用户名: 密码: 验证码:
氯甲烷尾气深度回收方法的比较与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯甲烷是有机硅单体甲基氯硅烷合成的重要原料,在原料成本中占有较大比重。在有机硅生产工艺中,产生的排放尾气中仍含有20~30wt%的氯甲烷,目前对于该部分尾气并没有采取有效地处理,而是直接输送到下游工艺进行焚烧,这将造成氯甲烷资源的严重浪费。因此需要对该部分尾气进行进一步回收,减少资源的浪费,提高经济效益。本文在精馏精制和压缩冷凝回收工艺的基础上对某工厂排放的两种含氯甲烷尾气进行进一步回收处理,并应用UniSim Design化工模拟软件对流程进行模拟优化。
     本文以工厂拟回收的含氯甲烷的气体和液体为原料,在精制精馏工艺的基础上分别采用冷凝、膜分离和吸收法对排放尾气中氯甲烷进行回收处理。通过对改造流程进行优化,并以经济效益为改造流程优劣的评判标准对三种方案进行比较。经过三种方案处理后排放尾气中氯甲烷质量浓度从27wt%分别降到6.4wt%、6.9wt%、4.3wt%,经济效益分别增加272万元/年、283万元/年和243万元/年。膜分离法可以在低消耗低投资的前提下使工厂获得最高经济效益增长,更符合工厂处理氯甲烷尾气的实际需要。
     以工厂上游有机硅生产过程中的粗单体塔出气为原料气,在压缩冷凝工艺的基础上采用膜分离法对排放尾气中氯甲烷进行回收处理。通过对改造流程进行优化分析,选取最优操作参数后进行模拟。经过膜分离法处理后排放尾气中氯甲烷质量浓度从19.5wt%降到8.5wt%,经济效益增加69万元/年。将优化后的膜分离—压缩冷凝流程从静态转成动态,通过对混合器、压缩机等传统设备参数进行特殊化以及对膜分离器进行动态重组后,通过改变流程进料量来考察流程中各处工艺参数的波动情况并进行分析。当流程进料发生的改变时,对于传统设备,处于工艺下游的设备相关参数波动达到稳定的时间逐一延长,参数曲线波动幅度也逐渐变大,并且表现出与相关设备参数的逻辑控制原理相符的波动趋势。而对于膜分离设备,渗余气中氯甲烷含量曲线的变化与流量曲线呈现出相同的变化趋势,并没有表现出明显的延迟性和滞后性,而与其它传统设备相比,膜分离设备显现出良好的操作稳定性和工作稳定性。
Chloromethane was an important raw material used for synthesis of methyl chlorosilane, one kind of the organic silicon monomer, which accounted for a large proportion of the synthesis cost. In the organic silicon production process, the masas fraction of the chloromethane in the vent gas was about 20-30 wt%, this part of the vent gas was not taken to effectively deal with, but directly transported to the downstream process for incineration, which resulted in serious wastage of resource. In order to reduce the wastage of the resource and increase economic profit, it was necessary to recover chloromethane from the vent gas. In this paper, based on rectification and compression condensation separation processes, two kinds of chloromethane vent gas were taken for further recycling, and the processes were simulated and optimized by UniSim Design software.
     In this paper, the raw materials in the rectification system were the proposed recycling gas and liquid, and three methods were coupled with the rectification process for the chloromethane recovery, including condensation, membrane separation and absorption, spectively. After simulated and optimized, three recovery processes were compared by economic profit increasing. The mass fractions of chloromethane in the gas were reduced from 27.0 wt% to 6.4 wt%,6.9 wt%,4.3 wt% after treated by the three designed processes, with the economic profit increasing 2.72,2.83,2.43 million yuan/year, respectively. From the aspect of economic profit, the membrane separation method was the optimal one in comparison to the other two methods, for it could achieve the highest enhancement in economic profit by lower consumption and less investment, which meeted the demand of the chloromethane treatment.
