用户名: 密码: 验证码:
冬季胶州湾海水汞的形态及大气释放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汞是一种全球性的污染物,Hg0是大气中汞的主要形态,可停留0.5-2年;汞的全球循环受大气传输作用的支配,被运输到全球各地。近年来,全球大气汞浓度在不断增加,汞污染在继续加剧,全球汞释放的研究引起了越来越多的重视。
     本文研究了胶州湾海水汞等重金属污染现状、汞的各种形态及其日变化,测定估算了冬季胶州湾海水汞的大气释放通量并进一步讨论了影响因素和影响机制。研究结果表明:2008年10月胶州湾颗粒态汞含量平均为146.9ng/L,溶解态汞为15.8ng/L,以颗粒态为主;As、Cd、Cu浓度较低,Pb污染较为严重。
     海水活性汞/溶解态汞平均值都在0.50左右。11月19日甲基汞浓度与12月22日相比日变化幅度小,均在14:00左右出现峰值;海水甲基汞在0-2.5m变化不明显,在底层浓度较高。11月19日溶解气态汞(DGM)浓度在日出后逐渐降低,而在12月22日呈现先增加后降低的变化趋势。DGM浓度与活性汞/溶解态汞呈极显著相关(P<0.01),与DOC存在不显著的负相关关系,与紫外线辐射强度显著相关(P<0.05),光致还原作用对表层海水DGM的产生起主导作用。海水DGM有明显的垂直分布特征,在底层浓度较大。
     现场测定海水汞的释放通量为-0.78-1.72ng/(m2·h),平均为0.26ng/(m2·h),有明显的双峰日变化特征,日出后出现一个小峰值,在11:10点出现第二个峰值,14:00之前表现为水体向大气的释放,而14:00之后释放量很小或为负值(沉降)。用气体交换模型模拟胶州湾海水汞释放通量,模拟11月19日结果为0.14-1.52ng/(m2·h),平均值为0.63ng/(m2·h),与现场测定值有相似的日变化特征,二者呈极显著相关(r=0.632,P<0.01);12月22日模拟结果为:0.23-2.26ng/(m2·h),平均值为0.85ng/(m2·h),日变化表现为先升高后降低的特征。紫外线辐射强度通过影响海水-大气气态汞浓度梯度来影响海水汞释放通量的,是主要影响因子;而海水温度、风速通过影响表层海水DGM的交换输运速率(K)影响海水汞的释放通量。
Mercury is a global pollutant. Hg0 is the predominant form of atmospheric Hg, which has a long residence time in the atmosphere from 0.5 to 2 years. The global cycle of mercury is controlled by the atmospheric circumfluence and it can be transported to everywhere on the earth. Recently the concentration of global atmospheric mercury is increasing and mercury pollution continues to increase. Thereby, the global releasing of mercury causes more and more attention.
     This research was studied in the Jiaozhou Bay. The mercury and the other heavy metasl in seawater were investigated to learn the pollution level of metals. The species of mercury and their diunal variances were studied. The sea-air flux of mercury was measured and estimated using model, thus the influencing factors and machenism were analyzed further.
     The results indicate that:In October 2008 the average content of particulate mercury was 146.9ng/L and dissolved mercury was 15.8ng/L, so the particulate mercury was the main form. The content of As, Cu and Cd was lower, and the polution of Pb was serious.
     The average ratio of the reactive mercury to dissolved mercury was about 0.50. The variation range of methylmercury concentration on November 19th was small compared with December 22nd. The concentration peaks occured at about 14:00. The methylmercury concentration changes little within 2.5m depth, and the concentration is higher at the bottom. At the day time, the concentration of DGM decreased after the sunrise on November 19th; however on December 22nd it increased at first and then decreased. The DGM concentration correlated with the reactive mercury/dissolved mercury significantly (P<0.01), and DGM had negative correlation with DOC, but not significant. The significant positive correlation (P<0.05) with UV radiation indicated that photoreduction played a crucial role in the formation of DGM. The profile distributions of DGM changed obviously and the concentration was higher at the bottom.
