用户名: 密码: 验证码:
纳米及介孔金属氧化物材料新合成方法探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构材料,是指三维空间尺度至少有一维处于纳米量级(1-100 nm)的材料,包括纳米尺寸材料和纳米孔材料。当纳米结构材料的尺寸小到纳米量级时,则会表现出独特的物理化学性质,在催化,吸附、分离、传感、药物负载、光电等众多领域有着广泛的应用前景。本论文分别以Fe3O4纳米粒子、介孔-大孔TiO2、有序介孔金属氧化物(Fe2O3、Cr2O3、In2O3、CeO2、Co3O4、NiO、ITO和Mn3O4)为研究对象,探索其新颖的合成方法、最优的调控路线和调控机制,实现对尺寸、结构、形貌、晶型及物性的有效调变,对深入研究材料制备、结构与性能的关系具有重要的意义。具体研究内容如下:
     首次分别以p-环糊精或蔗糖为绿色双功能促进剂,以廉价的三价氯化铁为铁源,成功的制备出粒子尺寸小于20nm的超顺磁性磁铁矿。磁铁矿纳米粒子的尺寸可随p-环糊精或蔗糖浓度的变化而变化。并对整个反应过程的机理进行了详细的研究。p-环糊精或蔗糖一方面起到绿色还原剂前驱体的作用,温和还原三价铁制备磁铁矿,且防止制备得到的磁铁矿再次被氧化。从而使整个制备过程无需纯化或保护流程,易于实现。另一方面,p-环糊精或蔗糖又有包覆剂前体的作用,修饰所制备的磁铁矿的表面,控制其生长,从而制得尺寸可调且超顺磁性的纳米粒子。制备得到的磁铁矿纳米粒子的饱和磁化强度随粒子尺寸的改变而在一定范围内变化。
     首次采用简单易得的细胞作为生物模板,通过生物灵感法成功制备出介孔-大孔多级孔TiO2材料。且其大孔形貌可随细胞组装体形貌的改变而变化,分别为具有球状大孔、杆状大孔及蠕虫状大孔的介孔-大孔TiO2材料。并对其光催化性能进行了详细的研究,结果表明将介孔的高比表面积、多的活性位点与大孔的通透、易传质性质相结合,有利于催化性能的提高,且相对纳米粒子更有助于回收利用。
     用纳米浇铸法制备有序介孔金属氧化物材料,首次发现影响其介孔有序性形貌和结晶度的热处理调变方法及其“迁移机理”。从而可以在大范围内调变以金属硝酸盐为前驱体纳米浇铸法制备的金属氧化物材料的介孔有序性和结晶度。适用的金属氧化物包括:Fe2O3、Cr2O3、In2O3、CeO2、C03O4、NiO和Mn3O4。并深入研究了该简单易行方法背后的“迁移”机理,从而可以对金属氧化物材料的介孔有序性和结晶度进行连续调变。其金属氧化物的形貌和结晶度可以从高结晶的有序介孔微米级大颗粒调变到低结晶甚至无定形的纳米粒子。同时,有序介孔Fe203的热处理温度从600℃降到仅为150℃。
     首次采用后掺杂纳米浇铸法制备高度有序介孔氧化铟锡(ITO)材料。并运用“迁移机理”,调变ITO材料的形貌和结晶度从高结晶的有序介孔ITO大颗粒(微米级)到低结晶的ITO纳米粒子。并考察纳米浇铸法后掺杂Sn含量、热处理气氛、热处理温度等因素对其结构、形貌、透光及导电性质的影响。
"Nanostructured Materials", also called "Nanomaterials", are materials with one or more dimensions in the 1-100 nm range, including nanosized materials and nanoporous materials. These materials, notable for their extremely small feature size, have special physic-chemical properties and have the potential for wide-ranging applications, such as catalysis, adsorption, separation, sensor, drug delivery and photoelectricity. In this work, magnetite nanoparticles, meso-macroporous TiO2, and ordered mesoporous metal oxides (including Fe2O3, Cr2O3,In2O3, CeO2,Co3O4, NiO, ITO and Mn3O4) have been synthesized in novel ways. The sizes, morphology,phase and properties of these materials have been controlled and adjusted using feasible methods. Especially, the actual mechanism, which affects the synthesis, has been studied in detail. The main contents of this dissertation are following:
     Novel and facileβ-cyclodextrin-assisted (β-CD-assisted) or sucrose-assisted methods have been employed to prepare superparamagnetic Fe3O4 nanoparticles from a'single iron precursor of FeCl3. Various characterization involving X-raydiffraction (XRD), standard and high-resolution transmission electron microscopy (TEM and HRTEM), electron diffraction (ED), and Raman spectroscopy has integrally testified the formation of pure magnetite nanoparticles with homogeneous morphology. The size of nanoparticles can be adjusted by varying the concentration ofβ-CD or sucrose. The success is ascribed to in situ formation of reducing agent originating from the self-decomposition of P-CD or sucrose under the reaction conditions, which partly reduces Fe3+ ions into Fe2+ ions for final formation of Fe3O4. Another function ofβ-CD or sucrose is also discussed:that they also act as the coating agent to prevent particle growth and agglomeration, which allows the formation of nanoscale and superparamagnetic magnetite with different particle sizes. The saturation magnetization of the as-obtained magnetite is measured and is strongly related to the particle size.
     Cell-assemblies with different cell shapes have been used as macrotemplates in the bioinspired synthesis of hierarchical meso-macroporous titania with tunable macroporous morphology. The porous materials exhibit relatively homogeneous and uniform macropores with spheroidal, baculiform, and wormlike porous shapes, respectively. The photocatalytic performance of the meso-macroporous titania has also been evaluated by degrading methylene blue (MB) under UV irradiation, which indicates that an optimal catalyst should combine large pores (enabling high substance flow rates) with smaller pores (ensuring high substrate-substance contact) in a connected network.
     During the synthesis of mesoprous metal oxides using nanocasting method from metal nitrate precursors, a simple and general "thermal treatment" strategy to control the morphology of mesoporous periodicity and crystallinity in a large range has been found. The mechanism behind the phenomenon is discussed in detail and explained clearly as "migration mechanism". The preparation of mesoporous hematite will be first demonstrated as an example, followed by all the other metal oxide examples (including Cr2O3, In2O3, CeO2, Co3O4, NiO and Mn3O4). The morphology and crystallinity can be controlled from ordered mesoporous particles in micrometer dimension with high crystallinity to nanoparticles with low crystallinity in succession. The thermal treatment temperature for Fe2O3 can be decreased from 600℃to only 150℃.
     Ordered mesoporous indium tin oxide (ITO) materials have been synthesized using nanocasting method with post-doping strategy. The mesoporous morphology and crystallinity can be controlled easily using "migration mechanism" from ordered mesoporous particles in micrometer dimension with high crystallinity to nanoparticles with low crystallinity in succession. The structure, morphology, transparent and conducting properties of the ITO materials have been discussed in detail with different tin contents, thermal treatment atmosphere and temperatures.
