用户名: 密码: 验证码:
拟南芥AtSIRT1基因的功能初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沉默调节蛋白Sirtuin是一组重要的蛋白质,它们在衰老、胁迫和代谢的过程中起着十分重要的调节功能。哺乳动物中共有7个同源蛋白,而在拟南芥中只有二个,分别为AtSIRTl(At5g09230)和AtSIRT2(At5g55760)。本文主要研究表达在线粒体中AtSIRT1的基因功能。
     AtSIRT1具有多个转录本,可以产生4种成熟的mRNA,本文中分别命名为S1.3,S1.4,S1.5,S1.7。半定量RT-PCR分析表明,它们在不同组织中表达行为有一定的差别。启动子分析表明AtSIRT1旺盛表达于分生组织,且受光照调节。利用Gateway重组克隆体系构建了N端绿色荧光蛋白的融合蛋白表达株系,发现除了S1.4定位于细胞核,其余均定位于线粒体。用FLAG蛋白标签过量表达这四种转录本,分别命名为S1.3-FLAG, S1.4-FLAG, S1.5-FLAG和S1.7-FLAG,本文重点研究S1.3-FLAG和S1.7-FLAG的功能。另外,本文还鉴定了AtSIRT1的两个T-DNA插入突变体株系131994C和N433426。
     对S1.3-FLAG, S1.7-FLAG,131994C和N433426四个株系进行表型观察,发现S1.7-FLAG株系的种子萌发迟缓,萌发率低,幼苗个体偏小,在高糖培养基中,有停止生长、甚至致死的表型;而S1.3-FLAG,131994C和N433426株系的种子萌发速度快,幼苗个体大,在高糖培养基中生长旺盛。植物体内的葡萄糖含量测定表明,在正常B5和高糖培养基中,131994C和N433426的葡萄糖含量稍低于野生型;S1.3-FLAG在正常B5培养基中的葡萄糖含量与T-DNA突变体齐平,而在高糖培养基中却明显低于野生型和T-DNA突变体;S1.7-FLAG株系的葡萄糖含量在两种培养基上均明显低于野生型。
     在测定谷氨酸脱氢酶(GDH)同工酶活性中发现,S1.7-FLAG株系无论是在B5还是高糖培养基中,其活性远远高于野生型;T-DNA突变体在高糖培养中GDH活性与野生型相同,而在B5培养基中则略弱于野生型;S1.3-FLAG的GDH活性无论在什么条件下,均弱于野生型。初步的机理探讨认为,S1.7-FLAG过量表达可以提高GDH酶活性,可能改变了进入TCA循环的碳骨架供应,进而出现致死现象。S1.3可以看做缺少活性的S1.7蛋白,所以它的效应与S1.7相反。
Sirtuins have emerged as important proteins in aging, stress resistance and metabolic regulation. Mammals contain seven sirtuins (SIRT1-7), but Arabidopsis thaliana contain 2 homologous proteins, named AtSIRT1 (At5g09230) and AtSIRT2 (At5g55760). In this study, we pay attention to AtSIRTl, a locus encoding mitochondrial protein.
     AtSIRT1 has 7 transcripts, and processes 4 mature mRNA, named S1.3, S1.4, S1.5 and S1.7. Semi-quantitative RT-PCR analysis revealed that, the expression levels of these transcripts in different tissues differ. Promoter analysis showed that AtSIRT1 strongly expressed in meristem tissues, and the expression was under light regulation. Using Gateway recombinant cloning system, Arabidopsis plant expressing N-termined GFP fusion proteins were generated. We found that S1.4-GFP was located to the nucleus, and the others were located to the mitochondria. Four transcripts were overexpressed harbouring the FLAG tag. We choose S1.3-FLAG and S1.7-FLAG for further study here. In addition, we characterized two T-DNA insertional mutants of AtSIRTl.
     Transgenic plants overexpressing the S1.7-FLAG displayed, low seed germination rate and delayed seedling development. When they grow on B5 medium supplemented with high levels of sucrose (e.g 150 mM), they fail to develop green expanded cotyledons and true leaves, and even die. Transgenic plants overexpressing S1.3-FLAG and the T-DNA mutants exhibited vigorous growth both on B5 and high levels of sucrose media. The glucose contents in these seedlings were determinated. The T-DNA insertional mutants had slightly lower glucose contents in comparison with wild-type. While the S1.7-FLAG line had significantly lower contents of glucose in comparison with wild-type.
     Determination of the isoenzyme activity of glutamate dehydrogenase (GDH) revealed that the S1.7-FLAG seedlings had significantly higher GDH activity than wild-type when they grow on B5 and high sucrose media. The GDH activity in the T-DNA mutants was slightly lower than wild-type when they grow on B5 medium, and displayed no difference with wild-type when they grow on the high sucrose medium. The activity of GDH in S1.3-FLAG seedlings was much lower than wild-type.