     The flux of mercury from the seawater to the atmosphere was-0.78-1.72ng/(m2·h) measured at field and the average was 0.26ng/(m2·h) on November 19th, which showed obvious bimodal diurnal variations. The small peak occoured after sunrise and the second appeared at 11:10. There was evasion of mercury from the water to the atmosphere before 14:00 and after 14:00 the emission was small or negative. The estimated emission flux of mercury on the same day using a gas exchange model was 0.14-1.52ng/(m2-h), which had similar diurnal variation characteristics and has highly significant correlation (P<0.01) with the field result. The average flux modeled was 0.63ng/(m2-h). On December 22nd, the modeled sea-air flux was 0.23-2.26ng/(m2-h), and the average was 0.85ng/(m2-h), which increased at first and then decreased.
     The UV radiation affected the emission flux by influencing the concentration gradient of sea-air and, it was a major factor. The temperature of surface water and wind speed affected the emission flux by influencing the transfer velocity (K) of DGM.
引文
[1]Mahaffey K. Mercury as an environmental problem:perspectives on health effects and strategies for risk management.6th International Conference on Mercury as a global pollutant. 2001, Minamata. Japan, Abstract. KN-VI.
    [2]Pirrone N, Ferrarab R, Hedgecock I M, et al. Dynamic processes of mercury over the Mediterranean region:results from the Mediterranean Atmospheric Mercury Cycle System (MAMCS) project [J].Atmospheric Environment,2003,37(Sl):21-39.
    [3]Schroeder W H, Munthe J. Atmospheric Mercury-An Overview. Atmos. Envriron.1998,32:809-822.
    [4]AMAP,2002. Arctic pollution 2002 (persistent organic pollutants, heavy metals, radioactivity, human health, changing pathways). Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. xii+112pp.
    [5]AMAP,2004. AMAP assessment 2002:heavy metals in the arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.
    [6]Pacyna J M, Pacyna E, Steenhuisen F, et al. Global anthropogenic mercury emission inventory for 2000[J]. Atmospheric Environment,2006,40(22):4048-4063.
    [7]Streets D G, Hao J, Wu Y, Jiang, J, et al.Anthropogenic mercury emissions in China [J]. Atmospheric Environment,2005,39(40):7789-7806.
    [8]Wu Y, Wang S, Streets D G, et al. Trends in anthropogenic mercury emissions in China from 1995 to 2003 [J].Environmental Science & Technology,2006,40(17):5312-5318.
    [9]Gbor P K, Wen D Y, Meng F, et al. Modeling of mercury emission, transport and deposition in North America [J]. Atmospheric Environment,2007,41 (6):1135-1149.
    [10]Li P, Feng X B, Qiu G L, et al. Mercury pollution in Asia:A review of the contaminated sites[J]. Journal of Hazardous Materials,2009,168(2-3):591-601.
    [11]田雪珊.甲基汞转化细菌的分离和鉴定:[硕士毕业论文].贵阳:贵州大学,2007.
    [12]林年丰.医学环境地球化学.长春:吉林科学技术出版社,1991.215—220.
    [13]李春英,邱炳源.甲基汞的毒性作用[J].中华预防医学杂志,2001,35(6):420-421.
    [14]Rothschild R F N, Duffy L K. Mercury concentrations in muscle, brain and bone of Western Alaskan waterfowl [J]. Science of the Total Environment,2005,349(1-3):277-283.
    [15]Chan H M, Scheuhammer A M, Ferran A, et al. Impacts of Mercury on Freshwater Fish-Eating Wildlife and Humans [J]. Human and Ecological Risk Assessment,2003, 9(4):867-883.
    [16]Anthony C. Mercury from combustion sources:a review of the chemical species emitted and their transport in the atmosphere [J]. Water Air and Soil Pollution,1997,98:241-254.
