mauritiana) Fruits and Their FermentedFruit Pulp in Zimbabwe[J]. International Journal of Food Microbiology,2007,120(1-2):159-66.
    [21] Müller V, Imkamp F, Rauwolf A, et al. Molecular and Cellular Biology ofAcetogenic Bacteria, In: M M Nakano, P Zuber (Eds.), Strict and FacultativeAnaerobes: Medical and Environmental Aspects, Horizon Bioscience,2004,251-281, Wymondham, UK.
    [22]程辉彩,习彦花,郭建斌等.产乙酸复合菌系Th3培养及其在沼气厌氧发酵中的应用[J].农业工程学报,2012,28(17):210-216.
    [23] Schmidt S, Biegel E, Muller V. The Ins and Outs of Na+Bioenergetics inAcetobacterium woodii[J]. Biochimica et Biophysica acta-Bioenergetics,2009,1787(6):691-696.
    [24] Ferry J G. The Chemical Biology of Methanogenesis[J]. Planetary and SpaceScience,2010a,58(14-15):1775-1783.
    [25] Ferry J G. CO in Methanogenesis[J]. Annals of Microbialogy,2010b,60(1):1-12.
    [26] Sakai S, Imachi H, Hanada S, et al. Methanocella Paludicola gen. nov., sp.nov.,a Methane-producing Archaeon, the First Isolate of the Lineage Rice Cluster I,and Proposal of the New Archaeal Order Methanocellales ord. nov.[J].International Journal of Systematic and Evolutionary Microbiology,2008,58(4):929-936.
    [27] Barber R D, Zhang L, Harnack M, et al. Complete Genome Sequence ofMethanosaeta concilii, a Specialist in Aceticlastic Methanogenesis[J]. J.Bacteriol.,2011,193(14):3668-3669.
    [28] Fricke W F, Seedorf H, Henne A, et al. The Genome Sequence ofMethanosphaera Stadtmanae Reveals Why This Human Intestinal ArchaeonIsrestricted to Methanol and H2for Methane Formation and ATP Synthesis[J]. J.Bacteriol.,2006,188(2):642-658.
    [29] Traversi D, Villa S, Acri M, et al. The Role of Different Methanogen GroupsEvaluated by Real-Time qPCR as High-efficiency Bioindicators of WetAnaerobic Co-digestion of Organic Waste. AMB Express,2011,1:28.
    [30] Liu Y C, Whitman W B. Metabolic, Phylogenetic, and Ecological Diversity ofthe Methanogenic Archaea[J]. Ann. Ny. Acad. Sci.,2008,1125:171-189.
    [31] AIYUK S, Forrez I, Lievenet D K, et al. Anaerobic and ComplementaryTreatment of Domestic Sewage in Regions with Hot Climates–A Review[J].Bioresour. Technol.,2006,97(16):2225-2241.
    [32] Conklin A, Stensel H D, Ferguson J. Growth Kinetics and Competitionbetween Methanosarcina and Methanosaeta in Mesophilic AnaerobicDigestion[J]. Water Environ. Res.,2006,78(5):486-496.
    [33] Sekiguchi Y, Kamagata Y, Nakamura K, et al. Fluorescence in SituHybridization Using16S rRNA-targeted Oligonucleotides RevealsLocalization of Methanogens and Selected Uncultured Bacteria in Mesophilicand Thermophilic Sludge Granules[J]. Appl. Environ. Microbiol.,1999,65(2):1280-1288.
    [34] Khalid A, Arshad M, Anjum M, et al. The Anaerobic Digestion of SolidOrganic Waste[J]. Waste Manage.,2011,31(8):1737-1744.
    [35] Kelleher B P, Leahy J J, Henihan A M, et al. Advances in Poultry LitterDisposal Technology-a Review[J]. Bioresour. Technol.,2000,83(1):27-36.
    [36] Demirel B, Yenigün O. Two-phase Anaerobic Digestion Processes: a Review[J].J. Chem. Tech. Biotechnol.,2002,77(7):743-755.
    [37] Bouallagui H, Lahdheb H, Romdan E, et al. Improvement of Fruit andVegetable Waste Anaerobic Digestion Performance and Stability withCo-substrates Addition[J]. J. Environ. Manage.,2009a,90(5):1844-1849.
    [38] Riau V, la Rubia D, Pérez M et al. Temperature-phased Anaerobic Digestion(TPAD) to Obtain Class A Biosolids: a Semi-continuous Study[J]. Bioresour.Technol.,2010,101(8):2706-2712.