     The raw material in the compression condensation separation process was the crude single tower outlet gas from the production of organic silicon, and the membrane separation method was coupled with the compression condensation process for the chloromethane recovery. The recovery process was simulated and optimized, and the optimal parameter was also achieved finally.The mass fraction of chloromethane in the gas was reduced from 19.5 wt% to 8.5 wt% after treated by the designed process, with the economic profit increasing 0.69 million yuan/year.
     The condensation-vapor membrane process was transformed from static process to dynamic process. After the key parameters of traditional equipments, such as mixer, compressor and so on, were specialized and the the model of membrane separator was restructured, the key parameters of dynamic process were analyzed by changed the flow rate of the raw material. When the flow rate of the raw material was changed, for the traditional equipments, compared with the time that the fluctuations of the key parameter curves got stabilized to need, the time that downstream equipments needed is longer than that of upstream equipments needed, and the fluctuations that the downstream equipments parameters got were more obvious. The fluctuation trends of the key parameter curves were all consistent with the controlling principles of the key parameters. For membrane separator, as a new kind of separator equipment, the fluctuation trend of the mass fraction of chloromethane was the same as the fluctuation trend that the flow rate curve showed, but did not showed significant delay and lag. Compared with the other traditional devices, membrane seperation showed more excellent operation and work stability.
引文
[1]孟祥凤.我国甲基氯硅烷生产水平及其差距浅析[J].有机硅材料,2000,14(2):1-6.
    [2]王沛熹,罗丽宏.甲基氯硅烷的生产开发和衍生加工[J].中国氯碱,2002,(01):26-29.
    [3]张桂华.我国有机硅单体的生产及工艺分析[J].化工新型材料,2003,13(10):1-3.
    [4]卜新平.国内外有机硅行业市场现状与发展趋势[J].化学工业,2008,26(6):39-46.
    [5]王春江.有机硅化合物的生产与发展[J].化工科技市场,2001,(09):15-17.
    [6]陶心泉.国内外有机硅应用概况[J].浙江化工,1982,(01):22-27.
    [7]宁寻安,叶锦新.甲基氯硅烷生产过程中的污染防治对策[J].有机硅材料,2004,18(5):24-25.
    [8]杨聚法,解自杰,陈国峰.氯甲烷的合成与应用[J].中国氯碱,1996,(12):39-40.
    [9]刘忠生,陈玉香,林大泉,李东旭,李花伊.催化燃烧处理有机废气及催化剂中毒的防止[J].化工环保,2000,20(03):27-30.
    [10]唐运雪.有机废气处理技术及前景展望[J].湖南有色金属,2005,21(05):31-35.
    [11]张旭东.工业有机废气污染治理技术及其进展探讨[J]环境研究与监测,2005,18(01):24-26.
    [12]Wang L F, Trana T P, Vo D V. Design of novel Pt-structured catalyst on anodic aluminum support for VOC's catalytic combustion [J]. Applied Catalysis A:General,2008,350(2): 150-156.
    [13]马生柏,汪斌.有机废气处理技术研究进展[J].内蒙古环境科学,2009,21(02):55-58.
    [14]Liu Y J, Fenga X, Lawless D. Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control [J]. Journal of Membrane Science.2006, 271(1-2):114-124.
    [15]冯智星,余炳林,胡勇,谢永恒.有机废气(VOC)处理技术[J].广东科技,2008,(14):3-5.
    [16]王志伟,耿春香,安慧.膜法回收有机蒸汽进展[J].环境科学与管理,2009,34(03):100-105.
    [17]谭明侠,王国军,谢建川VOCs催化燃烧技术[J].川化,2006,(02).12-15.
    [18]赵永才,郑重VOCs催化燃烧技术及其应用[J].绝缘材料,2007,40(05):70-74.
    [19]何毅,王华,李光明,赵修华,赵建夫.有机废气催化燃烧技术[J].江苏环境科技,2004,17(01):35-38.
    [20]朱伟,刘建新.石油化工中有机废气处理研究进展[J].化工时刊,2008,22(03):71-75.
    [21]欧海峰,林金画.活性炭纤维吸附-催化燃烧装置处理有机废气[J].环境污染与防治,2002,24(02):85-86.
