用户名: 密码: 验证码:
利用对接分数预测人类血浆白蛋白结合率
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小分子的代谢动力学特征(ADME)决定着化合物在生物体内能否真正达到生物学作用,已经成为是药物临床前研究的重要考量因素。目前导致药物不能成功上市的原因中,40%是由于ADME性质不佳所造成的。为了有效降低药物的淘汰率,降低药物开发成本,高通量的测定候选药物前体的性质,计算机ADME建模成为了值得研究的重要途径。
     目前的ADME建模方法主要是利用定量结构活性关系模型,所用的描述符基本上都基于小分子结构。以前研究证明,分子对接可以分析小分子与蛋白之间的相互作用,可以用药物活性的分类预测。然而,但很少有研究用于药物动力学的定量活性预测。因此,本研究主要以人类血浆白蛋白结合率研究为例,探索对接分数能否作为描述符用于定量建模预测。
     第一部分利用传统的小分子结构描述符来进行人类血浆白蛋白结合率(log K'HSA)的预测。所得模型结果为Q2=0.84,MSE=0.06;r2=0.83,mse=0.06;R2=0.87,mse=0.05.与前人所报导的模型相比,这些预测能力要稍好一些,证明我们可以重复前人的工作并达到相似或者更好的结果。
     第二部分使用对接软件利用小分子结构和蛋白质结构计算对接分数。然后将这些对接分数进行整合,基于计算所得对接分数描述符来建立模型预测log K'HSA,最终所得的模型结果为r2=0.78,mse=0.09;Q2=0.75,MSE=0.09;R2=0.79,mse=0.07.该结果可以与前人报导的模型达到相似的结果,很好地证明了对接分数可以作为描述符来定量预测结合率。进一步,本论文研究了蛋白质柔性和小分子柔性对预测模型结果的影响。结果发现,相比较小分子柔性的影响,蛋白质柔性对预测模型结果的影响会更大一些。这一结果与现今对接软件所存在的问题是一致的。
Pharmacokinetic properties of a compound are the determinant factors for achieving its biological role in organisms. Inappropriate ADME properties were the most significant cause of drug withdrawn from development and account for 40% of all the reasons. To reduce drug attrition effectively, cut down the cost of drug discovery and development, and measure properties of drug lead in high throughput ways, in silico ADME modeling is a good choice.
     For the present, ADME properties are most often estimated from the structural properties of a compound by the quantitative structural activity relationship (QSAR) approach. Previous studies had shown that molecular docking, capable of analyzing compound-protein interaction, could be used to make categorical estimation of a pharmacokinetic property. However, there were few researches to make numeric estimation. Therefore, this research takes human serum albumin (HSA) binding affinity as an example to show that docking descriptors might also be useful to estimate the exact value of a pharmacokinetic property.
     First, we used traditional compound structure descriptors to predict Human Serum Binding Affinity (log K'HSA). The model showed a result of Q2= 0.84, MSE =0.06; r2= 0.83, mse= 0.06 and R2= 0.87, mse= 0.05. This result was a little better than previously reported model and showed our method was able to reproduce the accuracy reported before.
     Second, we used docking scores as descriptors to predict log K'HSA. The final result were r2= 0.78, mse= 0.09; Q2= 0.75, MSE= 0.09; R2= 0.79, mse= 0.07. This accuracy was comparable to the known QSAR model based on compound descriptors and proved that docking scores can be used as descriptors in numeric prediction. Further, our research showed that a descent account of protein flexibility was essential to get better prediction model.
引文
1. Wishart DS:Improving Early Drug Discovery through ADME Modelling:An Overview. Drugs in R&D 2007,8(6):349.
    2. Kola I, Landis J:Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 2004,3(8):711-716.
    3. Wang J, Urban L:The impact of early ADME profiling on drug discovery and development strategy. Drug Discov World 2004:73-86.
    4. Bowman TV, Zon LI:Swimming into the Future of Drug Discovery:In Vivo Chemical Screens in Zebrafish. ACS Chemical Biology 2010,5(2):159-161.
