用户名: 密码: 验证码:
功能性纳米Fe_3O_4、TiO_2及其复合结构制备表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了四氧化三铁、二氧化钛及其复合纳米材料,探索制备各种形貌的低维微纳米材料。通过简单的湿化学方法成功制备出树枝状纳米磁性材料、可回收再利用的光催化薄膜与空心多功能磁载核壳结构光催化剂和药物释放材料。利用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、超导量子干涉仪(SQUID)和紫外-可见光吸收(UV-vis)等多种分析测试手段对这些微结构材料进行表征。结果归纳如下:
     1、室温下在玻璃基底上利用模板辅助、气体扩散与表面张力使得晶体生长,再自组装的方法成功得到大面积的树枝状结构Fe_3O_4薄膜。该结构具有超顺磁性。通过NH_3气流动使得玻璃基底上聚乙二醇溶液中的(Fe~(3+)/Fe~(2+)发生反应得到树枝状Fe_3O_4纳米粒子组装结构。该树枝状结构室温下具有超顺磁性性能。并研究了Fe_2+/Fe~(3+)的浓度对Fe_3O_4纳米微粒的形貌产生的影响。该制备方法也是对自然界中严寒情况下玻璃窗户上形成的冰花过程的模拟。
     2、利用种子诱导还原方法合成了银/钛酸盐纳米线异质结构,并进一步组装成光催化薄膜。与纯钛酸盐纳米线薄膜相同的是该异质结构银/钛酸盐纳米线薄膜有可折叠,稳定,自支撑等特点,而在光降解水溶液中的甲胺磷和光杀菌活性方面都有明显的增强效果。由于纳米线组成的膜具有易回收再利用的性质。该材料将有可能应用于光催化、消毒、杀菌、环境(水、空气)污染处理等方面。
     3、在光催化剂的研究基础之上,将磁性能和光催化相结合。利用溶液法及水热法成功制得空心Fe_3O_4@TiO_2@Ag磁载光催化复合微球,利用水热法形成的氧化钛层纤维化及银的金属特性增强磁载光催化剂的光催化性能。此外该种材料还有可能应用于表面增强拉曼散射(SERS)纳米探针方面。
     4、在磁载光催化剂的基础上,利用多种制备核壳材料方法制得空心@Fe_3O_4@空心@TiO_2@CdTe@多孔硅核壳结构,这种将磁性能,量子点荧光性能和多孔硅的缓释性能相结合的新型药物载体有可能应用于肿瘤等疾病治疗药物的释放。
Fe_3O_4, TiO_2 and their composite have been investigated and synthesized in this paper. The synthesis of low-dimensional materials with different morphologies and compositions also was explored. By a simple wet chemical method and hydrothermal method, we successfully synthesized dendritic magnetic nanomaterials, recyclable photocatalytic membrane, magnetic photocatalytic and multifunctional hollow core-shell drug release materials. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), superconducting quantum interference device (SQUID) and UV-visible absorption (UV-vis) were used to characterize these mirco- and nano-materials. The results are below:
     A method for the growth and self-assembly of Fe_3O_4 nanoparticles that is template assisted, as well as gas diffusion and surface tension controlled, has been developed at room temperature. Well-defined dendrite patterns of Fe_3O_4 nanoparticles were obtained upon ion (Fe~(3+)/Fe~(2+)) entrapment in a polyethylene glycol solution followed by NH3 gas exposure on the surface of an aqueous solution on the glass substrate. This dendrite patterns have superparamagnetic behavior at room temperature. The effects of Fe~(2+)/Fe~(3+) concentration on dendrite patterns of Fe_3O_4 nanoparticles also have been studied. The thus-formed patterns mimic nature’s ice ?owers found on glass windows during frost.
     Heteronanostructures of Ag particles on titanate nanofibres were synthesized by a seed induced method, and the hetero-nanofibres were organized into catalytic membrane. The hetero-nanostructure membrane has shown similar character with titanate nanofibre one, such as flexible, stability, and self-supporting properties. The Ag/TiO_2 nanofibre heterostructure films show high activity in photodegradation of methamidophos in aqueous solution and light sterilization. The recycling of nanofibre membranes makes it potentially useful in photocatalyst, catalyzer, antiseptic and the environmental pollution treatment.
     Based on the previous studies on photocatalytic, we successfully obtained hollow Fe_3O_4@TiO_2@ Ag composite microspheres using the solution method and hydrothermal method. Disposal of TiO_2 shell by hydrothermal method and Ag was used to develope magnetic photocatalytic’s activity. This kind of material may also be used in Surface enhanced Raman spectroscopy (SERS) nanoprobes et.al.
     Hollow@Fe_3O_4@hollow@TiO_2@CdTe@mesoporous silicon core-shell structure was further studied for new drug carrier. This drug carrier which combined magnetic properties, quantum dot fluorescence properties and the controlled-release properties of porous silicon can be controlled to a location and be controlled-release.This drug carrier may be used in drug release of cancer treatment.
引文
[1] LUIS M, MULVANEY P. The Assembly of Coated Nanocrystals [J]. The Journal of Physical Chemistry B, 2003, 107(30): 7312-26.