引文
[1]Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science,2000,287 (5460):1989~1992
    [2]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:The influence of size, shape, and dielectric environment. J Phys Chem B,2003,107 (3):668~677
    [3]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002,298 (5601):2176~2179
    [4]Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J Am Chem Soc,2004,126(1):273~279
    [5]Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc,2004,126 (28):8648~8649
    [6]Huang Y, Duan X F, Cui Y, et al. Gallium nitride nanowire nanodevices. Nano Lett.2002,2 (2):101~104
    [7]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Langmuir. 1998,14 (12):3160~3163
    [8]Kondo Y, Ru Q, Takayanagi K. Thickness induced structural phase transition of gold nanofilm. Phys Rev Lett,1999,82 (4):751-754
    [9]Margolese D, Melero J A, Christiansen S C, et al. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem Mater,2000,12 (8):2448~2459
    [10]Crooks R M, Zhao M Q, Sun L, et al. Dendrimer-encapsulated metal nanoparticles:Synthesis, characterization, and applications to catalysis. Acc Chem Res,2001,34 (3):181~190
    [11]Pool R. The smallest chemical-plants. Science,1994.263:1698~1699
    [12]Alivisatos A P. Semiconductor clusters, nanocrystals. and quantum dots. Science,1996. 933~937
    [13]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes. Acc Chem Res,1999,32 (5):435~445
    [14]Xia Y N, Yang P D. Chemistry and physics of nanowires. Adv Mater,2003,15 (5):351~356
    [15]Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:synthesis, characterization, and applications. Adv Mater,2003,15 (5):353~389
    [16]Huang H J, Pierstorff E, Osawa E, et al. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. Acs Nano,2008.2 (2): 203~212
    [17]Horiuchi S, Gotou T. Fujiwara M, et al. Single graphene sheet detected in a carbon nanofilm. Appl Phys Lett,2004,84 (13):2403~2405
    [18]Kruk M, Jaroniec M, Ko C H, et al. Characterization of the porous structure of SBA-15. Chem Mater,2000,12 (7):1961~1968
    [19]Tuysuz H, Lehmann C W, Bongard H, et al. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15, and KIT-6) and nanocast metal oxides by high resolution scanning electron microscopy. J Am Chem Soc,2008,130 (34):11510~11517
    [20]Lai Z P, Bonilla G, Diaz 1, et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science,2003,300 (5618):456~460
    [21]Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science,1998,281 (5383):1647~1650
    [22]Bala T, Gunning R D, Venkatesan M, et al. Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium. Nanotechnology,2009,20 (41):415603~415605
    [23]Templeton A C, Wuelfing M P, Murray R W. Monolayer protected cluster molecules. Acc Chem Res 2000,33:27~36
    [24]El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res,2001,34:257~264
    [25]Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature,2000, 404 (6773):59~61
    [26]Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Acc Science,1998,281 (5385):2016~2018
    [27]Dekker C. Carbon nanotubes as molecular quantum wires. Phys Today,1999,52 (5):22~28
    [28]Bratkovsky A M, Levanyuk A P. Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. Phys Rev Lett,2005,94 (10):107601~107601
    [29]Cusumano M, Di Pietro M L, Giannetto A. Stacking surface effect in the DNA intercalation of some polypyridine platinum(Ⅱ) complexes. Inorg Chem,1999,38 (8):1754~1758
    [30]Li W H, Yang C C, Tsao F C, et al. Enhancement of superconductivity by the small size effect in In nanoparticles. Phys Rev B.2005,72 (21):214516~214529
    [31]Li C C. Du Z F, Yu H C, et al. Low-temperature sensing and high sensitivity of ZnO nanoneedles due to small size effect. Thin Solid Films,2009,517 (20):5931~5934
    [32]Yu J, Kou S P. Macroscopic quantum tunneling effect of Z(2) topological order. Phys Rev B, 2009.80(7):075107~075111
    [33]Kock C C. The synthesis and structure of nanocrystalline materials produced by mechanical attrition:a review. Nanostructured Mater,1993,2:109~129
    [34]Kuyama J, Inui H, Imaoka S. Effects of crystallinity of hole transport layers on organic electroluminescent device performance. Jan J Appl Phys.1991,30:864~866
    [35]El-Eskandarany M S. Morphological and structural evolutions of nonequilibrium titanium-nitride alloy powders produced by reactive ball milling. J Mater Res,1992,7:888~893
    [36]Fei G T. Liu L, Ding X Z. Preparation of nanocrystalline intermetallic compounds WSi2 and MoSi2 by mechanical alloying. Alloys and compounds,1995.229:280-282
    [37]Yang H, Qian Y T, Zhang M W. Prepration of nanocrystalline silver powders by x-ray radiation combined with hydrothermal treatment. J Mater Sci Lett,1993,17:314~318
    [38]Haggery J S. Cannon W R. Laser induced chemical process. New York:Plenum,1981. 32~78
    [39]Ding Y S, Shen X F, Sithambaram S, et al. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem Mater,2005,17 (21):5382-5389
    [40]Cui Z L, Dong L F, Zhang Z K. Oxidation behavior of nano-Fe prepared by hydrogen ARC plasma method. Nanostructured Mater,1995,5:829~833
    [41]Pacheco-Malagon G. TiO2-Al2O3 nanocomposites. J Mater Res,1995,10:1264~1269
    [42]De Guire M R. Coprecipitation synthesis of doped lanthanum chromite. J Mater Res,1993,8: 2327~2335
    [43]Zhao Y, Li F, Zhang R, et al. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem Mater,2002,14(10):4286-4291
    [44]Ding X Z. Preparation of nanocrystalline titania powders via a sol-gel process. J Mater Sci Lett,1995,14:21~22
    [45]Dong X T, Hong G Y. Synthesis and properties of cerium oxide nanometer powers by pyrolysis. J Mater Sci Technol,1997,13:113~116
    [46]Suslick K S, choe S B, Cichowals A A. Somochemical synthesis of amorphous iron. Nature. 1991,353:414~420
    [47]Zhu Y, Qian Y. γ-irradiation-hydrothermal synthesis and characterization of nanocrystalline copper powders. Mater Sci Eng B,1994,23:116~119
    [48]Hayers D, Micic O L. Radiolytic production and properties of ultrasmall cadmium sulfide particles.J Phys Chem,1989,93:4603~4608
    [49]Omurzak E, Jasnakunov J, Mairykova N, et al. Synthesis method of nanomaterials by pulsed plasma in liquid. J Nanosci Nanotechnol,2007,7 (9):3157-3159
    [50]Switzer J A, Shane M L, Phillips R. Electrodeposited ceramic superlattices. Science,1990, 247:444~446
    [51]Nagy J. Multinuclear N M R characterization of microemulsions:preparation of metal boride particles. Collid and Surfaces.1980,35:201~220
    [52]Shen J Y, Li Z Y, Yan Q J, et al. Reactions of bivalent-metal ions with borohydride in aqueous-solution for the preparation of ultrafine amorphous alloy particles. J Phys Chem,1993, 97:8504~8511
    [53]Fievet M. Controlled nucleation and growth of micrometer-size copper particles prepared by the polyol process. J Mater Chem,1993,3:627~632
    [54]Li Y D, Liao H W, Qian Y T. Nonaqueous synthesis of CdS nanorod semiconductor. Chem Mater.1998,10 (9):2301~2303
    [55]Li J, Chen Z, Wang R J, et al. Low temperature route towards new materials:solvotbennal synthesis of metal chalcogenides in ethylenediamine. Coord Chem Rev,1999,192:707~735