    [39] Trzcinski A P, Stuckey D C. Treatment of Municipal Solid Waste LeachateUsing a Submerged Anaerobic Membrane Bioreactor at Mesophilic andPsychrophilic Temperatures: Analysis of Recalcitrants in the Permeate UsingGC-MS[J]. Water Res.,2010,44(3):671-680.
    [40] Fezzani B, Cheikh R B. Two-phase Anaerobic Co-digestion of Olive MillWastes in Semi-continuous Digesters at Mesophilic Temperature[J]. Bioresour.Technol.,2010,101(6):1628-1634.
    [41] Briski F, Vukovic M, Papa K, et al. Modelling of Compositing of Food Wastein a Column Reactor[J]. Chem. Pap.,2007,61(1):24-29.
    [42] De Baere L. Anaerobic Digestion of Solid Waste: State-of-the-Art[J]. WaterSci. Technol.,2000,41(3):283-290.
    [43] Ward A J, Hobbs P J, Holliman P J, et al. Optimization of the AnaerobicDigestion of Agricultural Resources[J]. Bioresour. Technol.,2008,99(17):7928-7940.
    [44] Conrad R. Contribution of Hydrogen to Methane Production and Control ofHydrogen Concentrations in Methanogenic Soils and Sediment[J]. FEMSMicrobiol. Ecol.,1999,28(3):193-202.
    [45] Conrad R. Control of Microbial Methane Production in Wetland Rice Fields[J].Nutr. Cycl. Agroecosyst.,2002,64(1-2):59-69.
    [46] Dhaked R K, Waghmare C K, Alam S I, et al. Effect of Propionate Toxicity onMethanogenesis of Night Soil at Psychrophilic Temperature[J]. Bioresour.Technol.,2003,87(3):299-303.
    [47] Nozhevnikova A N, Rebac S, Kotsyurbenko O R, et al. Anaerobic Productionand Degradation of Volatile Fatty Acids in Low Temperature Environments[J].Water Sci. Technol.,2000,41(12):39-46.
    [48] Yadvika, S Santosh, T R Sreekrishnan, et al. Enhancement of BiogasProduction from Solid Substrates Using Different Techniques–a Review[J].Bioresour. Technol.,2004,95(1):1-10.
    [49] Verma S. Anaerobic Digestion of Biodegradable Organics in Municipal SolidWastes. Master Thesis. Department of Earth&Environmental Engineering(Henry Krumb School of Mines) Fu Foundation School of Engineering&Applied Science, Columbia University,2002, USA.
    [50] Kim J, Park C, Kim T H, et al. Effects of Various Pretreatments for EnhancedAnaerobic Digestion with Waste Activated Sludge[J]. J. Biosci. Bioeng.,2003,95(3):271-275.
    [51] Sonakya V, Raizada N, Hausner M. Microbial Populations Associated withFixed-and Floating-bed Reactors during a Two-stage Anaerobic Process[J]. Int.Microbiol.,2007,10(4):245-251.
    [52] Staubmann R, Foidl G, Foidl N, et al. Biogas Production from Jatropha CurcasPress-cake[J]. Appl. Biochem. Biotech.,1997,63-65(1):457-467.
    [53] Lahav O, Loewenthal R E. Measurement of VFA in Anaerobic Digestion: TheFive-point Titration Method Revisited[J]. Water SA,2000,26(3):389-392.
    [54] Kida K, Morimura S, Sonoda Y. Accumulation of Propionic Acid duringAnaerobic Treatment of Distillery Wastewater from Barleyshochu Making[J]. J.Ferment. Bioeng.,1993,75(3):213-216.
    [55] Schink B, Stams A J M. Syntrophism among Prokaryotes. In: Dworkin, M.(Ed.), The prokaryotes: an evolving electronic resource for the microbiologicalcommunity, third ed. Springer,2005, New York.
    [56] Kayhanian M. Ammonia Inhibition in High-solids Biogasification: anOverview and Practical Solutions[J]. Environ. Technol.,1999,20(4):355-365.
    [57] Tchobanoglous G, Theisen H, Vigil S. Integrated Waste Management:Engineering Principles and Management Issues. McGraw-Hill,1993, NewYork.