    [17]Wang Q, Shen W, Ma Z. Estimation of mercury emission from coal combustion in China [J]. Environ. Sci. Technol,2000,34 (13):2711-2713.
    [18]Feng X B, Sommar J, Lindqvist O, et al. Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China [J]. Water Air and Soil Pollution,2002, 139(1-4):311-324.
    [19]Hassett D J, Heebink L V, Pflughoeft-Hassett D F. Potential for mercury vapor release from coal combustion by-products [J].Fuel Processing Technol,2004,85(6-7):613-620.
    [20]Alvim-Ferraz M, Afonso S. Incineration of different types of medical wastes:emission factors for particulate matter and heavy metals [J].Environ. Sci. Technol.2003,37(14):3152-3157.
    [21]Mukherjee A B, Zevenhoven R, Brodersen J, et al. Mercury in waste in the European Union: sources, disposal methods and risks [J].Resour. Conserv. Recy.2004,42(2):155-182.
    [22]Feng X B, Li G H, Qiu G L. A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang county, Guizhou, China-Part 1:mercury emission from zinc smelting and its influences on the surface waters [J]. Atmos. Environ.2004,38(36):6223-6230.
    [23]Qi X F, Lin Y H, Chen J H, et al. An evaluation of mercury emission from the chlor alkali industry in China [J]. J. Environ. Sci,2000,12(sl):24-30.
    [24]Landis M S, Keeler G J, Al-Wali K I, et al. Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition [J]. Atmos. Environ,2004,38(4):613-622.
    [25]Southworth G R, Lindberg S E, Zhang H, et al. Fugitive mercury emissions from a chlor-alkali factory:sources and fluxes to the atmosphere [J]. Atmos. Environ,2004,38 (4): 597-611.
    [26]Ferrara R, Mazzolai B, Lanzillotta E, et al. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin [J]. Sci. Total Environ,2000,259 (1-3):115-121.
    [27]Loppi S. Environmental distribution of Hg and other trace elemental elements in the geothermal area of Bagnore (Mt. Amiata, Italy) [J]. Chemosphere,2001,45(6-7):991-995.
    [28]Nriagu J, Becker C. Volcanic emissions of mercury to the atmosphere:global and regional inventories [J].Sci. Total Environ,2003,304(1-3):3-12.
    [29]Gustin M S. Are mercury emissions from geologic sources significant? A status report [J]. Sci. Total Environ,2003,304(1-3):153-167.
    [30]Gustin M S, Coolbaugh M, Engle M, et al. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains [J]. Environ. Geol,2003,43(3):339-351.
    [31]Feng X B, Wang S F, Qiu G L, et al. Total gaseous mercury emissions from soil in Guiyang, Guizhou, China [J]. J. Geophys. Res.2005,110:D14306, doi:10.1029/2004JD005643.
    [32]Lindberg S E, Hanson P J, Meyers T P, et al. Air/surfaces exchange of mercury vapor over forests—the need for a reassessment of continental biogenic mercury emissions[J]. Atmos. Environ,1998,32(5):895-908.
    [33]Ericksen J A, Gustin M S. Foliar exchange of mercury as a function of soil and air mercury concentration [J].Sci. Total Environ,2004,324(1-3):271-279.
    [34]Lindberg S E, Zhang H. Air/water exchange of mercury in the everglades Ⅱ:measuring and modeling evasion of mercury from surface water in the Everglades Nutrient Removal Project [J]. Sci. Total Environ.2000,259(1-3):135-143.
    [35]Mason R P, Lawson N M, Sheu G R. Mercury in the Atlantic Ocean:Factors controlling air-sea exchange of mercury and its distribution in the upper waters [J].Deep Sea Res. Ⅱ,2001,48 (13):2829-2853.
    [36]Zhang H, Lindberg S E. Sunlight and iron (Ⅲ)-induced photochemical production of dissolved gaseous mercury in fresh water [J].Environ. Sci. Technol,2001,35(5) 928-935.