    5. Prentis RA, Lis Y, Walker SR:Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). BrJ Clin Pharmacol 1988,25(3):387-396.
    6. Hodgson J:ADMET-turning chemicals into drugs. Nat Biotech 2001,19(8):722-726.
    7. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ:Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 1997,23(1-3):3-25.
    8. Improving Early Drug Discovery through ADME Modelling:An Overview. Drugs in R&D 2007,8:349-362.
    9. Ekins S, Rose J:In silico ADME/Tox:the state of the art. Journal of Molecular Graphics and Modelling 2002,20(4):305-309.
    10. Yamashita F, Hashida M:In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 2004,19(5):327-338.
    11. Butina D, Segall MD, Frankcombe K:Predicting ADME properties in silico:methods and models. Drug Discovery Today 2002,7(11):S83-S88.
    12. Hou TJ, Xu XJ:ADME evaluation in drug discovery.3. Modeling blood-brain barrier partitioning using simple molecular descriptors. J Chem Inf Comput Sci 2003, 43(6):2137-2152.
    13. Lobell M, Molnar L, Keseru GM:Recent advances in the prediction of blood-brain partitioning from molecular structure. J Pharm Sci 2003,92(2):360-370.
    14. Yoshida F, Topliss JG:QSAR model for drug human oral bioavailability. J Med Chem 2000, 43(13):2575-2585.
    15. Huuskonen J, Salo M, Taskinen J:Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J Chem Inf Comput Sci 1998,38(3):450-456.
    16. Cheng A, Merz KM, Jr.:Prediction of aqueous solubility of a diverse set of compounds using quantitative structure-property relationships. J Med Chem 2003,46(17):3572-3580.
    17. Hou TJ, Xu XJ:ADME evaluation in drug discovery.2. Prediction of partition coefficient by atom-additive approach based on atom-weighted solvent accessible surface areas. J Chem Inf Comput Sci 2003,43(3):1058-1067.
    18. van de Waterbeemd H, Gifford E:ADMET in silico modelling:towards prediction paradise? Nat Rev Drug Discov 2003,2(3):192-204.
    19. Drenth J:Principles of Protein X-Ray Crystallography.2007.
    20. Wuthrich K:NMR of proteins and nucleic acids.1986.
    21. Khan MTH, Sylte I:Predictive QSAR modeling for the successful predictions of the ADMET properties of candidate drug molecules. Current Drug Discovery Technologies 2007, 4(3):141-149.
    22. Hou T, Wang J:Structure-ADME relationship:still a long way to go? Expert Opinion on Drug Metabolism & Toxicology 2008,4(6):759-770.
    23. Predictive QSAR Modeling Workflow, Model Applicability Domains, and Virtual Screening. Current Pharmaceutical Design 2007,13:3494-3504.
    24. Clark M, Cramer Iii RD, Jones DM, Patterson DE, Simeroth PE:Comparative molecular field analysis (CoMFA).2. Toward its use with 3D-structural databases. Tetrahedron Computer Methodology 1990,3(1):47-59.
    25. Dragon. In.:Talete srl; 2007.
    26. Hypercube:HyperChem(TM) Professional 7.51.
    27. Kastenholz MA, Pastor M, Cruciani G, Haaksma EEJ, Fox T:GRID/CPCA:A New Computational Tool To Design Selective Ligands. Journal of Medicinal Chemistry 2000, 43(16):3033-3044.
    28. Florida Uo:CODESSA PRO Software.2002.
    29. Guyon I, Andr\,\#233, Elisseeff:An introduction to variable and feature selection. J Mach Learn Res 2003,3:1157-1182.
    30. Saeys Y, Inza I, Larranaga P:A review of feature selection techniques in bioinformatics. Bioinformatics 2007,23(19):2507-2517.
    31. Hasegawa K, Miyashita Y, Funatsu K:GA Strategy for Variable Selection in QSAR Studies: GA-Based PLS Analysis of Calcium Channel Antagonists ⊥. Journal of Chemical Information and Computer Sciences 1997,37(2):306-310.