    [56]Inoue M, Tanino H, Kondo Y, et al. Formation of microcrystalline alumina by glycothermal treatment of gibbsite. J Am Ceram Soc,1989,72:352~353
    [57]Fournaud B, Rossignol S, Tatibouet J M.A new method to form BaTiO3 nanomaterials into spherical pellets to be used in a non-thermal plasma catalytic application. Top Catal,2008,49 (3-4):153-156
    [58]Xie Y, Tian Y T. A benzene-thermal synthetic route to nanocrystalline GaN. Science,1996, 272:1926~1927
    [59]Cundy C S, Cox P A. The hydrothermal synthesis of zeolites:history and development from the earliest days to the present time. Chem Rev.2003,103 (3):663~701
    [60]Yoshimura M. Processing and properties of phdroxyapatite-based biomaterial for use as tissue replacement implants. Mater Res,1998,13:94~98
    [61]Cundy C S, Cox P A. The hydrothermal synthesis of zeolites:precursors, intermediates and reaction mechanism. Micro Meso Mater,2005,82 (1-2):1-78
    [62]田广茹.铬、钼、钨氧化物和含氧酸盐微/纳米材料的合成与表征,山东大学博士学位论文,2009.10-25
    [63]Tsang S C, Chen Y K, Harris P J F. A simple chemical method of opening and filling carbon nanotubes. Nature,1994,372 (6502):159~161
    [64]Guo Z, Ganawi A A A, Liu Q, et al. Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal Bioanal Chem,2006,384(3):584~592
    [65]Liang M M, Guo L H. Application of nanomaterials in environmental analysis and monitoring. J Nanosci Nanotechnol,2009,9 (4):2283~2289
    [66]Sheng X L, Liu N R, Zhai J, et al. Application of one-dimensional nanomaterials in dye-sensitized solar cells. Prog Chem,2009,21 (9):1969~1979
    [67]Lu S G, Li B R, Mak C L, et al. Preparation, properties and application prospects of ferroelectic nanomaterials. J lnorg Mater,2004,19 (6):1231~1239
    [68]Yoon H, Chang M, Jang J. Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv Funct Mater,2007,17 (3):431~436
    [69]Liu J, Son Y C, Cai J, et al. Size control, metal substitution, and catalytic application of cryptomelane nanomaterials prepared using cross-linking reagents. Chem Mater,2004,16 (2): 276~285
    [70]Royston E, Ghosh A. Kofinas P. et al. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. Langmuir,2008,24 (3):906~912
    [71]Reynolds J G, Hart B R. Nanomaterials and their application to defense and homeland security. JOM,2004,56 (1):36~39
    [72]Hilderbrand S A. Shao F W, Salthouse C. et al. Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun,2009.28:4188~4190
    [73]Sayle T X T, Ngoepe P E, Sayle D C. Simulating mechanical deformation in nanomaterials with application for energy storage in nanoporous architectures. Acs Nano,2009,3 (10): 3308~3314
    [74]Lee T H, Sun D Z, Zhang X, et al. Solid-state dye-sensitized solar cell based on semiconducting nanomaterials. J Vac Sci Technol B,2009,27 (6):3073~3077
    [75]Peet J, Heeger A J, Bazan G C. "Plastic" solar cells:self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc Chem Res,2009,42 (11):1700~1708
    [76]Garcia-Fruitos E, Rodriguez-Carmona E, Diez-Gil C, et al. Surface cell growth engineering assisted by a novel bacterial nanomaterial. Adv Mater.2009,21 (42):4249~4249
    [77]Brazel C S. Magnetothermally-responsive nanomaterials:combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release. Pharm Res,2009,26 (3):644~656
    [78]Shiba K. Functionalization of carbon nanomaterials by evolutionary molecular engineering: Potential application in drug delivery systems. JOURNAL OF DRUG TARGETING,2006,14 (7): 512~518
    [79]Ulbrich T C, Makarov D, Hu G, et al. Magnetization reversal in a novel gradient nanomaterial Phys Rev Lett,2006.96 (7):077202~077202
    [80]Kulik T, Wlazlowska A, Ferenc J, et al. Magnetically soft nanomaterials for high-temperature applications. IEEE Trans Magn,2002,38 (5):3075~3077
    [81]Berseth P A, Harter A G, Zidan R, et al. Carbon nanomaterials as catalysts for hydrogen uptake and release in NaAlH4. Nano Lett,2009,9 (4):1501~1505
    [82]Olsewska D. Ammonia and water sorption properties of the mineral-layered nanomaterials used as the catalysts for NOx removal from exhaust gases. Catal Today,2006,114 (2-3):326~332
    [83]Jung A, Jess A, Schubert T, et al. Performance of carbon nanomaterial (nanotubes and nanofibres) supported platinum and palladium catalysts for the hydrogenation of cinnamaldehyde and of 1-octyne. Appl Catal A-Gen,2009,362 (1-2):95~105
    [84]Granqvist C G, Azens A, Heszler P, et al. Nanomaterials for benign indoor environments: Electrochromics for "smart windows", sensors for air quality, and photo-catalysts for air cleaning. Sol Energy Mater Sol Cells,2007,91 (4):355~365
    [85]Na N, Zhang S C, Wang S A, et al. A catalytic nanomaterial-based optical chemo-sensor array. J Am Chem Soc,2006,128 (45):14420~14421
    [86]Barrer, R M. Hydrothermal chemistry of zeolites. London:Academic Press,1982.2-5
    [87]US patent 2882243,1959
    [88]US patent 3308060,1967
    [89]Wilson S T, Lok B M, Messina C A, et al. Aluminophosphate molecular sieves:a new class of microporous crystalline inorganic solids. J Am Chem Soc,1982,104 (4):1146~1147
    [90]Beck J S, Vartuli J C. Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc,1992,114 (27):10834~10843
    [91]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature,1992,359:710~712
    [92]Huo Q, Margolese D 1. Stucky G D, Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem Mater,1996,8 (5):1147~1160
    [93]Velev 0 D, Lenhoff A M. Colloidal crystals as templates for porous materials. Curr Opin Colloid Interface Sci,2000,5 (1-2):56~63
    [94]Li C, Qi L M. Bioinspired fabrication of 3D ordered macroporous single crystals of calcite from a transient amorphous phase. Angew Chem Int Ed,2008,47 (13):2388~2393
    [95]Maekawa H, Esquena J, Bishop S, et al. Meso/macroporous inorganic oxide monoliths from polymer foams. Adv Mater,2003,15 (7-8):591~596
    [96]Lee G J, Pyun S I. The effect of pore structures on fractal characteristics of meso/macroporous carbons synthesised using silica template. Carbon,2005,43 (8):1804~1408
    [97]Zhang H F, Hussain I, Brust M, et al. Synthesis of hierarchically porous inorganic-metal site-isolated nanocomposites. Chem Commun,2006,24:2539-2541
    [98]Yue W B, Kulak A N, Meldrum F C. Growth of single crystals in structured templates. J Mater Chem,2006,16 (4):408~416
    [99]Zhao D Y, Yang P D, Chmelka B F, et al. Multiphase assembly of mesoporous-macroporous membranes. Chem Mater,1999,11 (5):1174~1174
    [100]Vrieling E G, Beelen T P M, van Santen R A, et al. Diatom silicon biomineralization as an inspirational source of new approaches to silica production. J Biotechnol,1999,70 (1-3):39~51
    [101]Dong A G, Wang Y J, Tang Y, et al. Zeolitic tissue through wood cell templating. Adv Mater,2002,14 (12):926~929
    [102]Aizenberg J, Muller D A, Grazul J L, et al. Direct fabrication of large micropatterned single crystals. Science,2003,299 (5610):1205~1208
    [103]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature,1997,385 (6615):420~423
    [104]Zhang D Y, Qi L M. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem Commun,2005,21:2735~2737
    [105]Culverwell E, Wimbush S C, Hall S R. Biotemplated synthesis of an ordered macroporous superconductor with high critical current density using a cuttlebone template. Chem Commun, 2008.9:1055~1057