    [37]Gardfeldt K, Sommar J, Ferrara R, et al. Stromberg, Evasion of mercury from coastal and open waters of the Atlantic Ocean and the Mediterranean Sea [J]. Atmos. Environ,2003,37 (sl):73-84.
    [38]Feng X B, Yan H Y, Wang S F, et al. Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir, Guizhou, China [J]. Atmos. Environ,2004, 38 (28):4721-4732.
    [39]Mason R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental mercury: Anthropogenic influences [J]. Geochim. Cosmochim. Acta,1994,58(15):3191-3198.
    [40]Lin C J, Lindberg S E, Ho T C, et al. Development of a processor in BEIS3 for estimating vegetative mercury emission in the continental United States [J]. Atmospheric Environment,2005, 39(39):7529-7540.
    [41]Gbor P K, Wen D, Meng F, et al. Improved model for mercury emission, transport and deposition [J]. Atmospheric Environment,2006,40(5):973-983.
    [42]Lin C J, Pongprueksa P, Lindberg S E, et al. Scientific uncertainties in atmospheric mercury models I:Model science evaluation [J].Atmos. Environ,2006,40(16):911-2928.
    [43]Lin C J, Pongprueksa P, Bullock Jr O R, et al. Scientific uncertainties in atmospheric mercury models Ⅱ:Sensitivity analysis in the CONUS domain [J]. Atmos. Environ,2007,41(31):6544-6560.
    [44]Edner H, Faris G W, Sunesson A, et al. Atmospheric atomic mercury monitoring using differential absorption lidar techniques [J]. Appl Opt,1989,28(5):921-930.
    [45]Kim K H, Lindberg S E. Micrometeorological measurements of Mercury vapor fluxes over background forest soils in eastern Tennessee [J].Atmospheric Environment,1995,29(2):267-282.
    [46]Xiao Z, Munthe J, Schroeder W H, et al. Vertical Fluxes of Volatile Mercury Over Forest Soil and Lake Surfaces in Sweden[J].Tellus,1991,43(3):267-279.
    [47]Carpi A, Lindberg S E. Application of a Teflon TM dynamic flux chamber for quantifying soil mercury flux:tests and results over background soil [J]. Atmospheric Environment,1998,32(5): 873-882.
    [48]付学吾,冯新斌,王少锋等.贵阳市2种不同类型草地的汞释放通量[J].环境科学研究,2007,20(6):33-37.
    [49]Lindberg S E, Zhang H, Vette A F, et al. Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 2:Effect of flushing flow rate and verification of a two-resistance exchange interface simulation model [J].Atmospheric Environment,2002,36(5): 847-859.
    [50]Gillis A, Miller D R. Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber [J].The Science of the Total Environment,2000, 260(1-3):181-189.
    [51]Wallschluger D, Kock H H. Mechanism and significance of mercury volatilization from contaminated flood pains of the German river Elbe [J]. Atmosphere Environment,2000,34(22): 3745-3755.
    [52]侯亚敏,冯新斌,王少锋等.贵阳市及其郊区土壤-大气界面间汞交换通量的初步研究[J].土壤学报,2005,42(1):52-58.
    [53]王少锋,冯新斌,仇广乐等.夏季红枫湖地区农田土壤—大气界面汞交换通量的初步研究[J].矿物岩石地球化学通报,2004,23(1):19-23.
    [54]方凤满,王起超,尹金虎.城市地表汞含量及释放通量影响因素分析[J].生态环境,2003(3):260-262.
    [55]陈静生,唐飞,贾振邦等.鸭绿江口再悬浮沉积物中汞的释放[J].环境科学学报,1993,13(4):385-390
    [56]单长青,刘汝海,单红仙.潮间带沉积物/大气Hg的释放的模拟研究[J].海洋环境科学,2007,26(5):417-421.
    [57]Veiga M M, Meech J A. Mercury pollution from deforestation [J]. Nature,1994,368(28): 816-817.