    32. Robbins KR, Zhang W, Bertrand JK, Rekaya R:The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification. Mathematical Medicine and Biology 2007,24(4):413-426.
    33. Sugumaran V, Muralidharan V, Ramachandran KI:Feature selection using Decision Tree and classification through Proximal Support Vector Machine for fault diagnostics of roller bearing. Mechanical Systems and Signal Processing 2007,21(2):930-942.
    34. Sutter JM, Dixon SL, Jurs PC:Automated Descriptor Selection for Quantitative Structure-Activity Relationships Using Generalized Simulated Annealing. Journal. of Chemical Information and Computer Sciences 1995,35(1):77-84.
    35. Makino S, Kuntz ID:Automated flexible ligand docking method and its application for database search. Journal of Computational Chemistry 1997,18(14):1812-1825.
    36. Smola AJ, Scholkopf B:A tutorial on support vector regression. Statistics and Computing 2004,14(3):199-222.
    37. Cristianini N, Shawe-Taylor J:An introduction to support vector machines:and other kernel-based learning methods:Cambridge University Press; 2004.
    38. Han J, Kamber M:Data mining:concepts and techniques:Elsevier; 2006.
    39. Drucker H, Burges CJC, Kaufaman L:Support vector regression machines. Advances in Neural Information Processing Systems 1997,9:155-161.
    40. 王睿:关于支持向量机参数选择方法分析.重庆师范大学学报(自然科学版)2007,24(2).
    41. Yao XJ, Panaye A, Doucet JP, Zhang RS, Chen HF, Liu MC, Hu ZD, Fan BT:Comparative Study of QSAR/QSPR Correlations Using Support Vector Machines, Radial Basis Function Neural Networks, and Multiple Linear Regression. Journal of Chemical Information and Computer Sciences 2004,44(4):1257-1266.
    42. Norinder U, Bergstrom CAS:Prediction of ADMET Properties. ChemMedChem 2006, 1(9):920-937.
    43. Cawley GC, Talbot NLC:Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers. Pattern Recognition 2003,36(11):2585-2592.
    44. Cawley GC, Talbot NLC:Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters. J Mach Learn Res 2007,8:841-861.
    45. Routledge PA:The plasma protein binding of basic drugs. Br J Clin Pharmacol 1986, 22(5):499-506.
    46. Mahley RW, Innerarity TL, Rall SC, Weisgraber KH:Plasma lipoproteins:apolipoprotein structure and function. Journal of Lipid Research 1984,25(12):1277-1294.
    47. 司宏宗,姚小军,刘焕香:基于启发式方法和支持向量机方法预测药物与人血浆蛋白结合率.化学学报2006,64(5):415-422.
    48. 刘睿,谢跃生,潘桂湘,刘志东,张伯礼:药物血浆蛋白结合率测定方法的研究进展.天津中医药2007,24(6):526-528.
    49. Colmenarejo G:In silico prediction of drug-binding strengths to human serum albumin. Med Res Rev 2003,23(3):275-301.
    50. D.f.Birkett:Drug Protein Binding Australian Prescriber 1992,15(3).
    51. Quinlan GJ, Martin GS, Evans TW:Albumin:Biochemical properties and therapeutic potential. Hepatology 2005,41(6):1211-1219.
    52. Wardell M, Wang Z, Ho JX, Robert J, Ruker F, Ruble J, Carter DC:The Atomic Structure of Human Methemalbumin at 1.9 A. Biochemical and Biophysical Research Communications 2002,291(4):813-819.
    53. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S:Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology 2005, 353(1):38-52.
    54. Fasano M, Curry S, Terreno E, Galliano M, Fanali G, Narciso P, Notari S, Ascenzi P:The extraordinary ligand binding properties of human serum albumin. IUBMB Life 2005, 57(12):787-796.
    55. Brooijmans N, Kuntz ID:MOLECULAR RECOGNITION AND DOCKING ALGORITHMS. Annual Review of Biophysics and Biomolecular Structure 2003,32(1):335-373.