    [106]Xia Y N. Gates B, Yin Y D, et al. Monodispersed colloidal spheres:old materials with new applications. Adv Mater,2000,12(10):693~713
    [107]Stein A. Sphere templating methods for periodic porous solids. Micro Meso Mater,2001, 44:227~239
    [108]Yuan Z Y. Vantomme A, Leonard A, et al. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chem Commun,2003,13:1558~1559
    [109]Amatani T, Nakanishi K, Hirao K, et al. Monolithic periodic mesoporous silica with well-defined macropores. Chem Mater,2005,17 (8):2114~2119
    [110]Selvam P, Bhatia S K, Sonwane C G. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind Eng Chem Res,2001,40 (15): 3237~3261
    [111]Kondo J N. Domen K. Crystallization of mesoporous metal oxides. Chem Mater,2008,20 (3):835~847
    [112]Shi Y F, Wan Y, Liu R L, et al. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J Am Chem Soc,2007,129 (30): 9522~9531
    [113]Shi Y F, Wan Y, Zhang R Y, et al. Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Adv Funct Mater,2008,18 (16):2436-2443
    [114]Yamauchi Y, Kuroda K. Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem-Asian J,2008,3 (4):664~676
    [115]Hatton B, Landskron K, Whitnall W, et al. Past, present, and future of periodic mesoporous organosilicas-the PMOs. Accounts Chem Res,2005,38 (4):305~312
    [116]Wan Y, Shi Y F, Zhao D Y. Supramolecular aggregates as templates:ordered mesoporous polymers and carbons. Chem Mater,2008,20 (3):932~945
    [117]Ros-Lis J V, Casasus R, Comes M, et al. A mesoporous 3D hybrid material with dual functionality for Hg2+ detection and adsorption. Chem Eur J,2008,14 (27):8267~8278
    [118]Newalkar B L. Choudary N V, Kumar P, et al. Exploring the potential of mesoporous silica. SBA-15, as an adsorbent for light hydrocarbon separation. Chem Mater,2002,14(1):304-309
    [119]Taguchi A, Schuth F. Ordered mesoporous materials in catalysis. Micro Meso Mater,2005, 77(1):1-45
    [120]Vallet-Regi M, Balas F. Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed,2007,46 (40):7548~7558
    [121]Oye G, Glomm W R, Vralstad T, et al. Synthesis, functionalisation and characterisation of mesoporous materials and sol-gel glasses for applications in catalysis, adsorption and photonics. Adv Colloid Interfac,2006,123:17~32
    [122]Melde B J, Johnson B J, Charles P T. Mesoporous silicate materials in sensing. Sensors. 2008,8 (8):5202~5228
    [123]Ciesla U, Schuth F. Ordered mesoporous materials. Micropor Mesopor Mat,1999,27 (2-3): 131-149
    [124]Schuth F. Non-siliceous mesostructured and mesoporous materials. Chem Mater,2001,13 (10):3184-3195
    [125]Corma A. Preparation and catalytic properties of new mesoporous materials. Top Catal, 1997,4 (3-4):249~260
    [126]Brinker C J, Lu Y F, Sellinger A, et al. Evaporation-induced self-assembly:nanostructures made easy. Adv Mater,1999,11 (7):579~579
    [127]Lin H P, Mou C Y. Structural and morphological control of cationic surfactant-templated mesoporous silica. Acc Chem Res,2002,35 (11):927~935
    [128]Gao C B, Sakamoto Y, Sakamoto K, et al. Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry. Angew Chem Int Ed,2006,45 (26): 4295~4298
    [129]Garcia-Bennett A E, Miyasaka K, Terasaki O, et al. Structural solution of mesocaged material AMS-8. Chem Mater,2004,16(19):3597~3605
    [130]Gao C B, Qiu H B, Zeng W, et al. Formation mechanism of anionic surfactant-templated mesoporous silica. Chem Mater,2006,18 (16):3904~3914
    [131]Wu X W, Jin H Y, Liu Z, et al. Racemic helical mesoporous silica formation by achiral anionic surfactant. Chem Mater,2006,18 (2):241~243
    [132]Che S A, Kamiya S, Terasaki O, et al. The formation of cubic pm3n mesostructure by an epitaxial phase transformation from hexagonal p6mm mesophase. J Am Chem Soc,2001,123 (48):12089~12090
    [133]Che S A, Lim S Y, Kaneda M, et al. The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process. J Am Chem Soc,2002,124 (47): 13962~13963
    [134]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,279 (5350):548~552
    [135]Wan Y, Shi Y F, Zhao D Y. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach. Chem Commun,2007,9:897~926
    [136]Lu A H, Schuth F. Nanocasting:A versatile strategy for creating nanostructured porous materials. Adv Mater,2006,18 (14):1793~1805
    [137]Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem,2005,15 (12):1217~1231
    [138]Yue W B. Zhou W Z. Crystalline mesoporous metal oxide. Prog Nat Sci,2008,18 (11): 1329~1338
    [139]施益峰.纳米浇铸法合成有序介孔高温陶瓷材料及金属硫化物、氮化物材料,复旦大学博士学位论文,2007.5-6
    [140]Dickinson C, Zhou W Z, Hodgkins R P, et al. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chem Mater,2006,18 (13): 3088~3095
    [141]Jiao K, Zhang B, Yue B. et al. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chem Commun,2005,45:5618~5620
    [142]Zhu K K, Yue B. Zhou W Z. et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chem Commun,2003,1:98~99
    [143]Yue B, Tang H L, Kong Z P, et al. Preparation and characterization of three-dimensional mesoporous crystals of WO3. Chem Phys Lett,2005,407:83~86
    [144]Yang H F, Shi Q H. Tian B Z, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J Am Chem Soc, 2003.125 (16):4724-4725
    [145]Yue W B, Zhou W Z. Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chem Mater,2007,19 (9):2359~2363
    [146]He X, Lo A Y H, Trudeau M, et al. Compositional and H-2 NMR studies of bis (benzene) chromium composites of mesoporous vanadium-niobium mixed oxides. Inorg Chem,2003,42 (2): 335~347
    [147]Vettraino M, Trudeau M, Lo A Y H, et al. Room-temperature ammonia formation from dinitrogen on a reduced mesoporous titanium oxide surface with metallic properties. J Am Chem Soc,2002,124 (32):9567~9573
    [148]Vettraino M, He X, Trudeau M, et al. Synthesis of a stable metallic niobium oxide molecular sieve and subsequent room temperature activation of dinitrogen. Adv Funct Mater, 2002,12(3):174~178
    [149]Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature,1998,396 (6707):152~155
    [150]Jiao F, Bruce P G. Two-and three-dimensional mesoporous iron oxides with microporous walls. Angew Chem Int Ed,2004,43 (44):5958-5961
    [151]Sinha A K, Suzuki K. Three-dimensional mesoporous chromium oxide:a highly efficient material for the elimination of volatile organic compounds. Angew Chem Int Ed,2005,44 (2): 271~273
    [152]Tian B Z, Liu X Y, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs. Nature Mater,2003,2 (3):159~163
    [153]Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chem Commun,2003,1:98~99
    [154]Yang H F, Shi Q H, Tian B Z, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J Am Chem Soc, 2003,125 (16):4724~4725
    [155]Tian B Z, Liu X Y, Solovyov L A, et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J Am Chem Soc,2004,126 (3): 865~875
    [156]Tian B Z. Liu X Y. Yang H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv Mater,2003,15 (16): 1370~1370
    [157]Jiao F, Harrison A, Jumas J C, et al. Ordered mesoporous Fe2O3 with crystalline walls. J Am Chem Soc,2006,128 (16):5468~5474