    [58] Gallert C, Bauer S, Winter J. Effect of Ammonia on the Anaerobic Degradationof Protein by a Mesophilic and Thermophilic Biowaste Population[J]. Appl.Microbiol. Biotechnol.,1998,50(4):495-501.
    [59] Koster I W, Lettinga G. Anaerobic Digestion at Extreme AmmoniaConcentrations[J]. Biol. Wastes,1988,25,51-59.
    [60] Sawayama S, Tada C, Tsukahara K et al. Effect of Ammonium Addition onMethanogenic Community in a Fluidized Bed Anaerobic Digestion[J]. J.Biosci. Bioen.,2004,97,65-70.
    [61] Jarrell K F, Saulnier M, Ley A. Inhibition of Methanogenesis in Pure Culturesby Ammonia, Fatty Acids, and Heavy Metals, and Protection Against HeavyMetal Toxicity by Sewage Sludge[J]. Can. J. Microbiol.,1987,33(6),551-555.
    [62] Hansen K H, Angelidaki I, Ahring B K. Improving Thermophilic AnaerobicDigestion of Swine Manure[J]. Water Res.,1999,33(8),1805-1810.
    [63] Chastain J P, Camberato J J, Skewes P. Poultry Manure Production andNutrient Content. Chapter3, Clemson Extension,2004, South CarolinaConfined Animal Manure Managers Certification Program-Poultry.
    [64] Burton C H, Turner C. Anaerobic Treatment Options for Animal Manures. In:Manure Management-Treatment Strategies for Sustainable Agriculture,2ndedn, chapter7. Silsoe Research Institute, as part of the EU AccompanyingMeasure project, MATRESA, Wrest Park, Silsoe,2003, Bedford, UK.
    [65] Liu T, Sung S. Ammonia Inhibition on Thermophilic AceticlasticMethanogens[J]. Water Sci. Technol.,2002,45(10):113-120.
    [66] Gallert C, Winter J. Mesophilic and Thermophilic Anaerobic Digestion ofSource-sorted Organic Waste: Effect of Ammonia on Glucose Degradation andMethane Production[J]. Appl. Microbiol. Biotechnol.,1997,48(3):405-410.
    [67] Pang Y Z, Liu Y P, Li X J, et al. Improving Biodegradability and BiogasProduction of Corn Stover Tthrough Sodium Hydroxide Solid StatePretreatment[J]. Energ. Fuel.,2008,22(4):2761-2766.
    [68] Yen H W, Chiu C H. The Influences of Aerobic-dark and Anaerobic-lightCultivation on CoQ (10) Production by Rhodobacter Sphaeroides in theSubmerged Fermenter[J]. Enzyme Microb. Tech.,2007,41(5):600-604.
    [69] Cuetos M J, Gomez X, Otero M, et al. Anaerobic Digestion of SolidSlaughterhouse Waste (SHW) at Laboratory Scale: Influence of Co-digestionwith the Organic Fraction of Municipal Solid Waste (OFMSW)[J]. Biochem.Eng. J.,2008,40(1),99-106.
    [70] H Bouallagui, Lahdheb H, Romdan E. Improvement of Fruit and VegetableWaste Anaerobic Digestion Performance and Stability with Co-substratesAddition[J]. J. Environ. Manage.,2009,90(5):1844-1849.
    [71] Deublein D, Steinhauser A. Biogas from Waste and Renewable Sources: anIntroduction.2008, Weinheim: WILEY-VCH Verlag GmbH&Co. KGaA.
    [72] S Verma. Anaerobic Digestion of Biodegradable Organics in Municipal SolidWastes. Master Thesis. Department of Earth&Environmental Engineering(Henry Krumb School of Mines) Fu Foundation School of Engineering&Applied Science, Columbia University,2002, USA.
    [73] Colleran E, Finnegan S, Lens P. Anaerobic Treatment of Sulphate-containingWaste Streams[J]. Anton. van Leeuw.,1995,67(1):29-46.
    [74] Flaherty V O’, Mahony T, Kennedy R O’, et al. Effect of pH on GrowthKinetics and Sulphide Toxicity Thresholds of a Range of Methanogenic,Syntrophic and Sulphate-reducing Bacteria[J]. Process Biochem.,1998,33(5):555-569.
    [75] Patel G B, Roth L A. Effect of Sodium Chloride on Growth and MethaneProduction of Methanogens[J]. Can. J. Microbiol.1977,23(7):893-897.