    [58]Ericksen J A, Gustin M S. Foliar exchange of mercury as a function of soil and air mercury concentrations [J].Science of the Total Environment,2004,324(1-3):271-279.
    [59]Hanson P J, Lindberg S E, Tabberer T, et al. Foliar Exchange of mercury vapor:Evidence for a compensation point [J].Water Air and Soil Pollution,1995,80(1-4):373-382.
    [60]Linqvist O, Johansson K, Aastrup M, et al. Mercury in the Swedish environment—Recent research on causes, consequences and corrective methods [J]. Water Air Soil Pollut,1991, 55(1-2):1-261.
    [61]Fitzgerald W F, Mason R P, Vandal G M. Atmospheric cycling and air-water exchange of mercury over mid-continental lacustrine regions [J]. Water, Air,& Soil Pollution,1991, 56(1):745-767.
    [62]Marks R, Beldowska M. Air-sea exchange of mercury vapour over the Gulf of Gdansk and southern Baltic Sea [J].Journal of Marine Systems,2001,27(4):315-324.
    [63]Vandal G M, Fitzgerald W F, Boutron C F, et al. Variations in mercury deposition to Antarctica over the past 34000 years [J]. Nature,1993,362:621-623.
    [64]O'Driscoll N J, Beauchamp S, Clair T A, et al. Chapter 13:A mercury mass balance for Big Dam West Lake:Examining the role of volatilization. In Mercury Cycling in a Wetland Dominated Ecosystem:A Multidisciplinary Study; 0'Driscoll N J, Rencz A N, Lean D RS Eds, SETAC Publishers:Lawrence, KS,2005.
    [65]Gao N, Armatas N G, Shanley J B, et al. Mass balance assessment for mercury in Lake Champlain [J]. Environ. Sci. Technol.2006,40(1):82-89.
    [66]Fitzgerald W F, Gill G A, Hewitt A. Air-sea exchange of mercury. In:Wong et al. Trace Metal in Sea. NATO conference series, IV. Marine Science, New York:Plenum Press,1983,9:297-316.
    [67]Costa M, Liss P S. Photoreduction of mercury in sea water and its possible implications for Hg0 air-sea fluxes [J]. Marine Chemistry,1999,68(1-2):87-95.
    [68]Kuss J, Schneider B. Variability of the Gaseous Elemental Mercury Sea-Air Flux of the Baltic Sea [J]. Environ. Sci. Technol.,2007,41(23):8018-8023.
    [69]Schroeder W H, Munthe J, Lindqvist O. Cycling of mercury between water, air and soil compartments of environment [J]. Water Air Soil Pollut.1989,48(3-4):337-347.
    [70]Ferrara R, Mazzolai B. A dynamic flux chamber to measure emission from aquatic systems [J]. Sci Total Environ,1998,215(1-2):51-57.
    [71]Gardfeldt K, Feng X B,Sommar J, et al. Total gaseous mercury exchange between air and water at river and sea surfaces in Swedish coastal regions [J].Atmospheric Environment,2001, 35(17):3027-3038.
    [72]Zhang H, Lindberg S E. Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater[J]. Environ. Sci. Technol.2001,35(5),928-935
    [73]Siciliano S D, O'Driscoll N J, Lean D R S. Microbial Reduction and Oxidation of Mercury in Freshwater Lakes [J]. Environ. Sci. Technol.2002,36(14):3064-3068.
    [74]Poissant L, Amyot M, Pilote M, et al. Mercury water-Air exchange over the upper St. Lawrence River and Lake Ontario [J]. Environ. Sci. Technol.2000,34 (15):3069-3078.
    [75]O'Driscoll N J, Lean D R S, Loseto L L, et al. Effect of Dissolved Organic Carbon on the Photoproduction of Dissolved Gaseous Mercury in Lakes:Potential Impacts of Forestry [J]. Environ. Sci. Technol,2004,38 (9):2664-2672.
