用户名: 密码: 验证码:
新型医用Ti-Nb-Zr-Sn合金组织和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于钛合金的d电子合金设计理论(DV-X分子轨道理论)和Mo当量设计思想,本文设计了三种成分为Ti-24Nb-5.2Zr-1.8Sn、Ti-24Nb-4.2Zr-0.8Sn、Ti-24Nb-4Zr(at.%)的β型钛合金。采用高真空电弧感应熔炼的方法制备合金铸锭,然后经过热锻并均匀化处理、冷轧、线切割、热处理过程。用差热分析仪测试合金的β/ +β相变点;采用X射线衍射仪(XRD)和金相组织观察对合金的相变特点进行研究;采用静载拉伸测试来确定合金的力学性能,并用维氏硬度计测量合金的硬度,用电化学工作站测试了合金的阳极极化曲线。
     三种合金在室温下都具有稳定的β相。热锻后经850℃保温1小时后淬火的合金冷轧压延率能够达到90%多而基本没有裂纹产生。固溶后的时效过程中有少量的高度弥散的?相生成,这会导致合金的极限强度、屈服强度、弹性模量、硬度、塑韧性的相应变化。但是因为生成的?相的量较少且高度弥散,致使XRD无法测试出来,合金的β/?相变点也无法测出。时效过程中塑韧性下降,但强韧性的匹配仍然较好。
     合金硬度的测试中发现,不同方向的硬度值稍有区别,这是因为合金中的织构使得合金产生了各向异性。
     实验中还用阳极极化曲线分析合金的耐蚀性,发现不同热处理制度下合金的耐蚀性差别不大,三种钛合金的耐蚀性都很好。
Based on the d-electron alloy design theory (DV-X molecular orbital method) and Mo equivalent designing theory for titanium alloys, three beta type titanium alloys Ti-24Nb-5.2Zr-1.8Sn、Ti-24Nb-4.2Zr-0.8Sn、Ti-24Nb-4Zr (at.%) were designed in the experiment. The ingots were prepared by high vacuum arc smelting furnace, then they were hot-forged and homogenizing treated, solution-treated and cool-rolled and finally annealed at different temperatures. Phase transformation characters were analysed by using X-ray diffraction (XRD) and optical microscope. The tensile property was tested by static stretching, hardness’tests used vickers hardness tester, and anodic polarization curves were tested by electrochemical workstation.
     The results show that the microstructure of the alloys is stable phaseβat room temperature. Hot-forged alloys were heated at 850℃for 1 hour and water quenched, then they could be cool rolled with reduction of more than 90% without any cracks. Small amount of highly dispersive ? phase formated during aging after solution treatment, which could lead to corresponding changes of the tensile strength, yield strength, Young’moludus, vickers hardness, plasticity and toughness. But due to the amout of ? phase is very small and highly dispersive, the X-ray diffraction (XRD) could’t find it, nor the transformation temperature ofβ/? cannot be measured by differential thermal analyzer(DTA) . Plasticity and toughness decrease during aging,but the match of strength and toughness is still good.
     When testing the vickers hardness, we find hardness values are dierent in different directions, this is because textures of alloys cause anisotropy of alloys’properties.
     The experiment also uses anodic polarization curves to analyse the alloys’corossion resistanse, finding out that alloys’corossion resistanse under different heat treatments is slightly different. Corossion resistanse of all the three alloys is good.