    [76] van Langerak E P A, Gonzales-Gil G, van Aelst A, et al. Effects of HighCalcium Concentrations on the Development of Methanogenic Sludge inUpflow Anaerobic Sludge Bed (UASB) Reactors[J]. Water Res.,1998,32(4),1255-1263.
    [77] Li C, Fang H H P. Inhibition of Heavy Metals on Fermentative HydrogenProduction by Granular Sludge[J]. Chemosphere,2007,67(4):668-673.
    [78] Lin C Y. Effect of Heavy Metals on Acidogenesis in Anaerobic Digestion[J].Water Res.,1993,27(1):147-152.
    [79] De Baere L. Will Anaerobic Digestion of Solid Waste Survive in the Future[J]?Water Sci. Technol.,2006,53(8):187-194.
    [80] Mumme J, Linke B, T le R. Novel Upflow Anaerobic Solid-State (UASS)Reactor[J]. Bioresour. Technol.,2010,101(2),592-599.
    [81] Xing W, Ngo H H, Guo W, et al. Enhancement of the Performance ofAnaerobic Fluidized Bed Bioreactors (AFBBRs) by a New Starch BasedFlocculant[J]. Separat. Purif. Technol.,2010,72(2),140-146.
    [82] Converse J C, Evans G W, Verhoeven C R, et al. Performance of a Large SizeAnaerobic Digester for Poultry Manure. Paper-American Society ofAgricultural Engineers,1977, June26-29,77-4051,15pp. ASAE Publications,Raleigh, NC, USA.
    [83] Lo K V, Chen W Y, Liao P H. Mesophilic Digestion of Screened Dairy ManureUsing Anaerobic Rotating Biological Contact Reactor[J]. Biomass,1986a,9(2):81-92.
    [84]陈闯,邓良伟,信欣等.上推流厌氧反应器连续干发酵猪粪产沼气试验研究[J].环境科学,2012,33(3):1033-1040.
    [85] Boopathy R. Biological Treatment of Swine Waste Using Anaerobic BaffledReactors[J]. Bioresour. Technol.,1998,64(1):1-6.
    [86] Sadaka S, Engler C R. Effects of Mixing on Anaerobic Composting of BeefManure. In: Proc. of ASAE Annual Intenational Meeting, Technical Papers:Engineering Solutions for a New Century,2000,9-12July2000,2,004141, pp.4993-5001. American Society of Agricultural Engineers Publ., Milwaukee, WI,USA.
    [87] Hill D T, Bolte J P. Methane Production from Low Solid Concentration LiquidSwine Waste Using Conventional Anaerobic Fermentation[J]. Bioresour.Technol.,2000,74(3):241-247.
    [88] Maranon E, Castrillon L, Vozquez I, et al. The Influence of HydraulicResidence Time on the Treatment of Cattle Manure in UASB Reactors[J].Waste Manage. Res.,2001,19(5):436-441.
    [89] Angelidaki I, Chen X, Cui J, et al. Thermophilic Anaerobic Digestion ofSource-sorted Organic Fraction of Household Municipal Solid Waste: Start-upProcedure for Continuously Stirred Tank Reactor[J]. Water Res.,2006,40(14):2621-2628.
    [90] Demirer G N, Chen S. Anaerobic Digestion of Dairy Manure in a HybridReactor with Biogas Recirculation[J]. World J. Microb. Biot.,2005,21(8-9):1509-1514.
    [91] Gripentrog H W, Barelli D, Csambalik L, et al. Economical and EnvironmentalAnalysis of a Biogas Plant within the Context of a Real Farm. The RoyalVeterinary and Agricultural University. Ecological Agriculture I. SOCRATESEuropean Curriculum.2005.
    [92] Nielsen H B, Mladenovska Z, Westermann P, et al. Comparison of Two-stageThermophilic (68°C/55°C) Anaerobic Digestion with One-stage Thermophilic(55°C) Digestion of Cattle Manure[J]. Biotechnol. Bioeng.,2004,86(3):291-300.
    [93] Ike M, Inoue D, Miyano T, et al. Microbial Population Dynamics duringStartup of a Full-scale Anaerobic Digester Treating Industrial Food Waste inKyoto Eco-energy project[J]. Bioresour. Technol.,2010,101(11):3952-3957.
    [94] Rao A G, Prakash S S, Joseph J, et al. Multi Stage High Rate Biomethanationof Poultry Litter with Self Mixed Anaerobic Digester[J]. Bioresour. Technol.,2011,102(2):729-735.