    [76]O'Driscoll N J, Poissant L, Canaio J, et al. Dissolved Gaseous Mercury Concentrations and Mercury Volatilization in a Frozen Freshwater Fluvial Lake [J]. Environ. Sci. Technol,2008,42 (14):5125-5130.
    [77]孙向彤,何锦林,谭红.贵州红枫湖水面挥发性汞释放通量的测定[J].湖泊科学,2001,13(1):49-92.
    [78]冯新斌,Jonas S, Katarina G等.夏季自然水体与大气界面间气态总汞的交换通量[J].中国科学(D辑),2002,32(7):609-616.
    [79]陈曦.DOM和UV对水-气界面汞释放的影响:[硕士学位论文].重庆:西南大学.2008.
    [80]李顺兴,邓南圣,钱沙华等.分离富集技术在形态分析中的应用发展[J].分析科学学报,2004,20(2):199-203.
    [81]Capri A, Lindberg S E, Prestbo N S, et al. Methyl mercury contamination and emission to atmosphere from soil amended with municipal sewage sludge [J]. J Environ. Qual.1997,26: 1650-1655.
    [82]阎海鱼,冯新斌,商立海等.天然水体中痕量汞的形态分析方法研究[J].分析测试学报,2003,22(5):10-13.
    [83]Vandal G. M, Mason R P, Fitzgerald W F. Cycling of volatile mercury in temperate lakes [J]. Water, Air, Soil Pollut,1991,56(1):791-803.
    [84]Krabbenhoft D P, Hurley J P, Olson M L, et al. Diel variability of mercury phase and species distribution in the Florida Everlades [J]. Biogeochem,1998,40(2-3):311-325.
    [85]Mason R P, Morel F M M, Hemond H F. The role of microorganisms in elemental mercury formation in natural waters [J]. Water Air Soil Pollut,1995,80(1-4):775-787.
    [86]Barkay T, Turner R, Vanderbrook A, et al. The relationship of Hg(Ⅱ) volatilization from a freshwater pond to the abundance of mer genes in the gene pool of the indigenous microbial community [J]. Microb Ecol,1991,21(1):151-161.
    [87]Zhang H, Dill C, Kuiken T, et al. Change of Dissolved Gaseous Mercury Concentrations in a Southern Reservoir Lake (Tennessee) Following Seasonal Variation of Solar Radiation [J]. Environ. Sci. Technol,2006,40 (7):2114-2119.
    [88]O'Driscoll N J, Beauchamp S, Siciliano S D, et al. Continuous Analysis of Dissolved Gaseous Mercury (DGM) and Mercury Flux in Two Freshwater Lakes in Kejim kujik Park, Nova Scotia: Evaluating Mercury Flux Models with Quantitative Data [J]. Environ. Sci. Technol,2003,37 (10): 2226-2235.
    [89]O'Driscoll N J, Siciliano S D, Peak D, et al. The influence of forestry activity on the structure of dissolved organic matter in lakes:Implications for mercury photo-reactions [J]. Sci. Total Env. 2006,366(2-3):880-893.
    [90]Costa M, Liss P S. Photoreduction and evolution of mercury from seawater [J]. Sci. Total Environ.2000,261 (1-3):125-135.
    [91]O'Driscoll N J, Poissant L, Canario J, et al. Continuous analysis of dissolved gaseous mercury and mercury volatilization in the upper St. Lawrence River; Exploring temporal trends and UV attenuation [J]. Environ. Sci. Technol.2007,41(15):5342-5348.
    [92]Siciliano S D, O'Driscoll N J, Lean D R S. Dissolved gaseous mercury profiles in freshwaters [J]. In Biogeochemistry of Environmentally Important Trace Elements; Cai, Y., Braids, O. C. Eds.; ACS Symposium Series 835; American Chemical Society:Washington, DC,2002.
    [93]Poulain A J, Amyot M, Findlay D, et al. Biological and photochemical production of dissolved gaseous mercury in a boreal lake [J]. Limnol. Oceanogr,2004,49(6):2265-2275.
