用户名: 密码: 验证码:
聚电解质多层膜的组装、压缩及其性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于层层自组装的聚电解质多层膜因其结构、组成和性质等的易可控性而得到了飞速发展。世界知名的CIBA公司于2002年推出了第一款以层层自组装超薄膜为表面涂层的产品。聚电解质多层膜在基础研究和应用开发方面都取得了丰硕的成果。通过改变聚电解质多层膜的结构或引入功能性组份(如纳米粒子,荧光量子点等),还可获得具有各种功能的层层组装聚电解质多层膜。本课题组发现了聚电解质多层膜具有可压缩的现象,为多层膜的物理图案的构建提供了一种新的方法。多层膜压缩后,也引起了一系列的性质变化。
     在此基础上,本文着眼于强弱共聚的聚电解质即聚苯乙烯共聚马来酸(PSSMA)为负电解质,通过改变组装时盐浓度和种类、pH值来调控多层膜的组装和压缩,另外,把压缩和纳米粒子的原位合成结合,赋予多层膜新的功能。
     首先,研究了盐对PSSMA/聚二烯丙基二甲基铵盐酸盐(PDADMAC)多层膜的影响,发现随着组装时NaCl浓度的增加,多层膜的压缩率是逐渐增加的;而随着NaBr浓度的增加,多层膜的压缩率却基本保持不变。通过改变盐的浓度和种类,可以方便地可逆调控多层膜的性质和压缩程度。
     其次,研究了pH值对多层膜的组装和性质以及压缩对多层膜内原位合成银纳米粒子的影响。系统研究了聚电解质溶液pH值对多层膜的厚度、表面形貌及压缩性质的影响。研究发现,在pH 4条件下组装的多层膜指数化程度最大,膜最厚。随着pH值的增加,其指数化程度逐渐降低;在pH为8时,其指数化程度为最低。pH 2和pH 10条件下组装的多层膜则呈线性增长。利用原位合成技术在多层膜内制备了纳米银粒子。综合紫外和XRD的测试结果可知,在pH 2,pH 4和pH 5的条件下组装的多层膜,未压缩膜内生成的纳米银粒子较压缩后膜内生成的纳米银粒子多。而在pH 6的条件下,未压缩膜和压缩膜中纳米银粒子的数量并没有明显的差异,数量都非常少。另外,发现了形成纳米粒子的过程对多层膜内部分子的链重排起到了关键作用。
     再次,研究了金属铜离子对多层膜的性质和压缩的影响。发现铜离子浓度影响多层膜的增长方式。当多层膜中存在铜离子时,多层膜很难被压缩;一旦铜离子被除去后,多层膜的压缩程度则大幅度提高。
     最后,系统地研究了不同干燥时间对多层膜压缩形成图案的影响,发现随着多层膜干燥时间的增加,经压缩后依次可以得到双条带、脊状和薄条带图案,提出了压缩模型和机理。另外,也研究了多层膜图案化压缩后的稳定性动力学问题,以及图案稳定性的控制问题。利用多层膜在含水量较多时压缩具有侧向流动这一原理,我们简化了压缩手段,并且可以很方便地进行纳米粒子三多层膜表面的定向排列。
Over the past decades, the polyelectrolyte multilayers assembled with thelayer-by-Layer (LbL) technique have been well developed because of theircontrollable compositions, structures and properties. The polyelectrolyte multilayershave achieved great success in both of fundamental researches and practicalapplications. CIBA-Vision has announced the first commercially available productthat is equipped with a multilayer coating in 2002. The functional polyelectrolytemultilayers can also be fabricated by changing their structures or introducingfunctional materials such as nanoparticles or luminescent quantum dots. Recently, ourgroup has reported the irreversible compression of polyelectrolyte multilayers bypressing a poly(dimethylsiloxane) (PDMS) stamp against the films. It furtheraugments the technique for fabricating physical patterns of the polyelectrolytemultilayers. It also brings new properties after the multilayers are compressed.