    [95] Luo G, Xie L, Zhou Q, et al. Enhancement of Bioenergy Production fromOrganic Wastes by Two-stage Anaerobic Hydrogen and Methane ProductionProcess[J]. Bioresour. Technol.,2011,102(11):8700-8706.
    [96] Chen Y, Cheng J J, Creamer K S. Inhibition of Anaerobic Digestion Process: aReview[J]. Bioresour. Technol.2008,99(10):4044-4064.
    [97] Aubart Ch, Bull F. Anaerobic Digestion of Rabbit Wastes and Pig ManureMixed with Rabbit Wastes in Various Experimental Conditions[J]. AgriculturalWastes,1984,10(1):1~13.
    [98] Nozhevnikova A N, Kotsyurbenko O N. Parshina S N. Anaerobic ManureTreatment under Extreme Temperature Conditions[J]. Water Sci. Technol.,1999,40(1):215-221.
    [99] Callaghan F J, Wasea D A J, Thayanithya K, et al. Continuous Codigestion ofCattle Slurry with Fruit and Vegetable Wastes and Chicken Manure[J].Biomass Bioenerg.,2002,27(1):71-77.
    [100] Mladenovska Z, Dabrowski S, Ahring B K. Anaerobic Digestion of Manureand Mixture of Manure with Lipids: Biogas Reactor Performance andMicrobial Community Analysis[J]. Water Sci. Technol.,2003,48(6),271-278.
    [101] Kaparaju P, Rintala J. Anaerobic Co-digestion of Potato Tuber and ItsIndustrial by-products with Pig Manure[J]. Resour. Conserv. Recy.,2005,43(2):175-188.
    [102] Lehtom ki A, Huttunen S, Rintala J A. Laboratory Investigations on Codigestion of Energy Crops and Crop Residues with Cow Manure for MethaneProduction: Effect of Crop to Manure Ratio[J]. Resour. Conserv. Recycl.,2007,51(3):591-609.
    [103] Bouallagui H, Rachdi B, Gannoun H, et al. Mesophilic and ThermophilicAnaerobic Co-digestion of Abattoir Wastewater and Fruit and Vegetable Wastein Anaerobic Sequencing Batch Reactors[J]. Biodegradation,2009,90(5):1844-1849.
    [104]álvarez J A, Otero L, Lema J M. A Methodology for Optimising FeedComposition for Anaerobic Co-digestion of Agro-industrial Wastes[J].Bioresour. Technol.,2010,101(4):1153-1158.
    [105]Mumme J, Linke B, T lle R. Novel Upflow Anaerobic Solid-State (UASS)Reactor[J]. Bioresour. Technol.,2010,101(2):592-599.
    [106]Fang C, Boe K, Angelidaki I. Anaerobic Co-digestion of Desugared Molasseswith Cow Manure; Focusing on Sodium and Potassium Inhibition[J]. Bioresour.Technol.,2011,102(2):1005-1011.
    [107]Xie S, Lawlor P G, Frost J P. Effect of Pig Manure to Grass Silage Ratio onMethane Production in Batch Anaerobic Co-digestion of Concentrated PigManure and Grass Silage[J]. Bioresour. Technol.,2011,102(10):5728-5733.
    [108]Astals S, Nolla-Ardèvol V, Mata-Alvarez J. Anaerobic Co-digestion of PigManure and Crude Glycerol at Mesophilic Conditions: Biogas and Digestate[J].Bioresour. Technol.,2012,110:63-70.
    [109]Bayr S, Rintala J. Thermophilic Anaerobic Digestion of Pulp and Paper MillPrimary Sludge and Co-digestion of Primary and Secondary Sludge[J]. WaterRes.,2012,46(15):4713-4720.
    [110]O-Thong S, Boe K, Angelidaki I. Thermophilic Anaerobic Co-digestion of OilPalm Empty Fruit Bunches with Palm Oil Mill Effluent for Efficient BiogasProduction[J]. Appl. Energy.,2012,93:648-654.
    [111]陈广银,常志州,叶小梅等.鸡粪与互花米草沼渣混合发酵产甲烷的研究[J].环境科学,2012,33(1):203-207.
    [112]李东,叶景清,甄峰等.稻草与鸡粪配比对混合厌氧消化产气率的影响[J].农业工程学报,2013,29(2):232-238.