    [158]Dickinson C, Zhou W Z, Hodgkins R P, et al. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica. Chem Mater,2006,18 (13): 3088~3095
    [159]Jiao K, Zhang B, Yue B, et al. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chem Commun,2005,45:5618~5620
    [160]Shi Y F, Guo B K, Corr S A, et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett,2009,9 (12):4215~4220
    [161]Roggenbuck J, Tiemann M. Ordered mesoporous magnesium oxide with high thermal stability synthesized by exotemplating using CMK-3 carbon. J Am Chem Soc,2005,127 (4): 1096~1097
    [162]Lai X Y, Li X T, Geng W C, et al. Ordered mesoporous copper oxide with crystalline walls. Angew Chem Int Ed,2007,46 (5):738~741
    [163]Liu Q. Wang A Q, Wang X D, et al. Ordered crystalline alumina molecular sieves synthesized via a nanocasting route. Chem Mater,2006,18 (22):5153~5155
    [1]Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles:Synthesis, protection, functionalization, and application. Angew Chem Int Ed,2007,46 (8):1222~1244
    [2]Jeong U, Teng X W, Wang Y, et al. Superparamagnetic colloids:Controlled synthesis and niche applications. Adv Mater,2007,19 (1):33~36
    [3]Raj K, Moskowitz R. Commercial applications of ferrofluids. J Magn Magn Mater,1990,85: 233~245
    [4]Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater,2005,4 (5):366-377
    [5]Hu A G, Yee G T, Lin, W B. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J Am Chem Soc, 2005,127(36):12486~12487
    [6]Sen T, Sebastianelli A. Bruce I J. Mesoporous silica-magnetite nanocomposite:Fabrication and applications in magnetic bioseparations. J Am Chem Soc,2006,128 (22):7130~7131
    [7]Lee H, Lee E, Kim D K, et al. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging.J Am Chem Soc,2006,128 (22):7383~7389
    [8]Roullin V G, Deverre J R, Lemaire L, et al. Anti-cancer drug diffusion within living rat brain tissue:an experimental study using [H-3](6)-5-fluorouracil-loaded PLGA microspheres. Eur J Pharm Biopharm,2002,53 (3):293~299
    [9]Kim D K, Zhang Y, Kehr J, et al. Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater,2001.225 (1-2):256~261
    [10]Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem Mater,1996,8 (9):2209~2011
    [11]Lee Y, Lee J, Bae C J, et al. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater, 2005.15 (3):503~509
    [12]Kumar R V, Diamant Y, Gedanken A. Sonochemical synthesis and characterization of nanometer-size transition metal oxides from metal acetates. Chem Mater,2000,12 (8): 2301~2305
    [13]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature,2005, 437(7055):121~124
    [14]Daou T J, Pourroy G, Begin-Colin S, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater,2006,18(18):4399~4404
    [15]Rockenberger J, Scher E C, Alivisatos P, et al. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc,1999,121 (49):11595~11596
    [16]Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc,2001,123 (51):12798~12801
    [17]Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J Am Chem Soc,2004,126 (1):273~279
    [18]Li Z, Chen H, Bao H B, et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals. Chem Mater,2004,16 (8):1391~1393
    [19]Jana N R, Chen Y F, Peng X G. Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater,2004,16 (20):3931~3935
    [20]Hou Y L, Yu J F, Gao S. Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles. J Mater Chem,2003,13 (8):1983~1987
    [21]Liu J C, Qin G W, Raveendran P, et al. Facile "green" synthesis, characterization, and catalytic function of beta-D-glucose-stabilized Au nanocrystals. Chem Eur J,2006,12 (8): 2132~2138
    [22]Si S, Kotal A, Mandal T K, et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater,2004,16(18):3489~3496
    [23]Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev,2004,104 (9):3893~3946
    [24]Saenger W S, Jacob J, Gessler K, et al. Structures of the common cyclodextrins and their larger analogues-Beyond the doughnut. Chem Rev,1998,98 (5):1787~1802
    [25]Engeldinger E, Armspach D, Matt D. Capped cyclodextrins. Chem Rev,2003,103 (13): 4147~4173
    [26]Li L D, Sun X H, Yang Y L, et al. Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell. Chem Asian J.2006,1 (5):664~668
    [27]Wang Y, Wong J F, Teng X W, et al. "Pulling" nanoparticles into water:Phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of alpha-cyclodextrin. Nano Lett,2003,3 (11):1555~1559
    [28]Hou Y L, Kondoh H, Shimojo M, et al. High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J Phys Chem B,2005,109 (41):19094~19098
    [29]Xia H B, Yi J B. Foo P S. et al. Facile fabrication of water-soluble magnetic nanoparticles and their spherical aggregates. Chem Mater,2007,19(16):4087~4091
    [30]Kumar R V, Koltypin Y. Xu X N, et al. Fabrication of magnetite nanorods by ultrasound irradiation. J Appl Phys,2001,89 (11):6324~6328
    [31]Racuciu M, Creanga D E, Sulitanu N, et al. Dimensional analysis of aqueous magnetic fluids. Appl Phys A,2007,89 (20):565~569
    [32]Bocanegra-Diaz A, Mohallem N D S. Novak M A. et al. Preparation of ferrofluid from cyclodextrin and magnetite.J Magn Magn Mater,2004.272.2395~2397
    [33]Pinna N. Grancharov S. Beato P, et al. Magnetite nanocrystals:Nonaqueous synthesis, characterization, and solubility. Chem Mater,2005,17 (11):3044~3049
    [34]Zhou Z H, Wang J, Liu X, et al. Synthesis of Fe3O4 nanoparticles from emulsions. J Mater Chem,2001,11 (6):1704~1709
    [35]Bersani D, Lottici P P, Montenero A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J Raman Spectrosc,1999,30 (5):355~360
    [36]Wade L G. Organic Chemistry. New Jersey:Pearson Prentice Hall,2003,65~66
    [37]Schneider H J, Hacket F, Rudiger V, et al. NMR studies of cyclodextrins and cyclodextrin complexes. Chem Rev,1998,98 (5):1755~1785
    [38]Tewari Y B, Goldberg R N, Sato M. Thermodynamics of the hydrolysis and cyclization reactions of alpha-, beta-, and gamma-cyclodextrin. Carbohydr Res,1997,301 (1-2):11~12
    [39]Anindyawati T, Melliawati R, Ito K, et al. Three different types of alpha-amylases from Aspergillus awamori KT-11:Their purifications, properties, and specificities. Biosci Biotechnol Biochem,1998,62(7):1351~1357
    [40]Yang S J. Lee H S, Kim J W, et al. Enzymatic preparation of maltohexaose, maltoheptaose, and maltooctaose by the preferential cyclomaltooligosaccharide (cyclodextrin) ring-opening reaction of Pyrococcus furiosus thermostable amylase. Carbohydr Res,2006,341 (3):420~424
    [41]Tang J, Redl F, Zhu Y M, et al. An organometallic synthesis of TiO2 nanoparticles. Nano Lett, 2005.5 (3):543~548
    [42]Wang L Y, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J,2006,12 (24): 6341~6347
    [43]Cai W, Wan J Q. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci,2007,305 (2):366~370
    [44]Rajh T, Chen L X, Lukas K, et al. Surface restructuring of nanoparticles:An efficient route for ligand-metal oxide crosstalk. J Phys Chem B,2002,106 (41):10543~10552
    [45]Xuan S H, Hao L Y, Jiang W Q, et al. Facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites. Nanotechnology,2007,18 (3):035602~035602
    [46]Zangi R, Engberts J B F N. Physisorption of hydroxide ions from aqueous solution to a hydrophobic surface. J Am Chem Soc,2005,127 (7):2272~2276