引文
[1]刘兰云.生物医用金属材料的研究进展.浙江工贸职业技术学院学报,2008,8(1):47~50
    [2]于振涛,周廉,王克光.生物医用β型钛合金的设计与开发.稀有金属快报,2004,23(1):5~10
    [3] Elias L M, Schneider S G, Schneider S, et al. Microstructural and mechanical characterization of biomedical Ti-Nb-Zr(-Ta) alloys. Materials Science and Engineering A, 2006, 432:108~112
    [4]任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展.材料导报,2002,16(2):12~15
    [5] CHOE Han-Cheol, Viswanathan S SAJI, KO Yeong-Mu. Mechanical properties and corrosion resistance of low rigidity quaternary titanium alloy for biomedical applications. Transactions of Nonferrous Metals Society of China, 2009, (19):862~865
    [6]查树银,崔振铎,刘彦军等.新型医用β-Ti28Nb24.5Zr合金组织和力学性能的研究.稀有金属材料与工程,2007,36(1):20~22
    [7] Conrado R M Afonso, Peterson L, Ferrandini, et al. High resolution transmission electron microscopy study of the hardening mechanism through phase separation in aβ-Ti-35Nb-7Zr-5Ta alloy for implant applications. Acta Biomaterialia, 2010, (6): 1625~1629
    [8]尹东芳,黄一飞.医用钛合金的生物相容性研究.医学研究杂志,2008,37(10):96~97
    [9]王明,宋西平.医用钛合金腐蚀、力学相容性和生物相容性研究现状.钛工业进展,2008,25(2):13~17
    [10]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社,2005
    [11]谢成木.钛及钛合金铸造.北京:机械工业出版社,2005
    [12] C.莱茵斯,M.皮特尔斯.钛与钛合金(陈振华等译).北京:化学工业出版社,2006
    [13]刘恒全,张勇,强华等.医用钛合金在体内的抗蚀性能及其影响因素.腐蚀与防护,2007,28(11):595~597
    [14] He G, Hagiwara M. Ti alloy design strategy for biomedical applications. Materials Science and EngineeringC, 2006,(26):14 ~ 19
    [15] Mitsuo Niinomi. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering A, 1998, (243) : 231~236
    [16] Rack H J, Qazi J I. Titanium alloys for biomedical applications. Materials Science and Engineering C, 2006, (26) : 1269~ 1277
    [17]周彦邦.钛合金铸造概论.北京:航空工业出版社,2000
    [18]曾珍.新型材料β钛合金的热处理.化学工程与装备,2009,(12):139~140
    [19] Guo W Y, Sun J, Wu J S. Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer’s solution. Materials Chemistry and Physics, 2009, 113: 816~820
    [20]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(II)——同素异构转变.钛工业进展,2008,25(1):40~44
    [21]戚玉敏,崔春翔,申玉田等.生物医用β-钛合金.河北工业大学学报,2003,32(6):7~11
    [22]于振涛,周廉,牛金龙等.合金元素、加工与热处理对医用β型钛合金力学性能的影响及微观分析.稀有金属,2007,31(4):416~419
    [23] Weiss I, Semiatin S L. Thermomechanical processing of beta titanium alloys. Materials Science and Engineering A, 1998 , (243) :46~65
    [24] Li Yang, Wei Qiang, Ma Chaoli, et al. Phase transformation in aβ-Ti alloy with good balance between high strength and high fracture toughness. Chinese Journal of Aeronautics, 2009, (22) :535~539
    [25]汶建宏,杨冠军,葛鹏等.β钛合金的研究进展.钛工业进展,2008,25(1):33~38
    [26]吴晓东,杨冠军,葛鹏等.β钛合金及其固态相变的归纳.钛工业进展,2008,25(5):1~5
    [27]杨永建,孙威,马秀梅.生物医用β型钛合金设计研究.科技创新导报,2009,(18):10~12
    [28]辛社伟,赵永庆.钛合金固态相变的归纳与讨论(Ⅳ)——同素异构转变.钛工业进展,2009,26(3):26~29
    [29]王荣滨.钛合金的热处理强化与应用研究.有色金属加工,2007,36(5):10~13
    [30]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(Ⅲ)——同素异构转变.钛工业进展,2008,25(3):26~32
    [31]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(I)——同素异构转变.钛工业进展,2007,24(5):23~27
    [32]段洪涛,李海涛,赵杰等.低弹性模量Ti-Nb-Zr合金的显微组织与力学性能.机械工程材料,2008,32(8):64~67