    [113]Guendouz J, Buffiere P, Cacho J, et al. High-solids Anaerobic Digestion:Comparison of Three Pilot Scales[J]. Water Sci. Technol.,2008,58(9):1757-1763.
    [114]De Baere L. Partial Stream Digestion of Residual Municipal Solid Waste[J].Water Sci. Technol.,2008,57(7):1073-1077.
    [115]Kelleher B P, Simpson A J, Rogers R E, et al. Effects of Natural OrganicMatter from Sediments on the Growth of Marine Gas Hydrates[J]. Mar. Chem.,2007,103(3-4):237-249.
    [116]赵云飞,刘晓玲,李十中等.有机成分比例对高固体浓度厌氧发酵产甲烷的影响[J].中国环境科学,2012,32(6):1110-1117.
    [117]刘晓玲,李十中,刘建双等.应用高固体浓度厌氧消化工艺转化[J].环境科学学报,2011,31(5):955-963.
    [118]Muyzer G, Waal E C, Uitterlinden A G. Profiling of Complex MicrobialPopulations by Denaturing Gradient Gel Electrophoresis Analysis ofPolymerase Chain Reaction Amplified Genes Encoding for16S rRNA[J]. Appl.Environ. Microbiol.,1993,59:695-700.
    [119]Amann R, Ludwig W, Schleifer K H. Phylogenetic Identification and in SituDetection of Individual Microbial Cells without Cultivation[J]. Microbiol. Rev.,1995,59(1):143~169.
    [120]邢薇,左剑恶,孙寓姣等.利用FISH和DGGE对产甲烷颗粒污泥中微生物种群的研究[J].环境科学,2006,27(11):2268-2272.
    [121]邢薇,左剑恶,林甲等.20°C EGSB反应器中颗粒污泥的微生物种群结构分析[J].环境科学,2008,29(9):2558-2563.
    [122]Lee T J, Kawaharasaki M, Matsumura M, et al. Microbial CommunityStructures of Activated Sludges Dominated with Polyphos-phate-accumulatingBacteria and Glycogen-accumulating Bacteria[J]. Environ. Technol.,2002,23(7):747-755.
    [123]De Sanctis M, Di Iaconi C, Lopez A, et al. Granular Biomass Structure andPopulation Dynamics in Sequencing Batch Biofilter Granular Reactor (SBBGR)[J]. Bioresour. Technol.,2010,101(7):2152-2158.
    [124]Leininger S, Vrich T, Schloter M, et al. Archaea Predominate amongAmmonia-oxidizing Prokaryotes in Soil[J]. Nature,2006,442(7104):806-809.
    [125]Roesch L F, Fulthorpe R R, Riva A, et al. Pyrosequencing Enumerates andContrasts Soil Microbial Diversity[J]. ISME J.,2007,1(4):283-290.
    [126]Chen C P, Tseng C H, Chen C A, et al. The Dynamics of Microbial Parnershipsin the Coral Isopora Palifera[J]. ISME J.,2011,5(4):728-740.
    [127]Krause L. Finding Novel Genes in Bacterial Communities Isolated from theEnvironment[J]. Bioinformatics,2006,22:2812-2891.
    [128]Fachverband Biogas e.V.(2011). Biogasnutzung in Deutschland-Entwicklungvon1992bis2011.http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen.11-01-07_Biogas Branchenzahlen2010_erw.pdf. Accessed18Feb2010.
    [129]Weiland P. Biomass Digestion in Agriculture: a Successful Pathway for theEnergy Production and Waste Treatment in Germany[J]. Engineering in LifeSciences,2006,6(3):302-309.
    [130]Masse D I, Croteau F, Masse L. The Fate of Crop Nutrients during Digestion ofSwine Manure in Psychrophilic Anaerobic Sequencing Batch Reactors[J].Bioresour. Technol.,2007,98(15):2819-2823.
    [131]Albert E, Weigert I. Erste Ergebnisse von Gef-und Lysimeterversuchen zurN-Wirkung von Biogasgülle. Infodienst Beratung Schule S chs[J]. Agrarverw.,2000,1,37-45.
    [132]Khalil M E A, Badran N M, El-Emam M A A. Effect of Different OrganicManures on Growth and Nutritional Status of Corn[J]. Egypt. J. Soil Sci.,2000,40(1):245-263.