     In this work, the focus is on the polyelectrolyte poly(4-styrenesulfonicacid-co-maleic acid) sodium salt (PSSMA) containing both strongly charged andweakly charged blocks. The assembling behaviour, properties and compression ratiosof the PSSMA/poly(diallyldimethylammonium chloride) (PDADMAC) multilayerscan be easily controlled by adjusting salt concentrations and salt type or theassembling pH value. Combining compression with in situ synthesis nanoparticles,the multilayers are endowed with new functions as well.
     Firstly, influence of salt on assembly and compression of PSSMA/PDADMACmultilayers was studied. Results reveal that the compression ratio increased alongwith the increase of NaCl concentration, whereas kept constant when NaBr was used.It shows that the properties and compression ratios of the multilayers were reversiblymediated by the salts.
     Secondly, controlling the properties and compression of the multilayers by pHand effect of compression on in situ synthesis of Ag nanoparticles in the multilayerswere carried out. Influence of pH on the thickness, morphology and compression of the multilayers was detailedly studied. The multilayers assembled at pH 4 showed thelargest exponential growth, and it was thickest. With the increase of pH, the degree ofexponential growth of the multilayers decreased. The multilayers assembled at pH 2and pH 10 showed the linear growth. Ag nanoparticles were obtained by in situsynthesis in the multilayers. When the multilayers were assembled at pH 2, 4, and 5,the numbers of Ag nanoparticles in the compressed multilayers were much fewer thanin the uncompressed multilayers, while the multilayers were assembled at pH 6, thenumbers of Ag nanoparticles in the compressed multilayers and in the uncompressedmultilayers were both very few. Results reveal that the process of in situ synthesisnanoparticles plays a key role in readjustment of the polyelectrolyte chains.
     Then, the properties and compression of the multilayers were tuned by copperions. The copper ions concentrations affected the multialers growth. When themultilaylers contained the copper ions, their compression ratios were small; however,when the copper ions were removed from the multilayers, the compression ratioscould be largely improved.
     Finally, we found that the pattern formation of the multilayers was dependent onthe drying time of the multilayers prior to compression. Along with the prolongationof drying of the multilayers, compression of the multilayers by a stamp with linearpatterns obtained double strips, high ridges and linear patterns on the multilayers,respectively. Based on these observations, a theoretical model was suggested. Thestability kinetics of the pattern for the compressed multilayers and the stabilitycontrolling of the pattern were studied. Based on the mechanism of the lateral flow ofthe multilayers, the compression process was simplified, and we successfully arrayedthe nanoparticles on the multilayers.
引文
[1] Iler RK. Multilayers of colloidal particles. J. Colloid Interface Sci. 1966, 21:569-572.
    [2] Keller SW, Johnson SA, Brigham ES, Yonemoto EH. Mallouk TE. Photoinduced charge separation in multilayer thin films grown by sequential adsorption of polyelectrolytes. J. Am. Chem. Soc. 1995,117: 12879-12880.
    [3] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites.Science 1997,277: 1232-1237.
    [4] Decher G, Hong JD. Buildup of ultrathin multilayer films by a self-assembly process. 1 Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol. Chem. Macromol. Symp. 1991,46: 321-327.
    [5] Decher G, Lehr B, Lowack K, Lvov Y, Schmitt J. New nanocomposite films for biosensors-layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA.Biosen. Bioelec. 1994, 9: 677-684.
    [6] Ruths J, Essler F, Decher G, Riegler H. Polyelectrolytes I: Polyanion/polycation multilayers at the air/monolayer/water interface as elements for quantitative polymer adsorption studies and preparation of hetero-superlattices on solid surfaces. Langmuir 2000,16: 8871-8878.
    [7] Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew.Chem. Int. Ed. 1998, 37: 2201-2205.
    [8] Caruso F, Caruso RA, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282: 1111-1114.
    [9] Decher G, Schlenoff JB. Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. Wiley-VCH, 2002.
    [10] Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF. Direct Electrochemistry of Myoglobin and Cytochrome P450cam in Alternate Layer-by-Layer Films with DNA and Other Polyions. J. Am. Chem. Soc. 1998,120: 4073-4080.