    [94]Sunderland E M, Gobas F A P C, Branfireun B A, et al. Environmental controls on the speciation and distribution of mercury in coastal sediments [J]. Mar. Chem,2006,102(1-2): 111-123.
    [95]Monperrus M, Tessier E, Amouroux D, et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea [J]. Mar. Chem. 2007,107(1):49-63.
    [96]Mason R P, Rolfphus K R, Fitzgerald W F. Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic [J]. Water, Air, Soil Pollut,1995,80(1-4): 665-677.
    [97]Jane L K, St. Louis V L, Hintelmann H, et al. Methylated Mercury Species in Marine Waters of the Canadian High and Sub Arctic [J]. Environ. Sci. Technol,2008,42 (22):8367-8373.
    [98]Benoit J M, Gilmour C C, Mason R P, et al. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters [J]. Environ. Sci. Technol.1999, 33(6):951-957.
    [99]Benoit J M, Gilmour C C, Heyes A, et al. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems [J]. Biogeochemistry of Environmentally Important Trace Elements, American Chemical Society:Washington, DC, 2003:262-297.
    [100]柴松芳.胶州湾海水总汞含量及其分布特征[J].黄渤海海洋,1998,16(4):60-63.
    [101]孟可,孙廷智.胶州湾东岸沉积物重金属含量分布与污染源判别[J].曲阜师范大学学报:自然科学版,1996,22(1):77-81.
    [102]张丽洁,王贵,姚德等.胶州湾李村河口沉积物重金属污染特征研究[J].山东理工大学学报,2003,17(1):8-14.
    [103]孙耀.胶州湾经济生物体内的重金属含量[J].海洋科学,1992(4):61-65.
    [104]王红晋,叶思源,杜远生等.胶州湾东部和青岛前海表层沉积物重金属分布特征及其对比研究[J].海洋湖沼通报,2007,(04):80-86.
    [105]Manta D S, Angelonee M, Benanea A, et al. Heavy metals in urban soils:a case study from the city of Palermo(Sicily), Italy[J]. Science Total Environment,2002,300(3):229-243.
    [106]吕小乔,孙秉一,史致丽.胶州湾中汞的含量及其形态的分布规律[J].青岛海洋大学学报,1990,20(4):107-114.
    [107]崔毅,陈碧鹃,宋云利等.胶州湾海水、海洋生物体中重金属含量研究[J].应用生态学报,1997,8(6):650-654.
    [108]Wan L,Wang N B,Li Q B, et al. Distribution of dissolved metals in seawater of Jinzhou Bay, China [J].Environmental Toxicology and Chemistry,2008 (27):43-48.
    [109]孙维萍,潘建明,吕海燕等.2006年夏冬季长江口、杭州湾及邻近海域表层海水溶解态重金属的平面分布特征[J].海洋学研究,2009,27(1):37-43.
    [110]陈志强,张海生等.三亚湾和榆林湾海水溶解态CU, Pb, Zn, Cd, Cr的分布[J].海洋环境科学,1999,18(2):31-37.
    [111]曲洪霞,董树刚,汤志宏等.罗源湾多介质中重金属的分布特征与评价[J].海洋环境科学,2009,28(3):293-308.
    [112]于涛.南海海水中溶解态铜、铅、锌、镉环境背景值的初步研究[J].台湾海峡,2003,22(3):299-333.
    [113]Lacerda L D, Goncalves G O. Mercury distribution and speciation in waters of the coastal lagoons of Rio de Janeiro, SE Brazil [J].Marine Chmistry,2001,76(1-2):47-58.
    [114]Gilmour C C, Henry E A. Mercury methylation in aquatic systems affected by acid deposition [J]. Environ Pollut,1991,71(2-4):131-69.
    [115]Watras C J, Bloom N S. The vertical distribution of mercury species in Wisconsin lakes: accumulation in plankton layers [A]. In:Watms C J, Huchabee J W (eds), Mercury Pollution-Integration and Synthesis[C].Lewis Publishers,Boca Raton,FL.1994.