    [133]Loria E R, Sawyer J E. Extractable Soil Phosphorus and Inorganic NitrogenFollowing Application of Raw and Anaerobically Digested Swine Manure[J].Agron. J.,2005,97,879-885.
    [134]M ller K, Stinner W, Deuker A, et al. Effects of Different Manuring Systemswith and without Biogas Digestion on Nitrogen Cycle and Crop Yield in MixedOrganic Dairy Farming Systems[J]. Nutr. Cycl. Agroecosyst.,2008,82(2):209-232.
    [135]Tiwari V N, Tiwari K N, Upadhyay R M. Effect of Crop Residues and BiogasSlurry Incorporation in Wheat on Yield and Soil Fertility[J]. J., Indian Soc.Soil. Sci.,2000,48,515-520.
    [136]马放,刘俊良,李淑更等.复合型微生物絮凝剂的开发[J].中国给水排水,2003,19(4):1-4.
    [137]Wang S G., Gong W X, Liu X W, et al. Production of a Novel Bioflocculant byCulture of Klebsiella Mobilis Using Dairy Wastewater[J]. Biochem. Eng. J.,2007b,36(2):81-86.
    [138]Zhang Z Q, Lin B, Xia S Q, et al. Production and Application of a NovelBioflocculant by Multiple-microorganism Consortia Using BreweryWastewater as Carbon Source[J]. J. Environ. Sci. China.,2007,19(6):667-673.
    [139]王丽丽.沼气产业化基本理论与大中型沼气工程资源配置优化研究[D].长春:吉林大学,2012:7-16.
    [140]叶小梅,常志州,钱玉婷等.江苏省大中型沼气工程调查及沼液生物学特性研究[J].农业工程学报,2012,28(6):222-227.
    [141]韩芳,林聪.畜禽养殖场沼气工程厌氧消化技术优化分析[J].农业工程学报,2012,27(S1):41-47.
    [142]Jiang N, Wang Y, Dong X, et al. Methanol as the Primary Methanogenic andAcetogenic Precursor in the Cold Zoige Wetland at Tibetan Plateau[J]. Environ.Microbiol.,2010,60(1):206-213.
    [143]水和废水监测分析方法[M].北京:中国环境科学出版社,第四版,2002:200-497.
    [144]Kim J R, Min B, Logan B E. Evaluation of Procedures to Acclimate aMicrobial Fuel Cell for Electricity Production[J]. Appl. Microbiol. Biotechnol.,2005,68(1):23-30.
    [145]Cheng S, Liu H, Logan B E. Increased Power Generation in a Continuous FlowMFC with Advective Flow Through the Porous Anode and Reduced ElectrodeSpacing[J]. Environ. Sci. Technol.,2006a,40(7):2426-2432.
    [146]Schloss P D, Westcott S L, Ryabin T, et al. Introducing Mothur: Open-source,Platform-independent, Community-supported Software for Describing andComparing Microbial Communities[J]. Appl. Environ. Microbiol.,2009,75(23):7537-7541.
    [147]华蔚颖.应用454测序技术分析菌群结构的方法学研究[D].上海:上海交通大学,2010:12-19.
    [148]Shimofuruya H, Koide A, Shirota K, et al. The Production of FlocculatingSubstances by Streptomyces Griseus[J]. J. Biosci. Biotechnol. Biochem.,1996,60(3):498-500.
    [149]Gong W X, Wang S G, Sun X F, et al. Bioflocculant Production by Culture ofSerratia Ficaria and Its Application in Wastewater Treatment[J]. Bioresour.Technol.,2008,99(11):4668-4674.
    [150]Kim B H, Park H S, Kim H J, et al. Enrichment of Microbial CommunityGenerating Electricity Using a Fuel-celltype Electrochemical Cell[J]. Appl.Microbiol. Biotechnol.,2004,63(6)672-681.
    [151]Choo Y F, Lee J, Chang I S. Bacterial Communities in Microbial Fuel CellsEnriched with High Concentrations of Glucose and Glutamate[J]. J. Microbiol.Biotechnol.,2006,16(9):1481-1484.
    [152]Clauwaert P, Aelterman P, Pham T H, et al. Minimizing Losses inBio-electrochemical Systems: the Road to Applications[J]. Appl. Microbiol.Biotechnol.,2008,79(6):901-913.
    [153]Logan B E. Extracting Hydrogen Electricity from Renewable Resources[J].Environ. Sci. Technol.,2004,38(9):160A-167A.