    [47]Kodama R H, Berkowitz A E, McNiff E J, et al. Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett,1996,77 (2):394~397
    [1]Billas I M L, Chatelain A, de Heer W A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science,1994,265 (5179):1682~1684
    [2]Ashoori R C. Electrons in artificial atoms. Nature,1996,379.413-419
    [3]Hu A G, Yee G T, Lin, W B. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J Am Chem Soc, 2005,127(36):12486~12487
    [4]Raj K, Moskowitz R. Commercial applications of ferrofluids. J Magn Magn Mater,1990,85: 233~245
    [5]Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater,2005,4 (5):366-377
    [6]Lee H, Lee E, Kim D K, et al. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc.2006,128 (22):7383~7389
    [7]Wang P, Shi Q H, Liang H J, et al. Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small,2008,4 (12): 2166~2170
    [8]Wang P, Shi Q H, Shi Y F, et al. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination. J Am Chem Soc,2009,131 (1):182~188
    [9]Roullin V G, Deverre J R, Lemaire L. et al. Anti-cancer drug diffusion within living rat brain tissue:an experimental study using [H-3](6)-5-fluorouracil-loaded PLGA microspheres. Eur J Pharm Biopharm,2002,53 (3):293~299
    [10]Kim D K, Zhang Y, Kehr J, et al. Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J Magn Magn Mater,2001,225 (1-2):256~261
    [11]Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles:Synthesis, protection, functionalization. and application. Angew Chem Int Ed,2007,46(8):1222~1244
    [12]Jeong U, Teng X W, Wang Y, et al. Superparamagnetic colloids:Controlled synthesis and niche applications. Adv Mater,2007,19 (1):33~36
    [13]Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chem Mater,1996,8 (9):2209~2011
    [14]Zhou Z H, Wang J. Liu X, et al. Synthesis of Fe3O4 nanoparticles from emulsions. J Mater Chem,2001.11 (6):1704~1709
    [15]Wang X. Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis. Nature,2005. 437(7055):121~124
    [16]Kumar R V, Koltypin Y, Xu X N, et al. Fabrication of magnetite nanorods by ultrasound irradiation. J Appl Phys,2001,89 (11):6324~6328
    [17]Pinna N, Grancharov S, Beato P, et al. Magnetite nanocrystals:Nonaqueous synthesis, characterization, and solubility. Chem Mater,2005,17 (11):3044~3049
    [18]Rockenberger J, Scher E C, Alivisatos P, et al. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J Am Chem Soc,1999,121 (49):11595~11596
    [19]Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc,2001,123 (51):12798~12801
    [20]Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M=Fe, Co. Mn) nanoparticles. J Am Chem Soc,2004,126 (1):273~279
    [21]Dunin-Borkowski R E, McCartney M R, Frankel R B, et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science,1998,282,1868~1870
    [22]Park J, Lee E, Hwang N M, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed,2005,44 (19):2872~2877
    [23]Si S, Kotal A, Mandal T K, et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater,2004,16(18):3489~3496
    [24]Yu W W, Falkner J C, Yavuz C T, et al. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun,2004,20,2306~2307
    [25]Lalatonne Y, Richardi J, Pileni M P. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nat Mater,2004,3 (2):121~125
    [26]Kim M, Chen Y F, Liu Y C, et al. Super-stable, high-quality Fe3O4 dendron-nanocrystals dispersible in both organic and aqueous solutions. Adv. Mater.,2005,17 (11):1429~1429
    [27]Wang L Y, Bao J, Wang L, et al. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J,2006,12 (24): 6341~6347
    [28]Ge J P, Hu Y X, Biasini M, et al. One-step synthesis of highly water-soluble magnetite colloidal nanocrystals. Chem Eur J,2007,13 (25):7153~7161
    [29]Molday R S, Mackenzie D. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods,1982,52 (3):353~367
    [30]Daou T J, Pourroy G, Begin-Colin S, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater,2006,18 (18):4399~4404
    [31]Pinna N, Grancharov S, Beato P, et al. Magnetite nanocrystals:Nonaqueous synthesis, characterization, and solubility. Chem Mater,2005,17(11):3044~3049
    [32]Bersani D, Lottici P P, Montenero A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J Raman Spectrosc,1999,30 (5):355~360
    [33]Wade L G. Organic chemistry. New Jersey:Pearson Prentice Hall.2003,65~66
    [34]Cushing B L, Kolesnichenko V L, O'Connor C J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev,2004,104 (9):3893~3946
    [35]Cai W, Wan J Q. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci,2007,305 (2):366~370
    [36]Liang X, Wang X, Zhuang J, et al. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals. Adv Funt Mater,2006,16(14):1805~1813
    [37]Tao Y T. Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J Am Chem Soc,1993,115(10):4350~4358
    [38]Harris L A, Goff J D, Carmichael A Y, et al. Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem. Mater.,2003.15 (6):1367~1377
    [39]Shafi K V P M, Ulman A, Yan X Z, et al. Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir,2001,17(16):5093~5097
    [40]Rajh T, Chen L X, Lukas K, et al. Surface restructuring of nanoparticles:An efficient route for ligand-metal oxide crosstalk. J Phys Chem B,2002,106 (41):10543~10552
    [41]Cornell R M, Schwertmann U. The iron oxides. Weinheim:Wiley-VCH,1996,103~105
    [42]Lu X F, Yu Y H, Chen L, et al. Aniline dimer-COOH assisted preparation of well-dispersed polyaniline-Fe3O4 nanoparticles. Nanotechnology,2005,16 (9):1660~1665
    [43]Li L D, Sun X H, Yang Y L, et al. Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell. Chem Asian J,2006,1 (5):664~668
    [44]Li Z, Sun Q, Gao M Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:Mechanism leading to Fe3O4. Angew Chem Int Ed,2005,44 (1): 123-126
    [45]Goya G F, Berquo T S, Fonseca F C, et al. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys,2003,94 (5):3520~3528
    [46]Stamps R L. Mechanisms for exchange bias. J Phys D Appl Phys,2000,33 (23):R247~R268
    [47]Kim D K, Mikhaylova M, Zhang Y, et al. Protective coating of superparamagnetic iron oxide nanoparticles. Chem Mater,2003.15 (8):1617~1627
    [1]Davis M E. Ordered porous materials for emerging applications. Nature,2002,417 (6891): 813~821
    [2]Yuan Z Y, Su B L. Insights into hierarchically meso-macroporous structured materials. J Mater Chem,2006,16 (7):663~677
    [3]Stein A, Li F, Denny N R. Morphological control in colloidal crystal templating of inverse opals, hierarchical structures, and shaped particles. Chem Mater,2008,20 (3):649~666
    [4]Nakanishi K, Tanaka N. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Accounts Chem Res,2007. 40 (9):863~873
    [5]Toberer E S. Seshadri R. Spontaneous formation of macroporous monoliths of mesoporous manganese oxide crystals. Adv Mater,2005,17(18):2244~2246
    [6]Iskandar F, Nandiyanto A B D, Yun K M, et al. Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv Mater,2007,19(10):1408~1408
    [7]Yuan Z Y. Vantomme A. Leonard A, et al. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chem Commun,2003,13:1558.