    [22]蔡宇峰,李海强,蓝炳杰,黄炳辉,杨远盛,蔡周祥.活性炭纤维吸附·催化燃烧法处理大风量低浓度VOCs废气[J].科技创新导报,2009,(18):80-81.
    [23]Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. Journal of Membrane Science,2006,279(1-2):1-49.
    [24]Mohammed Al-Juaied, W.J.Koros. Performance of natural gas membranes in the presence of heavy hydrocarbons[J]. Journal of Membrane Science,2006,274:227-243.
    [25]Liu Y J, Fenga X, Lawless D. Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control [J]. Journal of Membrane Science.2006, 271(1-2):114-124.
    [26]Martin P Rohde, Unruh D, Schaub G. Membrane application in Fischer-Tropsch synthesis reators-overview of concepts [J].Catalysis Today,2005,106:143-148.
    [27]周大勇.吸收法回收油气工艺研究[J].精细石油化工进展,2005,6(06):21-24.
    [28]谢红岩.吸收法油气回收过程汽液平衡数据测定与工艺优化[D]天津大学,2009.
    [29]陆恩锡,秦云锋,张慧娟.吸收稳定系统塔板数的集成设计[J].炼油设计,2001,31(3):46-49.
    [30]黄明富,李国庆,李亚军,高国正.吸收稳定系统稳定塔侧线汽油作补充吸收剂[J].炼油技术与工程,2008,38(11):22-25.
    [31]柴永峰.膜—压缩冷凝耦合回收GTL尾气中轻烃的研究[D].大连理工大学,2009,(09).
    [32]高武龙,董坤伦.活性炭纤维吸附-冷凝技术在有机废气回收净化中的应用[J].广东化工,2010,37(08):242-243.
    [33]张丽娜.乙硫醇废气的ACF-O_3吸附氧化处理工艺研究[D].浙江大学,2007,(02).
    [34]时均,袁权,高从增.膜技术手册[M].北京:化学工业出版社,2001.
    [35]R.W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res.41 (2002), pp.1393-1411.
    [36]刘丽,邓卖村,袁权.气体分离膜研究和应用新进展[J].现代化工,2000,20(1):17-21.
    [37]R.W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res.41 (2002), pp.1393-1411:
    [38]张秀娟,贺高红,吴玉斌,黄冬兰,杨宝功.蒸气渗透膜法回收有机蒸气[J].化工进展,2003,22:119-124.
    [39]Baker R W, Wijmans J G, Kaschemekat J H. The design of membrane vapor-gas separation systems [J]. Journal of Membrane Science,1998,151:55-62.
    [40]贺高红.中空纤维膜气体分离过程的研究[D].大连:中国科学院大连化学物理研究所,1993.
    [41]李文波,毛鹏生,王长英,俞裕国.化工流程模拟技术的现状与发展[J].化工时刊,1998,12(06):3-6.
    [42]Lu EX, Zhang HJ and Yin QH. Simulation of chemical engineering process and technology. Chemical Industry and Engineering Progress,1999,18 (4):63-64.
    [43]Lu EX, Zhang. Simulation of chemical engineering process and technology. Chemical Industry and Engineering Progress,2000,19(3):64-67.
    [44]谢扬,沈庆扬ASPEN PLUS化工模拟系统在精馏过程中的应用[J].化工生产与技术,1999,6(03):17-24.
    [45]孙巍,李琳,陈晓春ASPEN Plus在工业精馏塔故障诊断与参数寻优中的应用[J].化工进展,2005,24(08):935-937.
    [46]卢昶ASPEN PLUS软件在大型聚丙烯装置的应用[D]天津大学,2009.
    [47]Smejkal Q. Comparison of computer sioulation of reactive distillation using ASPEN PLUS and HYSYS software, Chemical Engineering and Proeessing.41(2002):413-418.
    [48]孙红先,赵听友,蔡冠梁.化工模拟软件的应用与开发[J].2007,24(9):1285-1288.
    [49]胥家瑞.化工模拟系统[J]天津化工,2002,(04):42.