    56. Walters WP, Stahl MT, Murcko MA:Virtual screening--an overview. Drug Discovery Today 1998,3(4):160-178.
    57. Bajorath J:Integration of virtual and high-throughput screening. Nat Rev Drug Discov 2002, 1(11):882-894.
    58. Virtual Screening An Effective Tool for Lead Structure Discovery. Current Pharmaceutical Design 2001,7:509-527.
    59. Gohlke H, Klebe G:Approaches to the Description and Prediction of the Binding Affinity of Small-Molecule Ligands to Macromolecular Receptors. Angewandte Chemie International Edition 2002,41(15):2644-2676.
    60. Taylor RD, Jewsbury PJ, Essex JW:A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design 2002,16(3):151-166.
    61. Kitchen DB, Decornez H, Furr JR, Bajorath J:Docking and scoring in virtual screening for drug discovery:methods and applications. Nat Rev Drug Discov 2004,3(11):935-949.
    62. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ:Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 1998,19(14):1639-1662.
    63. Jones G, Willett P, Glen RC, Leach AR, Taylor R:Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 1997,267(3):727-748.
    64. Rarey M, Kramer B, Lengauer T, Klebe G:A Fast Flexible Docking Method using an Incremental Construction Algorithm. Journal of Molecular Biology 1996,261(3):470-489.
    1. Bazeley PS, Prithivi S, Struble CA, Povinelli RJ, Sem DS:Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding:predicting affinity and conformational sampling. J Chem Inf Model 2006,46(6):2698-2708.
    2. Hall LM, Hall LH, Kier LB:QSAR modeling of β-lactam binding to human serum proteins. Journal of Computer-Aided Molecular Design 2003,17(2):103-118.
    3. Kratochwil NA, Huber W, Muller F, Kansy M, Gerber PR:Predicting plasma protein binding of drugs:a new approach. Biochemical Pharmacology 2002,64(9):1355-1374.
    4. Liu J, Yang L, Li Y, Pan D, Hopfinger A:Prediction of plasma protein binding of drugs using Kier-Hall valence connectivity indices and 4D-fingerprint molecular similarity analyses. Journal of Computer-Aided Molecular Design 2005,19(8):567-583.
    5. Lobell M, Molnar L, Keseru GM:Recent advances in the prediction of blood-brain partitioning from molecular structure. J Pharm Sci 2003,92(2):360-370.
    6. Rodgers SL, Davis AM, Tomkinson NP, van de Waterbeemd H:QSAR Modeling Using Automatically Updating Correction Libraries:Application to a Human Plasma Protein Binding Model. Journal of Chemical Information and Modeling 2007,47(6):2401-2407.
    7. Saiakhov R, Stefan L, Klopman G:Multiple computer-automated structure evaluation model of the plasma protein binding affinity of diverse drugs. Perspectives in Drug Discovery and Design 2000,19(1):133-155.
    8. Yamazaki K, Kanaoka M:Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds. Journal of Pharmaceutical Sciences 2004, 93(6):1480-1494.
    9. Votano JR, Parham M, Hall LM, Hall LH, Kier LB, Oloff S, Tropsha A:QSAR Modeling of Human Serum Protein Binding with Several Modeling Techniques Utilizing Structure-Information Representation. Journal of Medicinal Chemistry 2006,49(24):7169-7181.
    10. Deeb O, Hemmateenejad B:ANN-QSAR model of drug-binding to human serum albumin. Chem Biol Drug Des 2007,70(1):19-29.
    11. Estrada E, Uriarte E, Molina E, Simon-Manso Y, Milne GWA:An Integrated in Silico Analysis of Drug-Binding to Human Serum Albumin. Journal of Chemical Information and Modeling 2006,46(6):2709-2724.
    12. Gunturi SB, Narayanan R, Khandelwal A:In silico ADME modelling 2:computational models to predict human serum albumin binding affinity using ant colony systems. Bioorg Med Chem 2006,14(12):4118-4129.
    13. Hajduk PJ, Mendoza R, Petros AM, Huth JR, Bures M, Fesik SW, Martin YC:Ligand binding to domain-3 of human serum albumin:a chemometric analysis. Journal of Computer-Aided Molecular Design 2003,17(2):93-102.