     We suggested that the phenotype of S1.7-FLAG may resulted from increased GDH activity and alternated carbon skeleton supply. The phenotype of S1.3-FLAG may resulted from defect of the function of S1.7.
引文
Ahn, B.H., Kim, H.S., Song, S., Lee, I.H., Liu, J., Vassilopoulos, A., Deng, C.X. and Finkel, T. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U. S. A.105 (2008),14447-14452.
    Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B.J., Castronovo, V., Maechler, P. and Verdin, E. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem.282 (2007),33583-33592.
    Altman-Price, N. and Mevarech, M. Genetic evidence for the importance of protein acetylation and protein deacetylation in the halophilic archaeon Haloferax volcanii.J. Bacteriol.191 (2009),1610-1617.
    Argmann C, and Auwerx J. Insulin secretion:SIRT4 gets in on the act. Cell.126 (2006),941-54.
    Bao, J.J., Lu, Z.P., Joseph, J.J., Carabenciov, D., Dimond, C.C., Pang, L.Y., Samsel, L., Philip, J., Leclerc, J., Nguyen, P.M., Gius, D. and Sack, M.N. Characterization of the Murin SIRT3 Mitochondrial Localization Sequence and Comparison of Mitochondrial Enrichment and Deacetylase Activity of Long and Short SIRT3 Isoforms. Journal of CellularBiochemistry.110 (2010),238-247.
    Berger, F., Lau, C., Dahlmann, M. and Ziegler, M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. J. Biol. Chem.280 (2005), 36334-36341.
    Bevilacqua, L., Ramsey, J.J., Hagopian, K., WeindruchR, M., Harper, E. Long-term caloric restriction increases UCP3 content but decreases proton leak and reactive oxygen species production in rat skeletal muscle mitochondria. Am. J. Physiol. Endocrinol. Metab.289 (2005), E429-E438.
    Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W. and Greenberg, M.E. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303 (2004),2011-2015.
    Choudhary, C., Kumar, C., Gnad,F., Nielsen,M.L., Rehman, M., Walther, T., Olsen, J.V. and Mann, M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325 (2009),834-840.
    Cimen, H., Han, M.J., Yang, Y.J., Tong, Q., Koc, H. and Koc, E.C. Regulation of Succinate Dehydrogenase Activity by SIRT3 in Mammalian Mitochondria. Biochemistry.49 (2010),304-311.
    Cooper, H.M., Huang, J.Y., Verdin, E. and Spelbrink, J.N. A New Splice Variant of the Mouse SIRT3 Gene Encodes the Mitochondrial Precursor Protein. PLoS ONE 4(2009), e4986. doi:10.1371/journal.pone.0004986.
    Denu, J.M. The Sir 2 family of protein deacetylases, Curr. Opin. Chem. Biol.9 (2005),431-440.
    Fariss, M.W., Chan, C.B., Patel, M., Houten, B. and Orrenius, S. Role of mitochondria in toxic oxidative stress. Mol. Interv.5 (2005),94-111.
    Finke, T. and Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408 (2000),239-247.
    Fontaine, J.X., Saladino, F., Agrimonti, C., Hirel, B., Restivo, F.M. and Dubois, F. Control of the Synthesis and Subcellular Targeting of the Two GDH Genes Products in Leaves and Stems of Nicotiana plumbaginifolia and Arabidopsis thalian. a Plant Cell Physiol.47 (2006),410-418.
    Frank, J.T., Sona, S., Thakkar, T.F. and Jane, M.W. Characterization and Expression of NAD(H)-Dependent Glutamate Dehydrogenase Genes in Arabidopsis. Plant Physiol.113 (1997),1329-1341.
    Frye, R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP ribosyltransferase activity. Biochem. Biophys. Res. Commun.260 (1999), 273-279.
    Frye, R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem.Biophys. Res. Commun.273 (2000),793-798.
    Fulco, M., Schiltz, R.L., Iezzi, S., King, M.T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R.L. and Sartorelli, V. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 12 (2003),51-62.
    Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev.14 (2000),1021-1026.
    Hagen, T.M., Yowe, D.L., Bartholomew, J.C., Wehr, C.M., Do, K.L., Park, J., Bruce, Y. and Ames, N. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc. Natl. Acad. Sci. U. S. A.94 (1997),3064-3069.
    Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Karow, M., Blander, G., Wolberger, C., Prolla, T.A., Weindruch, R., Alt, F.W. and Guarente, L. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126 (2006),941-954.
    Hallows, W.C., Lee, S. and Denu, J.M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U. S. A.103 (2006), 10230-10235.
    Hernick, M.and Fierke, C.A. Zinc hydrolases:the mechanisms of zinc-dependent deacetylases. Arch. Biochem. Biophys.433 (2005),71-84.