    [154]Bond D R, Lovley D R. Reduction of Fe (III) Oxide by Methanogens in thePresence and Absence of Extracellular Quinines[J]. Environ. Microbiol.,2002.4(2):115-124.
    [155]Horn M A, Matthies C, Kusel K, et al. Hydrogenotrophic Methanogenesis byModerately Acid-torlerent Methanogens of a Methane-emmiting Acidic Peat[J].Applied and Environment Microbiology,2003,69(1):74-83.
    [156]Franzmann P D, Liu Y, Balkwill D L, et al. Methanogenium frigidum sp. nov.,a Psychrophilic, H2-Using Methanogen from Ace Lake, Antarctica[J].International Journal of Systematic and Evolutionary Microbiology,1997,47(4):1068-1072.
    [157]Nozhevnikova A N, Nekrasova V K, Kevbrina M V, et al. Production andoxidation of methane at low temperature by the microbial population ofmunicipal sludge checks situated in north-east Europe[J]. Water Science andTechnology,2001,44(4):89-95.
    [158]Liao L, Xu X, Wang C, et al. Bacterial and archaeal communities in the surfacesediment from the northern slope of the South China Sea[J]. Journal ofZhejiang University SCIENCE B,2009,10(12):890-901.
    [159]Feng B W, Li X R, Wang J H, et al. Bacterial diversityofwaterand sediment inthe Changjiang estuary and coastal area of the EastChina Sea[J]. FEMSMicrobiology Ecology,2009,70(2):236-248.
    [160]Chan O C, Claus P, Casper P, et al. Vertical distribution of structure andfunction of the methanogenic archaeal community in Lake Dagow sediment[J].Environmental Microbiology,2005,7(8):1139-1149.
    [161]李涛,王鹏,汪品先.南海南部陆坡表层沉积物细菌和古菌多样性[J].微生物学报,48(3):323-329.
    [162]Falz K Z, Holliger C, Grosskopf R, et al. Vertical distribution of methanogensin the anoxic sediment of Rotsee (Switzerland)[J]. Applied and EnvironmentMicrobiology,1999,65(6):2402-2408.
    [163]Nüsslein B, Chin K J, Eckert W. Evidence for anaerobic syntrophic acetateoxidation during methane production in the profundal sediment of subtropicalLake Kinneret (Israel)[J]. Environmental Microbiology,2001,3(7):460-470.
    [164]Hernon F, Forbes C, Colleran E. Identification of Mesophilic and ThermophilicFermentative Species in Anaerobic Granular Sludge[J]. Water science andtechnology,2006,54(2):19-24.
    [165]Wang H, Katariina K, Lehtom ki A, et al. Microbial Community Structure inAnaerobic Co-digestion of Grass Silage and Cow Manure in a LaboratoryContinuously Stirred Tank Reactor[J]. Biodegradation,2010,21(1):135-146.
    [166]Lee S H, Kang H J, Lee Y H, et al. Monitoring Bacterial Community Structureand Variability in Time Scale in Full-scale Anaerobic Digesters[J]. Journal ofenvironmental monitoring: JEM,2012,14(7):1893-1905.
    [167]Godon J J, Zumstein E, Dabert P, et al. Molecular Microbial Diversity of anAnaerobic Digestor as Determined by Small-subunit rDNA SequenceAnalysis[J]. Applied microbiology,1997,63(7):2802-2813.
    [168]Rastogi G, Ranade D R, Yeole T Y, et al. Investigation of MethanogenPopulation Structure in Biogas Reactor by Molecular Characterization ofMethyl-coenzyme M Reductase A (mcrA) Genes[J]. Bioresource technology,2008,99(13):5317-5326.
    [169]Cato E P, W George L, Finegold S M. Genus Clostridium Prazmowski1880,23AL. In: Bergey s Manual of Systematic Bacteriology.1986(2):1141-1200.
    [170]Chen S L, Song L, Dong X Z. Sporacetigenium Mesophilum Gen. nov., sp.nov., Isolated from an Anaerobic Digester Treating Municipal Solid Waste andSewage[J]. Int. J. Syst. Evol. Microbiol.,2006,56(4):721-725
    [171]Fujita M, Ike M, Jang J H, et al. Bioflocculation Production fromLower-molecular Fatty Acids as a Novel Strategy for Utilization of SludgeDigestion Liquor[J]. Water Sci. Technol.,44(10):237-243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700