    [33] Yu Zhentao, Zhou Lian. Influence of martensitic transformation on mechanical compatibility of biomedicalβtype titanium alloy TLM. Materials Science and Engineering A, 2006, (438–440) :391~394
    [34] Shao G, Tsakiropoulos P . Prediction ofβphase formation in Ti-Al-X alloys. Materials Science and Engineering A, 2002 (329-331) :914~919
    [35] Qazi J I, Marquardt B , Allard L F, et al. Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys. Materials Science and Engineering C, 2005 (25) :389 ~397
    [36]邓安华.钛合金的马氏体相变.上海有色金属,1 9 9 9,20(4):193~199
    [37]李兆峰,黄伟九,刘明.人体用金属植入材料的研究进展.重庆工学院学报,2006,20(5):42~45
    [38]刘福,吴树建,王立强.新型医用钛合金的特点及发展现状.热加工工艺,2008,37(12):100~103
    [39]周宇,杨贤金,崔振铎.新型医用β-钛合金的研究现状及发展趋势.金属热处理,2005,30(1):47~50
    [40]闫玉华,殷湘蓉.人工关节的研究现状和发展趋势.生物骨科材料与临床研究,2004,1 (4):39~43
    [41] Hsu Hsueh-Chuan, Wu Shih-Ching, Sung Yu-Chih, et al. The structure and mechanical properties of as-cast Zr-Ti alloys. Journal of Alloys and Compounds 2009, (488): 279~283
    [42]宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺,2002,10 (1) :100~101
    [43]于思荣.生物医学钛合金的研究现状及发展趋势.材料科学与工程,2001,18(2):25~28
    [44] Guo W Y, Sun J, Wu J S, et al. Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer’s solution. Materials Chemistry and Physics, 2009, (113): 816~820
    [45] Peterson Luiz Ferrandini, Flavia Farias Cardoso. Aging response of the Ti-35Nb-7Zr-5Ta and Ti-35Nb-7Ta alloys. Journal of Alloys and Compounds, 2007, (433): 207~210
    [46] Kent D, Wang G, Yu Z, et al. Pseudoelastic behaviour of aβTi-25Nb-3Zr-3Mo-2Sn alloy. Materials Science and EngineeringA, 2010, (527): 2246~2252
    [47] Geetha M, Mudali U Kamachi, Gogia A K, et al. Influence of microstructure and alloying elements on corrosion behavior of Ti-13Nb-13Zr alloy. Corrosion Science, 2004, (46): 877~892
    [48] Saji Viswanathan S, Choe Han Cheol. Electrochemical corrosion behaviour of nanotubular Ti-13Nb-13Zr alloy in Ringer’s solution. Corrosion Science, 2009, (51): 1658~1663
    [49]杨文,李小武,张广平.生物医用含锡元素钛合金的研究和进展.材料导报,2007,21(9):56~58
    [50]张旺峰,黄旭,李兴无等.钛合金的设计方法及其研究进展.材料导报,2005,19(3):1~4
    [51]赵立臣,崔春翔,刘双进等.基于d电子合金设计方法的生物医用新型亚稳β钛合金的设计及性能研究.稀有金属材料与工程,2008,37(1):108~111
    [52] Mohamed Abdel-Hady, Hiroki Fuwa. Phase stability change with Zr content inβ-type Ti–Nb alloys. Scripta Materialia, 2007, 57:1000~1003
    [53] Wang Liqiang, Yang Guanjun,Yang Huabin, et al. Microstructure and Mechanical Properties of TiNbZr Alloy during Cold Drawing. Rare Metal Materials and Engineering, 2009, 38(4):0579~0582
    [54] Mohamed Abdel-Hady, Keita Hinoshita, Masahiko Morinaga. General approach to phase stability and elastic propertiesofβ-type Ti-alloys using electronic parameters. Scripta Materialia, 2006, (55):477~480
    [55] Daisuke Kuroda, Mitsuo Niinomi, Masahiko Morinaga, et al. Design and mechanical properties of newβtype titanium alloys for implant materials. Materials Science and Engineering A, 1998, (243):244~249
    [56] Wang Liqiang, Lu Weijie, Qin Jining, et al. Influence of cold deformation on martensite transformation and mechanical properties of Ti-Nb-Ta-Zr alloy. Journal of Alloys and Compounds, 2009, (469) :512~518