    [50]郭宏远,左信,罗雄麟,曲德伟.基于Unisim的催化裂化分馏塔的模拟与优化[J].2008,(3):1-6.
    [51]Honeywell. UniSim Design Simulation Basis-Reference Guide.2005:A4-A14.
    [52]范瑛琦,贺高红,阮雪华,李保军,聂飞,周岗.膜法回收天然气制合成油装置弛放气中氢气的流程分析[J].石油化工,2009,38(11):1201-1205.
    [53]朱向阳.焦化装置吸收稳定系统的模拟与优化[D]大连理工大学,2010.
    [54]冯海春Hysys软件在分析精丙烯硫化物来源中的应用[J].炼油设计,2002,32(10):32-35.
    [55]周明宇,于长海,刘龙HYSYS模拟在换热器计算中的应用[J].辽宁化工,2006,35(8):497-500.
    [56]郭广智.石油化工动态模拟软件HYSYS[J]石油化工设计,1997,14(3):29-33.
    [57]Motard R.L., Shachem M., Rosen E.M. Steady State Chemical Process Simulation [J]. AICHE, 1975,21(3):417-36.
    [58]经文魁.化工过程稳态模拟技术的现状和发展趋势闭[J].现代化工,1995,15(2):17-20.
    [59]陆恩锡,张慧娟,尹清华.化工过程模拟及相关高新技术(Ⅰ)化工过程稳态模拟[J].现代化工,1999,14(4):63-64.
    [60]杨友麒.化工过程模拟[J].化工进展,1996,(03):1-8.
    [61]孙卫国,伏妍,李洁,高阳光,兰其盈.丙烯精馏塔动态模拟[J].石化技术与应用,2008,26(02):153-157.
    [62]张兵.化工动态优化方法的研究与应用[D].浙江大学,2005.
    [63]卢山.延迟焦化装置的动态模拟[D].中国优秀博硕士学位论文全文数据库(硕士),2003,(01).
    [64]陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅱ)化工过程动态模拟[J].化工进展,2000,(01):76-78.
    [65]Yongho L, L Jeongseok, P Sunwon. PID Controller Tunning for Interating and Unstable Processes with Time Delay. Chemical Engineering Science,55(2000):3481-3493.
    [66]郭广智,何中德.用动态模拟软件HYSYS指导装置生产[J].石油化工设计,1997,14(4):53-57.
    [67]李大鹏,赵元松.基于热力学系统动力学的冷凝器动态仿真建模.计算机仿真,2006,23(8):60-63.
    [68]张琴舜,邹文进,沈秀中等.冷凝器动态数学模型和仿真研究.计算机工程,200l,27(2):186-187.
    [69]NaKaiwa, M, Huang,K., Naito, K. Parameter analysis and optimization of ideal heat integrated distillation columns. Computers and Chemical Engineering,2001,5(25):737-744.
    [70]Liu Xingao, Qian Jinxin. Model, Control and Optimization of ideal Intervally Coupled Distillation Coluxnns. Chemical Engineering and Technology,2000,23(3):235-24.
    [71]王亮,吕文祥,黄德先.动态流程模拟及其在精馏塔的操作分析中的应用[J].计算机与应用化学,2003,23(1):83-87.
    [72]李永旺,徐源元,程懋圩.化工过程模拟中求解非线性方程组的一种有效方法[J].计算机与应用化学,1991,(03):216-220.
    [73]田丰,李有润.化工过程模拟中的迭代收敛方法[J].石油炼制与化工,1985,(12):57-62.
    [74]顾雄毅,沈荣春,朱开宏.流程模拟系统在化工教学中的应用[J].化工高等教育.2009,(2):72-74.
    [75]聂飞,贺高红,窦红等.全国石油和化工行业节能和节水技术—第二届论坛论文选编[C].北京:化学工业出版社,2007:37-40.
    [76]王鹏宇.气体膜分离过程HYSYS模拟系统的研究[D].大连:大连理工大学化工学院,2005.
    [77]杨友麒,项曙光.化工过程模拟与优化(M).第1版.北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700