    [8]Amatani T, Nakanishi K, Hirao K, et al. Monolithic periodic mesoporous silica with well-defined macropores. Chem Mater,2005,17 (8):2114~2119
    [9]Collins A. Carriazo D, Davis S A. et al. Spontaneous template-free assembly of ordered macroporous titania. Chem Commun,2004,5:568~569
    [10]Wang Z Y. Stein A. Morphology control of carbon, silica, and carbon/silica nanocomposites: From 3D ordered Macro-/Mesoporous monoliths to shaped mesoporous particles. Chem Mater, 2008,20(3):1029~1040
    [11]Zhao D Y, Feng J L, Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science,1998,279 (5350):548~552
    [12]Li C, Qi L M. Bioinspired fabrication of 3D ordered macroporous single crystals of calcite from a transient amorphous phase. Angew Chem Int Ed,2008,47 (13):2388~2393
    [13]Maekawa H, Esquena J, Bishop S, et al. Meso/macroporous inorganic oxide monoliths from polymer foams. Adv Mater,2003,15 (7-8):591~596
    [14]Lee G J, Pyun S I. The effect of pore structures on fractal characteristics of meso/macroporous carbons synthesised using silica template. Carbon,2005,43 (8):1804~1408
    [15]Zhang H F, Hussain I, Brust M, et al. Synthesis of hierarchically porous inorganic-metal site-isolated nanocomposites. Chem Commun,2006,24:2539~2541
    [16]Yue W B, Kulak A N, Meldrum F C. Growth of single crystals in structured templates. J Mater Chem,2006,16 (4):408~416
    [17]Zhao D Y, Yang P D, Chmelka B F, et al. Multiphase assembly of mesoporous-macroporous membranes. Chem Mater,1999,11 (5):1174~1174
    [18]Gordon M S. Animal physiology:principles and adaptation,3rd ed. New York:Macmillan, 1997,189~191
    [19]Stern K R, Jansky S, Bidlack J E. Introductory plant biology,9th ed. New York: McGraw-Hill,2003.34~38
    [20]Vrieling E G, Beelen T P M, van Santen R A, et al. Diatom silicon biomineralization as an inspirational source of new approaches to silica production. J Biotechnol,1999,70 (1-3):39~51
    [21]Dong A G, Wang Y J, Tang Y, et al. Zeolitic tissue through wood cell templating. Adv Mater, 2002,14 (12):926~929
    [22]Aizenberg J, Muller D A, Grazul J L, et al. Direct fabrication of large micropatterned single crystals. Science,2003,299 (5610):1205~1208
    [23]Davis S A, Burkett S L, Mendelson N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature,1997,385 (6615):420~423
    [24]Zhang D Y, Qi L M. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes. Chem Commun,2005,21:2735~2737
    [25]Culverwell E, Wimbush S C, Hall S R. Biotemplated synthesis of an ordered macroporous superconductor with high critical current density using a cuttlebone template. Chem Commun. 2008,9:1055~1057
    [26]Bruce A, Alexander J, Julian L, et al. Molecular biology of the cell, New York and London: Garland Science,2002.77-78
    [27]Sanchez C, Arribart H. Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat Mater,2005,4 (4):277~288
    [28]Morel F M M, Baker R F, Wayland H. Quantitation of human red blood cell fixation by glutaraldehyde. J Cell Biol,1971,48 (1):91~100
    [29]Bohme B, Vandenbos T, Cerretti D P, et al. Cell-cell adhesion mediated by binding of membrane-anchored ligand LERK-2 to the EPH-related receptor human embryonal kinase 2 promotes tyrosine kinase activity. J Biol Chem.,1996,271 (40):24747~24752
    [30]Li L D, Sun X H, Yang Y L, et al. Synthesis of anatase TiO2 nanoparticles with beta-cyclodextrin as a supramolecular shell. Chem-Asian J,2006,1 (5):664~668
    [31]Dogu T. Diffusion and reaction in catalyst pellets with bidisperse pore size distribution. Ind Eng Chem Res,1998,37 (6):2158~2171
    [32]Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania. Adv Funct Mater,2007,17 (12):1984~1990
    [33]Liu J, Li M Z, Wang J X, et al. Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability. Environ Sci Technol,2009,43 (24): 9425~9431
    [34]Tidahy H L, Hosseni M, Siffert S, et al. Nanostructured macro-mesoporous zirconia impregnated by noble metal for catalytic total oxidation of toluene. Catal Today,2008,137 (2-4): 335~339
    [35]Beydoun D. Amal R, Low G K C, et al. Novel photocatalyst:Titania-coated magnetite. Activity and photodissolution. J Phys Chem B,2000,104 (18):4387~4396
    [1]Ros-Lis J V, Casasus R, Comes M, et al. A mesoporous 3D hybrid material with dual functionality for Hg2+ detection and adsorption. Chem Eur J,2008,14 (27):8267~8278
    [2]Newalkar B L, Choudary N V, Kumar P, et al. Exploring the potential of mesoporous silica, SBA-15, as an adsorbent for light hydrocarbon separation. Chem Mater,2002,14 (1):304~309
    [3]Taguchi A, Schuth F. Ordered mesoporous materials in catalysis. Micro Meso Mater,2005,77 (1):1-45
    [4]Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Edit,2007,46 (40):7548~7558
    [5]Oye G, Glomm W R, Vralstad T, et al. Synthesis, functionalisation and characterisation of mesoporous materials and sol-gel glasses for applications in catalysis, adsorption and photonics. Adv Colloid Interfac,2006,123:17~32
    [6]Melde B J, Johnson B J, Charles P T. Mesoporous silicate materials in sensing. Sensors,2008. 8 (8):5202~5228
    [7]Selvam P, Bhatia S K, Sonwane C G. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind Eng Chem Res,2001,40 (15): 3237~3261
    [8]Kondo J N, Domen K. Crystallization of mesoporous metal oxides. Chem Mater,2008,20 (3): 835~847
    [9]Shi Y F, Wan Y, Liu R L. et al. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route. J Am Chem Soc,2007,129 (30): 9522~9531
    [10]Shi Y F, Wan Y, Zhang R Y, et al. Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Adv Funct Mater,2008,18(16):2436~2443
    [11]Yamauchi Y, Kuroda K. Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chem-Asian J,2008,3 (4):664~676
    [12]Hatton B, Landskron K, Whitnall W, et al. Past, present, and future of periodic mesoporous organosilicas-The PMOs. Accounts Chem Res,2005,38 (4):305~312
    [13]Wan Y, Shi Y F, Zhao D Y. Supramolecular aggregates as templates:Ordered mesoporous polymers and carbons. Chem Mater,2008.20(3):932-945
    [14]Yue W B. Zhou W Z. Crystalline mesoporous metal oxide. Prog Nat Sci,2008,18 (11): 1329~1338
    [15]Wang D H, Ma Z, Dai S. et al. Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports. J Phys Chem C,2008,112, (35): 13499-13509
    [16]Yang Z L, Lu Y F, Yang Z Z. Mesoporous materials:tunable structure, morphology and composition. Chem Commun,2009,17:2270~2277
    [17]Lu A H, Schuth F. Nanocasting:A versatile strategy for creating nanostructured porous materials. Adv Mater,2006,18 (14):1793~1805
    [18]Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem,2005,15(12):1217~1231
    [19]Zhu K K, Yue B, Zhou W Z, et al. Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chem Commun,2003,1:98~99
    [20]Yang H F, Shi Q H, Tian B Z, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J Am Chem Soc, 2003,125 (16):4724~4725
    [21]Tian B Z, Liu X Y, Solovyov L A, et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J Am Chem Soc,2004,126 (3): 865~875