    [11] Kim H, Doh J, Irvine DJ, Cohen RE, Hammond PT. Large Area Two-Dimensional B Cell Arrays for Sensing and Cell-Sorting Applications.Biomacromolecules 2004, 5: 822-827.
    [12] Campas M, O' Sullivan C. Layer-by-layer biomolecular assemblies for enzyme sensors, immunosensing, and nanoarchitectures. Anal, Lett. 2003, 36:2551-2569.
    [13] Izumrudov VA, Kharlampieva E, Sukhishvili SA. Multilayers of a Globular Protein and a Weak Polyacid: Role of Polyacid Ionization in Growth and Decomposition in Salt Solutions. Biomacromolecules 2005, 6:1782-1788.
    [14] Berg MC, Zhai L, Cohen RE, Rubner MF. Controlled Drug Release from Porous Polyelectrolyte Multilayers. Biomacromolecules 2006, 7: 357-364.
    [15] Wood KC, Boedicker J Q, Lynn DM, Hammond PT. Tunable Drug Release from Hydrolytically Degradable Layer-by-Layer Thin Films. Langmuir 2005, 21:1603-1609.
    [16] Fou AC, Onitsuka O, Ferreira M, Rubner MF, Hsieh BR. Fabrication and properties of light-emitting diodes based on self-assembled multilayers of poly(phenylene vinylene). J. AppL Phys. 1996, 79: 7501-7509.
    [17] Eckle M, Decher G. Tuning the Performance of Layer-by-Layer Assembled Organic Light Emitting Diodes by Controlling the Position of Isolating Clay Barrier Sheets. Nano Lett. 2001, 1: 45-49.
    [18] Nolte A J, Rubner MF, Cohen RE. Creating Effective Refractive Index Gradients within Polyelectrolyte Multilayer Films: Molecularly Assembled Rugate Filters.Langmuir 2004, 20:3304-3310.
    [19] Lukkari J, Salom(a|¨)iki M, Viinikanoja A, (A|¨)(a|¨)ritalo T, Paukkunen J, Kocharova N,Kankare J. Polyelectrolyte Multilayers Prepared from Water-Soluble Poly(alkoxythiophene) Derivatives. J. Am. Chem. Soc. 2001, 123: 6083-6091.
    [20] Wang LY, Wang ZQ, Zhang X, Shen JC, Chi LF, Fuchs H. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun.1997, 18: 509-514.
    [21] Stockton WB, Rubner MF. Molecular-Level Processing of Conjugated Polymers.4. Layer-by-Layer Manipulation of Polyaniline via Hydrogen-Bonding Interactions. Macromolecules 1997, 30:2717-2725
    [22] Harris JJ, DeRose P, Bruening M. Synthesis of Passivating, Nylon-Like Coatings through Cross-Linking of Ultrathin Polyelectrolyte Films. J. Am.Chem. Soc. 1999, 121: 1978-1979.
    [23] Yang SY, Rubner MF. Micropatterning of Polymer Thin Films with pH-Sensitive and Cross-linkable Hydrogen-Bonded Polyelectrolyte Multilayers. J. Am. Chem. Soc., 2002,124: 2100-2101.
    [24] Yang SY, Lee D, Cohen RE, Rubner MF. Bioinert Solution-Cross-Linked Hydrogen-Bonded Multilayers on Colloidal Particles. Langmuir 2004, 20:5978-5981.
    [25] Messina R. Polyelectrolyte Multilayering on a Charged Planar Surface.Macromolecules 2004, 37: 621-629.
    [26] Kotov NA. LAYER-BY-LAYER SELF-ASSEMBLY: THE CONTRIBUTION OF HYDROPHOBIC INTERACTIONS. Nanostruct. Mater. 1999, 12:789-796.