    14. Hall LM, Hall LH, Kier LB:Modeling drug albumin binding affinity with e-state topological structure representation. J Chem Inf Comput Sci 2003,43(6):2120-2128.
    15. Wichmann K, Diedenhofen M, Klamt A:Prediction of blood-brain partitioning and human serum albumin binding based on COSMO-RS sigma-moments. J Chem Inf Model 2007, 47(1):228-233.
    16. Xue CX, Zhang RS, Liu HX, Yao XJ, Liu. MC, Hu ZD, Fan BT:QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. J Chem Inf Comput Sci 2004,44(5):1693-1700.
    17. Colmenarejo G, Alvarez-Pedraglio A, Lavandera JL:Cheminformatic models to predict binding affinities to human serum albumin. J Med Chem 2001,44(25):4370-4378.
    18. MOdesLAB fro windows(www.modeslab.com).2006.
    19. TATA BioSuite(www.tcs.com). Tata Consultancy Services Limited.2004.
    20. PreADMET(preadmet.bmdrc.org). Bioinformatics&Molecular Design Research Center 2006.
    21. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et al: DrugBank 3.0:a comprehensive resource fo r'Omics' research on drugs. Nucleic Acids Research 2011,39(suppl 1):D1035-D1041.
    22. Tetko I, Gasteiger J, Todeschihi R, Mauri A, Livingstone D, Ertl P, Palyulin V, Radchenko E, Zefirov N, Makarenko A et al: Virtual Computational Chemistry Laboratory-Design and Description. Journal of Computer-Aided Molecular Design 2005,19(6):453-463.
    23.!!! INVALID CITATION!!!
    24. Belsley DA, Kuh E, Welsch RE:Regression diagnostics:identifying influential data and sources of collinearity:Wiley; 2004.
    25. Ali A, Islam M, Howe L:Critical Factors Impacting Sustainability Of Continuous Improvement In Manufacturing Industries In Malaysia. World Journal of Management 2010,2(3):65-80.
    26. Methods for Predicting the Affinity of Drugs and Drug-Like Compounds for Human Plasma Proteins:A Review. Current Computer-Aided Drug Design 2009,5:90-105.
    1. Yamashita F, Hashida M:In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 2004,19(5):327-338.
    2. Ahlstrom MM, Ridderstrom M, Zamora I:CYP2C9 Structure-Metabolism Relationships: Substrates, Inhibitors, and Metabolites. Journal of Medicinal Chemistry 2007, 50(22):5382-5391.
    3. Bazeley PS, Prithivi S, Struble CA, Povinelli RJ, Sem DS:Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding:predicting affinity and conformational sampling. J Chem Inf Model 2006,46(6):2698-2708.
    4. Keseru GM:A virtual high throughput screen for high affinity cytochrome P450cam substrates. Implications for in silico prediction of drug metabolism. Journal of Computer-Aided Molecular Design 2001,15(7):649-657.
    5. Kemp CA, Flanagan JU, van Eldik AJ, Marechal JD, Wolf CR, Roberts GC, Paine MJ, Sutcliffe MJ: Validation of model of cytochrome P450 2D6:an in silico tool for predicting metabolism and inhibition. J Med Chem 2004,47(22):5340-5346.
    6. Bytheway I, Cochran S:Validation of Molecular Docking Calculations Involving FGF-1 and FGF-2. Journal of Medicinal Chemistry 2004,47(7):1683-1693.
    7. Enyedy I, Egan W:Can we use docking and scoring for hit-to-lead optimization? Journal of Computer-Aided Molecular Design 2008,22(3):161-168.
    8. Colmenarejo G, Alvarez-Pedraglio A, Lavandera JL:Cheminformatic models to predict binding affinities to human serum albumin. J Med Chem 2001,44(25):4370-4378.
    9. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V et al: DrugBank 3.0:a comprehensive resource for 'Omics' research on drugs. Nucleic Acids Research 2011,39(suppl 1):D1035-D1041.
    10. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Research 2000,28(1):235-242.