    [22]Tian B Z, Liu X Y, Yang H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv Mater,2003,15 (16): 1370~1370
    [23]Jiao F, Harrison A, Jumas J C, et al. Ordered mesoporous Fe2O3 with crystalline walls. J Am Chem Soc,2006,128 (16):5468~5474
    [24]Dickinson C, Zhou W Z, Hodgkins R P, et al. Formation mechanism of porous single-crystal Cr2O3 and Co304 templated by mesoporous silica. Chem Mater,2006,18(13):3088~3095
    [25]Khalil K M S, Mahmoud H A, Ali T T. Direct formation of thermally stabilized amorphous mesoporous Fe2O3/SiO2 nanocomposites by hydrolysis of aqueous iron (III) nitrate in sols of spherical silica particles. Langmuir,2008,24 (3):1037~1043
    [26]Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun,2003,17: 2136-2137
    [27]Yue W B, Zhou W Z. Synthesis of porous single crystals of metal oxides via a solid-liquid route. Chem Mater,2007,19 (9):2359-2363
    [28]Jiao K, Zhang B, Yue B, et al. Growth of porous single-crystal Cr2O3 in a 3-D mesopore system. Chem Commun,2005.45:5618~5620
    [29]Sakamoto Y, Kim T W, Ryoo R, et al. Three-dimensional structure of large-pore mesoporous cubic la(3)over-bard silica with complementary pores and its carbon replica by electron crystallography. Angew Chem Int Edit,2004,43 (39):5231~5234
    [30]Shi Y F, Guo B K, Corr S A, et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett,2009,9 (12):4215~4220
    [31]Sietsma J R A. Meeldijk J D, Versluijs-Helder M, et al. Ordered mesoporous silica to study the preparation of Ni/SiO2 ex nitrate catalysts:Impregnation, drying, and thermal treatments. Chem Mater,2008,20 (9):2921~2931
    [32]Sietsma J R A, Friedrich H, Broersma A, et al. How nitric oxide affects the decomposition of supported nickel nitrate to arrive at highly dispersed catalysts J Catal,2008,260 (2):227~235
    [1]Wang D H, Ma Z, Dai S, et al. Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports. J Phys Chem C,2008,112 (35): 13499~13509
    [2]Jose R, Thavasi V, Ramakrishna S. Metal oxides for dye-sensitized solar cells. J Am Ceram Soc,2009,92 (2):289~301
    [3]Cheng F, Tao Z, Liang J. Template-directed materials for rechargeable lithium-ion batteries. Chem Mater,2008,20 (3):667~681
    [4]M. Tiemann. Porous metal oxides as gas sensors. Chem Eur J,2007,13 (30):8376~8388
    [5]Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature,1998,396 (6707):152~155
    [6]Boettcher S W, Fan J, Tsung C K, et al. Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Accounts Chem Res,2007,40 (9):784~792
    [7]Yang H F, Zhao D Y. Synthesis of replica mesostructures by the nanocasting strategy. J Mater Chem,2005,15(12):1217~1231
    [8]Lu A H, Schuth F. Nanocasting:A versatile strategy for creating nanostructured porous materials. Adv Mater,2006,18(14):1793~1805
    [9]Tian B Z, Liu X Y, Solovyov L A, et al. Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures. J Am Chem Soc,2004,126 (3): 865~875
    [10]Shi Y F, Guo B K, Corr S A, et al. Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity. Nano Lett,2009,9 (12):4215~4220
    [11]Wang C Y, Liu Y X, Xia Y L, et al. Characteristics of ITO films fabricated on glass substrates by high intensity pulsed ion beam method. J Non-Cryst Solids,2007,353 (22-23): 2244~2249
    [12]Granqvist C G, Hultaker A. Transparent and conducting ITO films:new developments and applications. Thin Solid Films,2002,411 (1):1~5
    [13]Pla J, Tamasi M, Rizzoli R, et al. Optimization of ITO layers for applications in a-Si/c-Si heterojunction solar cells. Thin Solid Films,2003,425 (1-2):185~192
    [14]Teixeira V, Cui H N, Meng L J, et al. Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films,2002,420:70~75
    [15]Zudans I, Paddock J R, Kuramitz H, et al. Electrochemical and optical evaluation of noble metal-and carbon-ITO hybrid optically transparent electrodes. J Electroanal Chem,2004,565 (2): 311~320
    [16]Chen Z F, Zu Y B. Gold nanoparticle-modified ITO electrode for electrogenerated chemilumineseence:Well-preserved transparency and highly enhanced activity. Langmuir,2007, 23(23):11387~11390
    [17]Shan Y P, Yang G C, Jia Y T, et al. ITO electrode modified with chitosan nanofibers loading polyoxometalate by one step self-assembly method and its electrocatalysis. Electrochem Commun, 2007,9 (9):2224~2228
    [18]Fattakhova-Rohfing D, Brezesinski T, Rathousky J, et al. Transparent conducting films of indium tin oxide with 3D mesopore architecture. Adv Mater,2006,18 (22):2980~2980
    [19]Emons T T, Li J Q, Nazar L F. Synthesis and characterization of mesoporous indium tin oxide possessing an electronically conductive framework. J Am Chem Soc,2002,124 (29): 8516~8517
    [20]Pohl A, Dunn B. Mesoporous indium tin oxide (ITO) films. Thin Solid Films,2006,515 (2): 790~792
    [21]Zhang X A, Wu W J, Tian T, et al. Deposition of transparent conductive mesoporous indium tin oxide thin films by a dip coating process. Mater Res Bull,2008,43 (4):1016~1022
    [22]Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun,2003,17: 2136~2137
    [23]Shin H J, Ryoo R, Liu Z, et al. Template synthesis of asymmetrically mesostructured platinum networks. J Am Chem Soc,2001,123 (6):1246~1247
    [24]Yang H F, Shi Q H, Tian B Z, et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J Am Chem Soc, 2003,125 (16):4724~4725
    [25]Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. J Phys Chem B, B2002,106(6):1256~1266
    [26]Waitz T, Wagner T, Sauerwald T, et al. Ordered mesoporous In2O3:synthesis by structure replication and application as a methane gas sensor. Adv Funct Mater,2009,19 (4):653~661
    [27]Kuwahara Y, Ohmichi T, Kamegawa T, et al. A novel synthetic route to hydroxyapatite-zeolite composite material from steel slag:investigation of synthesis mechanism and evaluation of physicochemical properties. J Mater Chem,2009,19 (39):7263~7272
    [28]Ohyama M, Kozuka H, Yoko T. Sol-gel preparation of transparent and conductive aluminum-doped zinc oxide films with highly preferential crystal orientation. J Am Ceram Soc, 1998,81 (6):1622~1632
    [29]Minami T, Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Tech,2005,20 (4):S35~S44
    [30]Gonzalez G B, Mason T O, Quintana J P, et al. Defect structure studies of bulk and nano-indium-tin oxide. J Appl Phys,2004,96 (7):3912~3920
    [31]Shigeno E, Shimizu K, Seki S, et al. Formation of indium-tin-oxide films by dip coating process using indium dipropionate monohydroxide. Thin Solid Films,2002,411 (1):56~59
    [32]Ramanan S R. Dip coated ITO thin-films through sol-gel process using metal salts. Thin Solid Films 2001,389 (1-2):207~212
    [33]Lewis B G. Paine D C. Applications and processing of transparent conducting oxides. Mrs Bulletin 2000,25 (8):22~27
    [34]Ba J H, Fattakhova-Rohlfing D, Feldhoff A, et al. Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration. Chem Mater,2006,18 (12):2848~2854
    [35]Tian B Z, Liu X Y, Yang H F, et al. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv Mater,2003,15 (16): 1370~1370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700