    Hirschey, M.D., Shimazu, T., Goetzman, E., Jing, E. and Schwer, B. SIRT3 regulates mitochondrial fatty-acidoxidation by reversible enzyme deacetylation. Nature 464 (2010),121-125.
    Jacobs, K. M., Pennington, J. D., Bisht, K. S., Burns, N. A., Kim, H.S., Mishra, M., Sun, L., Nguyen, P., Ahn, B.H., Leclerc, J.C., Deng, X.D., Spitz, R. and Gius, D. SIRT3 interacts with the daf-16 homolog FOXO3a in the Mitochondria, as well as increases FOXO3a Dependent Gene expression. International Journal of Biological Sciences.4 (2008),291-299.
    Jin, L., Galonek, H., Israelian, K., Choy, W. and Morrison, M. Biochemi calcharacterization, localization,andtissue distribution of the longer form of mouse SIRT3. PROTEIN SCIENCE.18 (2009),514-525.
    Johnson, D.T., Harris, R.A., French, S., Blair, P.V., You, J., Bemis, K.G, Wang, M. and Balaban, R.S. Tissue heterogeneity of the mammalian mitochondrial proteome. Am. J. Physiol. Cell Physiol.292 (2007), C689-C697.
    Kelly, D.P. and Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev.18 (2004),357-368.
    Kim, S.C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N.V., White, M., Yang, X.J. and Zhao, Y. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23 (2006),607-618.
    Kong, X., Wang,R., Xue,Y., Liu, X., and Zhang, H. Sirtuin 3, a New Target of PGC-1a, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis. PLoS ONE 5 (2010), e11707. doi:10.1371/journal.pone.0011707.
    Kowaltowski, A.J., Souza-Pinto, N.C., Castilho, R.F. and Vercesi, A.E. Mitochondria and reactive oxygen species. Free Rad. Biol. Med.47 (2009), 333-343.
    Lambert, A.J. and Brand, M.D. Research on mitochondria and aging. Aging Cell 6 (2007),417-420.
    Langley, E., Pearson, M., Faretta, M., Bauer, U.M., Frye, R.A., Minucci, S., Pelicci, P.G. And Kouzarides, T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J.21 (2002),2383-2396.
    Li, J., Fu, P., French, B.A. and French, S.W. The effect of rotenone on the urinary ethanol cycle in rats fed ethanol intragastrically. Exp. Mol. Pathol.77 (2004), 210-213.
    Lisa, F.D. and Ziegler, M. Pathophysiological relevance of mitochondria in NAD(+) metabolism. FEBS Lett.492 (2001),4-8.
    Liszt, G., Ford, E., Kurtev, M. and Guarente, L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem.280 (2005) 21313-21320.
    Lombard, D.B., Alt, F.W., Cheng, H.L., Bunkenborg, J., Streeper, R.S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., Yang, Y., Chen, Y., Hirschey, M.D., Bronson, R.T., Haigis, M., Guarente, L.P., Weissman, S., Verdin, E. and Schwer, B. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysineacetylation. Mol. Cell. Biol.27 (2007), 8807-8814.
    Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. and Gu, W. Negativecontrol of p53 by Sir2 alpha promotes cell survival under stress. Cell 107(2001),137-148.
    Marmorstein, R. Structure of histone deacetylases:insights into substrate recognition and catalysis. Structure 9 (2001),1127-1133.
    Marsh, V.L., Peak-Chew, S.Y. and Bell, S.D. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein. Alba, J. Biol. Chem.280 (2005), 21122-21128.
    Melo-Oliveira, R., Oliveira, I.C. And Coruzzi, G.M. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Plant Biology.93 (1996),4718-4723.
    Michan, S. and Sinclair, D. Sirtuins in mammals:insights into their biological function. Biochem. J.404 (2007),1-13.
    Michishita, E., McCord, R.A., Berber, E., Kioi, M. Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T.L., Barrett, J.C., Chang, H.Y., Bohr, V.A., Ried, T., Gozani, O.and Chua, K.F. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452 (2008),492-496.
    Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M. and Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell 116 (2004),551-563.
    Nakagawa, T., Lomb, D.J., Haigis, M.C. and Guarente, L. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137 (2009), 560-570.
    North, B.J., Marshall, B.L., Borra, M.T., Denu, J.M., and Verdin, E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11 (2003),437-444.
    North, B.J., and Verdin, E. Sirtuins:Sir2-related NAD+-dependent protein deacetylases. GenomeBiol.5 (2004),224.
    Ogura, M., Nakamura, Y., Tanaka, D., Zhuang, X., Fujita, Y., Obara, A., Hamasaki, A., Hosokawa, M. and Inagaki, N. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem. Biophys. Res. Commun.393 (2009),73-78.
    Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Walford, G. A., Sugiana, C., Boneh, A., Chen, W.K., Hill, D.E., Vidal, M., Evans, J.G., Thorburn, D.R., Carr, S.A. and Mootha, V.K. A mitochondrial protein compendium elucidates complex I disease biology. Cell.134 (2008),112-123.
    Qiu, X.L., Brown, K., Hirschey, M.D., Verdin, E. and Chen, D. Calorie Restriction Reduces Oxidative Stress. SIRT3-Mediated SOD2 Activation. Cell Metabolism. 12 (2010),662-667.
    Reeve, A.K., Krishnan, K.J. and Turnbull, D.M. Age related mitochondrial degenerative disorders in humans. Biotechnol. J.3 (2008),750-756.
    Ryan, M.T. and Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem.76 (2007),701-722.
    Scarpulla, R.C. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochim. Biophys. Acta 1576 (2002),1-14.
    Scher, M.B., Vaquero, A. and Reinberg, D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. GENES&DEVELOPMENT21 (2007),920-928.
    Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F., and Steegborn, C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol.382 (2008),790-801.
    Schwer, B., Bunkenborg, J., Verdin, R.O., Andersen, J.S., and Verdin, E. Reversible lysine acetylation controls theactivity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U. S. A.103 (2006), 10224-10229.
    Schwer, B., Eckersdorff, M., Li, Y., Silva, J.C., Fermin, D., Kurtev, M.V., Giallourakis, C., Comb, M.J., Alt, F.W. And Lombard, D.B. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 8 (2009),604-606.
    Schumacker, P.T. A Tumor Suppressor SIRTainty. Cancer Cell.17 (2010),5-6.
    Shimazu, T., Hirschey, M.D., Hua, L., Dittenhafer-Reed, K.E., Schwer,B., Lombard, D.B., Li, Y., Bunkenborg, J., Alt, F.W., Denu, J.M., Jacobson, M. P. and Verdin, E. SIRT3 Deacetylates Mitochondrial 3-Hydroxy-3-Methylglutaryl CoA Synthase 2 and Regulates Ketone Body Production. Cell Metabolism.12 (2010),654-661.
    Someya, S., Yu, W., Hallows, W.C., Xu, J.Z., Vann, J.M., Burgh, C.L. Tanokura, M.J., Denu, M. and Prolla T. ASirt3 Mediates Reduction of Oxidative Damage and Prevention of Age-Related Hearing Loss under Caloric Restriction. Cell.143 (2010),802-812.
    Starai, V.J. and Escalante-Semerena, J.C. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol.340 (2004),1005-1012.
    Sundaresan, N.R., Gupta, M., Kim, G., Rajamohan, S.B., Isbatan, A. and Gupta, M.P. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. The Journal of Clinical Investigation.119 (2009),2758-2771.
    Sundaresan, N.R., Samant, S.A., Pillai, V.B., Rajamohan, S.B., and Gupta, M.P. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol.28 (2008),6384-401.
    Todisco, S., Agrimi, G., Castegna, A. and Palmieri, F. Identification of the mitochondrial NAD+transporter in Saccharomyces cerevisiae. J. Biol. Chem.281 (2006),1524-1531.
    Vaziri, H., Dessain, S.K., Eaton, E.N., Imai, S.I. Frye, R.A., Pandita, T.K., Guarente, L. and Weinberg, R.A. hSIR2(SIRT1) functions as an NAD-dependentp53 deacetylase. Cell 107 (2001),149-159.
    Verdin, E., Hirschey, M., Lydia,D., Finley, W.S. and Haigism, M. C. Sirtuin regulation of mitochondria:energy production, apoptosis, and signaling. Trends in Biochemical Sciences.35 (2010),669-675.
    Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer:a dawn for evolutionary medicine. Annu. Rev. Genet.39 (2005),359-407.
    Wang, C.Z., Gao, F., Wu, J.G., Dai, J.L., Wei, C.H. and Li, Y. Arabidopsis Putative Deacetylase AtSRT2 Regulates Basal Defense by Suppressing PAD4, EDS5 and SID2 Expression. Plant Cell Physiol.51 (2010),1291-1299.
    Wingler,A., Masclaux-Daubresse, C. and Fischer, A.M. Sugars, senescence, and ageing in plants and heterotrophic organisms. Journal of Experimental Botany.60 (2009).1063-1066.
    Yang, Y.J., Hubbard, B. P., Sinclair, D. A. and Tong, Q. Characterization of Murine SIRT3 Transcript Variants and Corresponding Protein Products. Journal of Cellular Biochemistry. 111(2010),1051-1058.
    Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R. Frye, R.A., and Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J.23 (2004),2369-2380.
    Zhang, J., Sprung, R., Pei, J., Tan, X., Kim, S., Zhu, H., Liu, C.F., Grishin, N.V. and Zhao, Y. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell. Proteomics.8 (2009), 215-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700