    [27] Laschewsky A, Mallwitz F, Baussard JF, Cochin D, Fischer P, Habib-Jiwan, JL,Wischerhoff E. Aggregation Phenomena in Polyelectrolyte Multilayers Made from Polyelectrolytes Bearing Bulky Functional, Hydrophobic Fragment.Macromol. Symp. 2004, 211: 135-155.
    [28] Ahrens H, B(?)scher K, Eck D, F(?)rster S, Luap C, Papastavrou G, Schmitt J,Steitz R, Helm CA. Poly(styrene sulfonate) Self-Organization: Electrostatic and Secondary interactions. Macromol. Symp. 2004, 211: 93-105.
    [29] Lojou E, Bianco P. Buildup of Polyelectrolyte-Protein Multilayer Assemblies on Gold Electrodes. Role of the Hydrophobic Effect. Langmuir 2004,20: 748-755.
    [30] Guyomard A, Muller G, Glinel K. Buildup of Multilayers Based on Amphiphilic Polyelectrolytes. Macromolecules 2005, 38: 5737-5742.
    [31] Dubas ST, Schlenoff JB. Swelling and Smoothing of Polyelectrolyte Multilayers by Salt. Langmuir 2001,17: 7725-7727.
    [32] Steitz R, Jaeger W, Klitzing Rv. Influence of Charge Density and Ionic Strength on the Multilayer Formation of Strong Polyelectrolytes. Langmuir 2001, 17:4471-4474.
    [33] Fleer G, Hoogeveen NG, Cohen Stuart MA, Boehmer MR. Formation and Stability of Multilayers of Polyelectrolytes. Langmuir 1996, 12: 3675-3681.Glinel K, Moussa A, Jonas AM, Laschewsky A. Influence of Polyelectrolyte Charge Density on the Formation of Multilayers of Strong Polyelectrolytes at Low Ionic Strength. Langmuir 2002,18: 1408-1412.
    [34] Schoeler B, Kumaraswamy G, Caruso F. Investigation of the Influence of Polyelectrolyte Charge Density on the Growth of Multilayer Thin Films Prepared by the Layer-by-Layer Technique. Macromolecules 2002, 35:889-897.
    [35] Balachandra AM, Dai JH, Bruening ML. Enhancing the Anion-Transport Selectivity of Multilayer Polyelectrolyte Membranes by Templating with Cu~(2+).Macromolecules 2002, 35: 3171-3178.
    [36] Fery A, Schler B, Cassagneau T, Caruso F. Nanoporous Thin Films Formed by Salt-Induced Structural Changes in Multilayers of Poly(acrylic acid) and Poly(allylamine).Langmuir 2001, 17: 3779-3783.
    [37] Laurent D. Schlenoff JB. Multilayer Assemblies of Redox Polyelectrolytes.Langmuir 1997,13: 1552-1557.
    [38] Riegler H, Essler F. Polyelectrolytes. 2. Intrinsic or Extrinsic Charge Compensation? Quantitative Charge Analysis of PAH/PSS Multilayers.Langmuir 2002,18: 6694-6698.
    [39] McAloney RA, Sinyor M, Dudnik V, Cynthia Goh M. Atomic Force Microscopy Studies of Salt Effects on Polyelectrolyte Multilayer Film Morphology. Langmuir 2001, 17: 6655-6663.
    [40] Leontidis E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface Sci., 2002, 7, 81.
    [41] Klitzing Rv. Internal structure of polyelectrolyte multilayer assemblies. Phys. Chem. Chem. Phys., 2006, 8: 5012-5033.
    [42] Poptoshev E, Schoeler B, Caruso F. Influence of Solvent Quality on the Growth of Polyelectrolyte Multilayers. Langmuir 2004,20: 829-834.
    [43] Dubas ST, Schlenoff JB. Factors Controlling the Growth of Polyelectrolyte Multilayers. Macromolecules 1999, 32: 8153-8160.
    [44] B(?)scher K, Graf K, Ahrens H, Helm CA. Influence of Adsorption Conditions on the Structure of Polyelectrolyte Multilayers. Langmuir 2002,18: 3585-3591.