    [57] Wang Liqiang, Yang Guanjun ,Yang Huabin, et al. Characterization of Microstructure and Mechanical Properties of TiNbZr Alloy during Heat Treatment. Rare Metal Materials and Engineering, 2009, 38(7): 1136~1140
    [58] E. Delvat, D.M. Gordin, T. Gloriant,et al. Microstructure, mechanical properties and cytocompatibilityof stable beta Ti-Mo-Ta sintered alloys. Journal of the mechanical behavior of biomedical materials, 2 0 0 8, (1) : 3 4 5 ~3 5 1
    [59] Nilson T C Oliveira, Aleixo Giorgia, Caram Rubens,et al. Development of Ti-Mo alloys for biomedical applications: Microstructure and electrochemical characterization. Materials Science and Engineering A, 2007,(452–453): 727~731
    [60] Chen Yu-yong, Xu Li-juan, Liu Zhi-guang, et al. Microstructures and properties of titanium alloys Ti-Mo for dental use. Trans. Nonferrous Met. SOC. China, 2006, (16) :824~828
    [61] Oliveira N T C , Guastaldi A C .Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomaterialia, 2009, (5) : 399~405
    [62] Barry O’Brien , Jon Stinson, William Carroll. Initial exploration of Ti-Ta, Ti-Ta-Ir and Ti-Ir alloys: Candidate materials for coronary stents. Acta Biomaterialia , 2008 , (4) : 1553~1559
    [63] Maeshima T , Nishida M. Shape Memory Properties of Biomedical Ti-Mo-Ag and Ti-Mo-Sn Alloys. Materials Transactions, 2004, 45: 1096~1100
    [64] Maeshima T, Ushimaru S, Yamauchi K, et al. Effects of Sn Content and Aging Conditions on Superelasticity in Biomedical Ti–Mo–Sn Alloys. Materials Transactions, 2006, 47(3):513~517
    [65]谢华生,刘时兵,苏贵桥等.植入用Ti-Nb合金弹性模量及力学性能与显微组织的研究.铸造,2005,54(4):348~350
    [66] Inoue A, Wadab T, Wang X M, et al. Bulk non-equilibrium alloys and porous glassy alloys with unique mechanical characteristics. Materials Science and Engineering A, 2006, 442:233~242
    [67] Takahashi E, Sakurai T, Watanabe S, et al. Effect of Heat Treatment and Sn Content on Superelasticity in Biocompatible TiNbSn Alloys. Materials Transactions, 2002, 43: 2978~2983
    [68] Matsumoto H, Watanabe S, Hanada S, et al. Beta TiNbSn Alloys with Low Young’s Modulus and High Strength. Materials Transactions, 2005, 46(5):1070-~1078
    [69] Zhou Ying Long, Niinomi Mitsuo, Akahori Toshikazu, et al. Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, 2005 , (398) : 28~36
    [70] Zhou Ying-Long, Niinomi Mitsuo. Ti-25Ta alloy with the best mechanical compatibility in Ti-Ta alloys for biomedical applications. Materials Science and Engineering C, 2009 (29) : 1061~1065
    [71] Ho Wen-Fu, Cheng Chung-Hsiao, Pan Chang-Hung, et al. Structure, mechanical properties and grindability of dental Ti-10Zr-X alloys. Materials Science and Engineering C , 2009, (29) : 36~43
    [72] Geetha M, Singh A K , Asokamani R , et al. Ti based biomaterials—the ultimate choice for orthopaedic implants. Progress in Materials Science, 2009 (54) :397~425