    11. Ghuman J, Zunszain PA, Petitpas I, Bhattacharya AA, Otagiri M, Curry S:Structural Basis of the Drug-binding Specificity of Human Serum Albumin. Journal of Molecular Biology 2005, 353(1):38-52.
    12. SiteMap 2.3 User Manual:Introduction to SiteMap, How SiteMap Works.2009:1-10.
    13. Hall LM, Hall LH, Kier LB:Modeling drug albumin binding affinity with e-state topological structure representation. J Chem Inf Comput Sci 2003,43(6):2120-2128.
    14. Coupez B, Lewis RA:Docking and scoring--theoretically easy, practically impossible? Curr Med Chem 2006,13(25):2995-3003.
    15. Erickson JA, Jalaie M, Robertson DH, Lewis RA, Vieth M:Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J Med Chem 2004,47(1):45-55.
    16. Wardell M, Wang Z, Ho JX, Robert J, Ruker F, Ruble J, Carter DC:The Atomic Structure of Human Methemalbumin at 1.9 A. Biochemical and Biophysical Research Communications 2002,291(4):813-819.
    17. Bhattacharya AA, Curry S, Franks NP:Binding of the General Anesthetics Propofol and Halothane to Human Serum Albumin. Journal of Biological Chemistry 2000, 275(49):38731-38738.
    18. Zunszain P, Ghuman J, Komatsu T, Tsuchida E, Curry S:Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Structural Biology 2003,3(1):6.
    19. He XM, Carter DC:Atomic structure and chemistry of human serum albumin. Nature 1992, 358(6383):209-215.
    20. Kitchen DB, Decornez H, Furr JR, Bajorath J:Docking and scoring in virtual screening for drug discovery:methods and applications. Nat Rev Drug Discov 2004,3(11):935-949.
    21. de Graaf C, Vermeulen NPE, Feenstra KA:Cytochrome P450 in Silico:An Integrative Modeling Approach. Journal of Medicinal Chemistry 2005,48(8):2725-2755.
    1. Docking:Successes and Challenges. Current Pharmaceutical Design 2005,11:323-333.
    2. Teodoro ML, Phillips GN, Jr., Kavraki LE:Molecular docking:a problem with thousands of degrees of freedom. In:Robotics and Automation,2001 Proceedings 2001 ICRA IEEE International Conference on:20012001; 2001:960-965 vol.961.
    3. Cavasotto CN, Abagyan RA:Protein Flexibility in Ligand Docking and Virtual Screening to Protein Kinases. Journal of Molecular Biology 2004,337(1):209-225.
    4. Murray CW, Baxter CA, Frenkel AD:The sensitivity of the results of molecular docking to induced fit effects:Application to thrombin, thermolysin and neuraminidase. Journal of Computer-Aided Molecular Design 1999,13(6):547-562.
    5. Coupez B, Lewis RA:Docking and scoring--theoretically easy, practically impossible? Curr Med Chem 2006,13(25):2995-3003.
    6. Drenth J:Principles of Protein X-Ray Crystallography.2007.
    7. Wilthrich K:NMR of proteins and nucleic acids.1986.
    8. Pak Y, Wang S:Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems. The Journal of Physical Chemistry B 1999,104(2):354-359.
    9. McGovern SL, Shoichet BK:Information Decay in Molecular Docking Screens against Holo, Apo, and Modeled Conformations of Enzymes. Journal of Medicinal Chemistry 2003, 46(14):2895-2907.
    10. Ahmad B, Parveen S, Khan RH:Effect of Albumin Conformation on the Binding of Ciprofloxacin to Human Serum Albumin:A Novel Approach Directly Assigning Binding Site. Biomacromolecules 2006,7(4):1350-1356.
    11. Wanwimolruk S, Birkett DJ:The effects of N---B transition of human serum albumin on the specific drug-binding sites. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1982,709(2):247-255.
    12. Sousa SF, Fernandes PA, Ramos MJ:Protein-ligand docking:Current status and future challenges. Proteins:Structure, Function, and Bioinformatics 2006,65(1):15-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700