    [45] Tan HL, McMurdo MJ, Pan GQ, Gregory Van Patten P. Temperature Dependence of Polyelectrolyte Multilayer Assembly. Langmuir 2003, 19:9311-9314.
    [46] Salom(?)ki M, Vinokurov IA, Kankare J. Effect of Temperature on the Buildup of Polyelectrolyte Multilayers. Langmuir 2005, 21: 11232-11240
    [47] Laugel N, Betscha C, Winterhalter M, Voegel JC, Schaaf P, Ball V. Relationship between the Growth Regime of Polyelectrolyte Multilayers and the Polyanion/Polycation Complexation Enthalpy. J. Phys. Chem. B 2006, 110:19443-19449.
    [48] Shiratori SS, Rubner MF. pH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes. Macromolecules 2000, 33:4213-4219.
    [49] Lutkenhaus JL, McEnnis K, Hammond PT. Nano- and Microporous Layer-by-Layer Assemblies Containing Linear Poly(ethylenimine) and Poly(acrylic acid). Macromolecules 2008, 41: 6047-6054.
    [50] Park J, Hammond PT. Multilayer Transfer Printing for Polyelectrolyte Multilayer Patterning: Direct Transfer of Layer-by-Layer Assembled Micropatterned Thin Films. Adv. Mater. 2004, 16: 520-525.
    [51] Jiang XP, Hammond PT. Selective Deposition in Layer-by-Layer Assembly:Functional Graft Copolymers as Molecular Templates. Langmuir 2000, 16:8501-8509.
    [52] Jiang XP, Zheng HP, Gourdin S, Hammond PT. Polymer-on-Polymer Stamping:Universal Approaches to Chemically Patterned Surfaces. Langmuir 2002, 18:2607-2615.
    [53] Zheng HP, Rubner MF, Hammond PT. Particle Assembly on Patterned"Plus/Minus" Polyelectrolyte Surfaces via Polymer-on-Polymer Stamping.Langmuir 2002, 18:4505-4510.
    [54] Yang SY, Mendelsohn JD, Rubner MF. New Class of Ultrathin, Highly Cell-Adhesion-Resistant Polyelectrolyte Multilayers with Micropatterning Capabilities. Biomacromolecules 2003, 4: 987-994.
    [55] Kim YS, Lee HH, Hammond PT. High density nanostructure transfer in soft molding using polyurethane acrylate molds and polyelectrolyte multilayers.Nanotechnology 2003, 14:1140-1144.
    [56] Park J, Kim YS, Hammond PT. Chemically Nanopatterned Surfaces Using Polyelectrolytes and Ultraviolet-Cured Hard Molds. Nano Lett. 2005, 5:1347-1350.
    [57] Lee NY, Lim JR, Lee M J, Park S, Kim YS. Multilayer Transfer Printing on Microreservoir-Patterned Substrate Employing Hydrophilic Composite Mold for Selective Immobilization of Biomolecules. Langmuir 2006, 22: 7689-7694.
    [58] Gao CY, Wang B, Feng J, Shen JC. Irreversible Compression of Polyelectrolyte Multilayers. Macromolecules 2004, 37: 8836-8839.
    [59] Wang B, Feng J, Gao CY. Surface wettability of compressed polyelectrolyte multilayers. Colloids Surf. A 2005, 259: 1-5.
    [60] Wang B, Gao CY, Liu LL. Loading and Release Behaviors of Compressed Polyelectrolyte Multilayers for Small Dye Molecules. J. Phys. Chem. B 2005,109: 4887-4892.
    [61] Wang B, Liu LL, Chen K, Chen L, Feng J, Gao CY. Compression-Inhibited Pore Formation of Polyelectrolyte Multilayers Containing Weak Polyanions: A Scanning Force Microscopy Study. ChemPhysChem 2006, 7: 590-596.
    [62] Lu, YX, Hu, W, Ma, Y, Zhang, LB, Sun, JQ, Lu, N.; Shen, JC. Patterning Layered Polymeric Multilayer Films by Room-Temperature Nanoimprint Lithography Macromol. Rapid Commun. 2006, 2 7:505-510.