    [73] Yang Guanjun,Zhang Tao. Phase transformation and mechanical properties of the Ti50Zr30Nb10Ta10alloy with low modulus and biocompatible. Journal of Alloys and Compounds, 2005, (392) : 291~294
    [74] Wang Liqiang, Lu Weijie, Qin Jining, et al. Influence of cold deformation on martensite transformation and mechanical properties of Ti-Nb-Ta-Zr alloy. Journal of Alloys and Compounds, 2009, (469) : 512~518
    [75] Banerjee R, Nag S , Fraser H L. A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants. Materials Science and EngineeringC , 2005 , 25 (3) : 282~289
    [76]徐丽娟,陈子勇,陈玉勇等.医用Ti-39Nb-5.1Ta-7.1Zr合金的研制及性能特点.稀有金属材料,2005,34(增刊3):148~150
    [77] Hao Y L , Li S J , Sun S Y , et al. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti-Nb based alloys. Materials Science and Engineering A, 2006, (441) :112~118
    [78]李军,周廉,李佐臣等.新型医用钛合金Ti-12.5Zr-2.5Nb-2.5Ta的研究.稀有金属材料与工程,2003,32(5):398~400
    [79]张英明,周廉,孙军等.钛合金真空自耗电弧熔炼技术发展.稀有金属快报,2008,27(5):9~14
    [80]王琛,毛小南,于兰兰等.合金熔炼技术的进展.热加工工艺,2009,38(17):42~45
    [81] Li S J , Zhang Y W , Sun B B , et al. Thermal stability and mechanical properties of nanostructured Ti-24Nb-4Zr-7.9Sn alloy. Materials Science and Engineering A, 2008, 480 : 101~108
    [82] Zhou Yu, Li Yuxuan, Yang Xianjin,et al. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75?xNb25Zrx (x = 0–6) alloys. Journal of Alloys and Compounds,2009,(486): 628~632
    [83]李强,杨贤金,崔振铎等.Sn含量对TiNbZr合金组织的影响.功能材料信息,2006,3(3):46~50
    [84]付艳艳,于振涛,周廉等.显微组织对Ti-13Nb-13Zr医用钛合金力学性能的影响.稀有金属材料与工程,2005,34(6):881~884
    [85]陈绍楷,田弋纬,常璐等.钛合金+β/β转变温度测定的金相法与差热分析法对比研究.稀有金属材料与工程,2009,38(11):1916~1919
    [86] Kim H Y , Kim J I , Inamura T , et al. Effect of thermo-mechanical treatment on mechanical properties and shape memory behavior of Ti-(26-28) at.% Nb alloys. Materials Science and Engineering A, 2006, (438–440): 839~843
    [87]李佐臣,李常亮,裘松波等.外科植入TAMZ合金生物学评价.稀有金属材料与工程,1998 ,27 (1) :59~ 62
    [88]王艳玲,惠松骁,叶文君等.新型医用钛合金Ti-39Nb-6Zr显微组织和力学性能的研究.热加工工艺,2009,38(14):36~40
    [89] Mitsuo Niinomi. Fatigue performance and cyto-toxieity of low rigidity titan ium alloy Ti-29Nb-13Ta-4.6Zr. Biomaterials, 2003,(24): 2673~2683
    [90]赵立臣,崔春翔,黄楠.两种新型生物医用低弹性模量亚稳β钛合金的设计与性能研究.材料研究,2009,(2):13~16
    [91]郝玉琳,杨锐,李述军等.”马氏体相对Ti-29Nb-13Ta-4.6Zr医用钛合金杨氏模量和力学性能的影响.金属学报,2002,38(增刊):236~229
    [92]贾庆卫,宁聪琴,丁冬雁等.低弹性模量骨科植入物材料β钛合金的研制与实验研究.中国矫形外科杂志,2008,16(3)214~218
    [93]张金民,李慧,高一龙等.钛合金β相向?相转变产生的漫散射条纹特征.材料开发与应用,2008,23(1):8~16
    [94]付艳艳,宋月清,惠松骁等.β钛合金的强韧化机制分析.稀有金属,2009,33(1):92~95
    [95]秦莹,王少安.钛及钛合金口腔种植体的腐蚀性能研究.国际口腔医学杂志, 2008 ,35卷(增刊),255~258
    [96]辛湘杰.钛的腐蚀、防护及工程应用.安徽,安徽科学技术出版社,1988
    [97] Nilson T C Oliveira, Elivelton A, Ferreira, et al. Corrosion resistance of anodic oxides on the Ti-50Zr and Ti-13Nb-13Zr alloys. Electrochimica Acta, 2006, (51): 2068~2075
    [98] Gordi D M , Gloriant T , Nemtoi GH , et al. Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial. Materials Letters , 2005 , 59 (23) : 2959~2964
    [99] Nakagawa M, Matono Y , Matsuya S ,et al. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials, 2005 , 26 (15): 2239~ 2246

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700