    [116]Callister S M, Winfrey M R. Microbial methylation of mercury in upper Wisconsin river sediments [J]. Water, Air,& Soil Pollution,1986,29(4):453-465.
    [117]Mason R P, Sullivan K A. The distribution and speciation of mercury in the South and equatorial Atlantic [J]. Deep Sea Research Part II:Topical Studies in Oceanography,1999, 46(5):937-956.
    [118]Bisogni J J, Lawrence A W. Kinetics of Mercury Methylation in Aerobic and Anaerobic Aquatic Environments [J]. Journal of the Water Pollution Centrel Federation,1975,47(1): 135-152.
    [119]Hammerschmid C R, Fitzgerald W F, Lamborg C H, et al. Biogeochemistry of methylmercury in sediments of Long Island Sound [J]. Mar. Chem.2004,90(1-4):31-52.
    [120]Michel C, Ingram R G, Harris L R. Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago [J]. Prog. Oceanogr.2006,71(1-4):379-401.
    [121]刘凯,杨芳,冯新斌等.贵州省普定水库水体及沉积物孔隙水中汞的含量和形态分布初步研究[J].矿物岩石地球化学通报,2009,28(3):239-247.
    [122]Fitzgerald W F, Mason R P, Vandal G M, et al. Air-water cycling of mercury in lakes. In waters C J, Huckabee J W, eds. Mercury Pollution-Integration and Synthesis. Michigan:Lewis Publisher,1994:203-220.
    [123]Amyot M, Gill G a, Morel F M. Production and loss of dissolved gaseous mercury in costal seawater [J]. Environ Sci Technol,1997,31(12):3606-3611.
    [124]Lalonde J D, Amyot M, Orvoine J, et al. Photoinduced oxidation of Hg0(aq)in the waters from the St. Lawrence estuary[J]. Environ. Sci. Technol.2004,38(2):508-514.
    [125]Kim J, Fitzgerald W F. Gaseous mercury profiles in the Tropical Pacific Oceans [J]. Geophys. Res. Lett,1988,15(1):40-43.
    [126]Liss P S, Merlivat L. Air-sea exchange rates:introduction and synthesis. In:Buat-Menard, P. Ed, The Role of Air-Sea Exchange in Geochemical Cycling. NATO ASI series,1986:113-127.
    [127]Yasuo M, Masami K. The measurement of the viscosity coefficient of seawater [J]. Journal of Marine Research,1948,7(2):63-67.
    [128]HorneR A, Johnson D S. The viscosity of compressed seawater [J]. J Geophys Res,1966, 71(22):5275-5277.
    [129]Carlson D J. Techniques of fluorescence depolarization for measuring seawater viscosity [J]. Limnol Oceanogr,1987,32(6):1377-1381.
    [130]Carlson D J. Viscosity of sea surface slicks [J]. Nature,1987,329(29):823-825.
    [131]张安慧,张正斌,刘莲生等.胶州湾海水微表层粘度及其在海-气通量计算中的作用[J].青岛海洋大学学报,2002,32(3):456-462.
    [132]化工百科全书(10)[M].北京:化学工业出版社,1994.
    [133]Fitzgerald W F. Cycling of mercury between the atmosphere and oceans. In:Buat-Menard, P. Ed, The Role of Air-Sea Exchange in Geochemical Cycling. Reidel, Dordrecht,1986:363-408.
    [134]Wangberg I, Schmolke S, Schager P, et al. Estimates of air-sea exchange of mercury in the Baltic Sea [J]. Atmospheric Environment,2001,35(32):5477-5484.
    [135]Ferrara R, Mazzolai B, Lanzillotta E, et al.Temporal trends in gaseous mercury evasion from the Mediterranean seawaters [J]. The Science of the Total Environment,2000,259(1-3):183-190.
    [136]Coquery M, Cossa D. Mercury speciation in surface waters of the North Sea [J]. Netherlands Journal of Sea Research,1995,34 (4):245-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700