    [63] Lu YX, Chen XL, Hu W, Lu N, Sun JQ, Shen JC. Room-Temperature Imprinting Poly(acrylic acid)/Poly(allylamine hydrochloride) Multilayer Films by Using Polymer Molds. Langmuir 2007, 23: 3254-3259.
    [64] Lu YX, Sun JQ, Shen JC. Cell Adhesion Properties of Patterned Poly(acrylic acid)/Poly(allylamine hydrochloride) Multilayer Films Created by Room-Temperature Imprinting Technique. Langmuir 2008, 24: 8050-8055.
    [65] Chen XL, Sun JQ, Shen JC. Patterning of Layer-by-Layer Assembled Organic-Inorganic Hybrid Films: Imprinting versus Lift-Off. Langmuir 2009,25: 3316-3320.
    [66] Rmaile HH, Schlenoff JB. "Internal pKa's" in Polyelectrolyte Multilayers:Coupling Protons and Salt. Langmuir 2002, 18: 8263-8265.
    [67] Izumrudov V, Sukhishvili SA. Ionization-Controlled Stability of Polyelectrolyte Multilayers in Salt Solutions. Langmuir 2003, 19:5188-5191.
    [68] Kova evi D, van der Burgh S, de Keizer A, Stuart MAC. Kinetics of Formation and Dissolution of Weak Polyelectrolyte Multilayers: Role of Salt and Free Polyions. Langmuir 2002, 18: 5607-5612.
    [69] McAloney RA, Sinyor M, Dudnik V, Goh MC. Atomic Force Microscopy Studies of Salt Effects on Polyelectrolyte Multilayer Film Morphology.Langmuir 2001, 17: 6655-6663.
    [70] 王浡.《物理压印法构建聚合物微结构》.浙江大学硕士学位论文.2006.
    [71] Haugstad G, Gladfelter WL, Weberg EB, Weberg RF, Jones RR, Probing Molecular Relaxation on Polymer Surfaces with Friction Force Microscopy.Langmuir 1995, 11: 3473-3482.
    [72] Zhou J, Wang B, Tong WJ, Maltseva E, Zhang G, Krastev R, Gao CY, M(o|¨)hwald H, Shen JC. Influence of assembling pH on the stability of poly(L-glutamic acid) and poly(L-lysine) multilayers against urea treatment. Colloids Surf. B. 2008,62: 250-257.
    [73] Liu YX, He T, Song HQ, Gao CY. Layer-by-layer assembly of biomacromolecules on poly(ethylene terephthalate) films and fiber fabrics to promote endothelial cell growth. J. Biomed. Mater. Res. 2007, 81A: 692-704.
    [74] Liu YX, He T, Gao CY. Surface modification of poly(ethylene terephthalate) via hydrolysis and layer-by-layer assembly of chitosan and chondroitin sulfate to construct cytocompatible layer for human endothelial cells, Colloids Surf. B 2005,46(2): 117-126.
    [75] Klitzing Rv, Wong JE, Jaeger W, Steitz R. Short range interactions in polyelectrolyte multilayers. Curr. Op. Coll. Interf. Sci. 2004, 9: 158-162.
    [76] Nazaran P, Bosio V, Jaeger W, Anghel DF, Klitzing Rv. Lateral Mobility of Polyelectrolyte Chains in Multilayers. J. Phys. Chem. B. 2007, 111: 8572-8581.
    [77] Allen S, Chen XY, Davies J, Davies MC, Dawkes AC, Edwards JC, Roberts CJ,Sefton J, Tendler SB, Williams PM. Biochemistry 1997,36: 7457-7463.
    [78] Klitzing Rv, M(?)hwald H. A Realistic Diffusion Model for Ultrathin Polyelectrolyte Films. Macromolecules 1996,29: 6901-6906.
    [79] Qiu XP, Leporatti S, Donath E, M(?)hwald H. Studies on the Drug Release Properties of Polysaccharide Multilayers Encapsulated Ibuprofen Microparticles. Langmuir 2001,17: 5375-5380.
    [80] Elvira Tjipto; Johm F. Quinn; Frank Caruso. Assembly of multilayer films from polyelectrolytes containing weak and strong acid moieties. Langmuir 2005, 21:8785-8792.
    [81] Lavalle P, Gergely C, Cuisinier FJG, Decher G, Schaaf P, Voegel JC, Picart C. Comparison of the Structure of Polyelectrolyte Multilayer Films Exhibiting a Linear and an Exponential Growth Regime: An in situ atomic force microscopy study. Macromolecules 2002, 35: 4458-4465.
    [82] Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, Voegel JC, Lavalle P. Molecular Basis for the Explanation of the Exponential Growth of Polyelectrolyte Multilayers. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:12531-12535.
    [83] Yoo PJ, Zacharia NS, Doh J, Nam KT, Belcher AM, Hammond PT. Controlling Surface Mobility in Interdiffusing Polyelectrolyte Multilayers. ACS Nano 2008,2:561-571.
    [84] Tjipto E, Quinn JF, Caruso F. Layer-by-Layer Assembly of Weak-Strong Copolymer Polyelectrolytes: A Route to Morphological Control of Thin Films.J. Polym. Sci. Pol. Chem. 2007, 45: 4341-4351.
    [85] Gao LC, McCarthy TJ. "Artificial Lotus Leaf" Prepared Using a 1945 Patent and a Commercial Textile. Langmuir 2006, 22: 5998-6000.
    [86] Schuetz P, Caruso F. Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers. Chem. Mater.2004, 16: 3066-3073.
    [87] L(o|¨)sche M, Schmitt J, Decher G, Bouwman WG, Kjaer K. Detailed Structure of Molecularly Thin Polyelectrolyte Multilayer Films on Solid Substrates as Revealed by Neutron Reflectometry. Macromolecules 1998, 31: 8893-8906.
    [88] Farhat T, Yassin G, Dubas ST, Schlenoff JB. Water and Ion Pairing in Polyelectrolyte Multilayers. Langmuir 1999, 15:6621-6623.
    [89] Gong, Y. H.; He, L. J.; Li, J.; Zhou, Q. L.; Ma, Z. W.; Gao, C. Y.; Shen, J. C. J.Biomed. Mater. Res. B 2007, 82B: 192.
    [90] Rmaile HH, Schlenoff JB. "Internal pKa's" in Polyelectrolyte Multilayers:Coupling Protons and Salt. Langmuir 2002, 18: 8263-8265.
    [91] Izumrudov V, Sukhishvili SA. Ionization-Controlled Stability of Polyelectrolyte Multilayers in Salt Solutions. Langmuir 2003, 19:5188-5191.
    [92] Fery A, Schoeler B, Cassagneau T, Caruso F. Nanoporous Thin Films Formed by Salt-Induced Structural Changes in Multilayers of Poly(acrylic acid) and Poly(allylamine). Langmuir 2001, 17: 3779-3783.
    [93] Kovacevic D, van der Burgh S, de Keizer A, Stuart MAC. Kinetics of Formation and Dissolution of Weak Polyelectrolyte Multilayers: Role of Salt and Free Polyions. Langmuir 2002, 18: 5607-5612.
    [94] Dubas ST, Schlenoff JB. Swelling and Smoothing of Polyelectrolyte Multilayers by Salt. Langmuir 2001, 17: 7725-7727.
    [95] McAloney RA, Sinyor M, Dudnik V, Goh MC. Atomic Force Microscopy Studies of Salt Effects on Polyelectrolyte Multilayer Film Morphology.Langmuir 2001, 17: 6655-6663.
    [96] Suh KY, Kim YS, Lee HH. Capillary Force Lithography. Adv. Mater. 2001, 13:1386-1389.
    [97] Suh KY, Choi S J, Baek S J, Kim TW, Langer R. Observation of High-Aspect-Ratio Nanostructures Using Capillary Lithography. Adv. Mater.2005, 17: 560-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700