    [2] GE J, ZHANG Q, ZHANG T, et al. Core-Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell: Controllable Reactivity, High Stability, and Magnetic Recyclability [J]. Angewandte Chemie International Edition, 2008, 47(46): 8924-8.
    [3] GIRI S, TREWYN B G, STELLMAKER M P, et al. Stimuli-Responsive Controlled-Release Delivery System Based on Mesoporous Silica Nanorods Capped with Magnetic Nanoparticles [J]. Angewandte Chemie International Edition, 2005, 44(32): 5038-44.
    [4] GAO J, GU H, XU B. Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications [J]. Accounts of Chemical Research, 2009, 42(8): 1097-107.
    [5] ZHU Y, KOCKRICK E, IKOMA T, et al. An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates [J]. Chem Mat, 2009, 21(12): 2547-53.
    [6] LEE J, LEE D, OH E, et al. Preparation of a Magnetically Switchable Bio-electrocatalytic System Employing Cross-linked Enzyme Aggregates in Magnetic Mesocellular Carbon Foam [J]. Angewandte Chemie International Edition, 2005, 44(45): 7427-32.
    [7] ZHAO W, GU J, ZHANG L, et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure [J]. Journal of the American Chemical Society, 2005, 127(25): 8916-7.
    [8] KIM J, LEE J E, LEE J, et al. Magnetic Fluorescent Delivery Vehicle Using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals [J]. Journal of the American Chemical Society, 2005, 128(3): 688-9.
    [9] SHI D, CHO H S, CHEN Y, et al. Fluorescent Polystyrene-Fe3O4 Composite Nanospheres for In Vivo Imaging and Hyperthermia [J]. Advanced Materials, 2009, 21(21): 2170-3.
    [10] XU H, CUI L, TONG N, et al. Development of High Magnetization Fe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion/Emulsion Polymerization [J]. Journal of the American Chemical Society, 2006, 128(49): 15582-3.
    [11] HU S-H, LIU T-Y, HUANG H-Y, et al. Magnetic-Sensitive Silica Nanospheres for Controlled Drug Release [J]. Langmuir, 2007, 24(1): 239-44.
    [12] KIM J, KIM H, LEE N, et al. Multifunctional Uniform Nanoparticles Composed of a MagnetiteNanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery [J]. Angewandte Chemie International Edition, 2008, 47(44): 8438-41.
    [13] LIU T-Y, HU S-H, LIU K-H, et al. Instantaneous Drug Delivery of Magnetic/Thermally Sensitive Nanospheres by a High-Frequency Magnetic Field [J]. Langmuir, 2008, 24(23): 13306-11.
    [14] ZHAO W, CHEN H, LI Y, et al. Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property [J]. Advanced Functional Materials, 2008, 18(18): 2780-8.
    [15] DENG Y, DENG C, QI D, et al. Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin [J]. Advanced Materials, 2009, 21(13): 1377-82.
    [16] XUAN S, JIANG W, GONG X, et al. Magnetically Separable Fe3O4/TiO2 Hollow Spheres: Fabrication and Photocatalytic Activity [J]. The Journal of Physical Chemistry C, 2008, 113(2): 553-8.
    [17] BAVYKIN D,FRIEDRICH J,WALSH F.Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications [J]. Advanced Materials, 2006, 18(21): 2807-24.
    [18] SUN S, ZENG H. Size-Controlled Synthesis of Magnetite Nanoparticles [J]. Journal of the American Chemical Society, 2002, 124(28): 8204-5.
    [19] SUN S, ZENG H, ROBINSON D B, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) Nanoparticles [J]. Journal of the American Chemical Society, 2003, 126(1): 273-9.
    [20] JANA N R, CHEN Y F, PENG X G. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach [J]. Chemistry of Materials, 2004, 16(20): 3931-5.
    [21] DENG H, LI X, PENG Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres [J]. Angewandte Chemie International Edition, 2005, 44(18): 2782-5.
    [22] YU D, SUN X, ZOU J, et al. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystal Microspheres [J]. The Journal of Physical Chemistry B, 2006, 110(43): 21667-71.
    [23] GE J, HU Y, BIASINI M, et al. Superparamagnetic Magnetite Colloidal Nanocrystal Clusters [J]. Angewandte Chemie, 2007, 119(23): 4420-3.
    [24] GE J, HU Y, YIN Y. Highly Tunable Superparamagnetic Colloidal Photonic Crystals [J]. Angewandte Chemie International Edition, 2007, 46(39): 7428-31.
    [25] GE J, YIN Y. Magnetically Tunable Colloidal Photonic Structures in Alkanol Solutions [J]. Advanced Materials, 2008, 20(18): 3485-91.
    [26] JIA C-J, SUN L-D, LUO F, et al. Large-Scale Synthesis of Single-Crystalline Iron Oxide MagneticNanorings [J]. Journal of the American Chemical Society, 2008, 130(50): 16968-77.
    [27] LU J, JIAO X, CHEN D, et al. Solvothermal Synthesis and Characterization of Fe3O4 andα-Fe2O3 Nanoplates [J]. The Journal of Physical Chemistry C, 2009, 113(10): 4012-7.
    [28] WANG J, CHEN Q, ZENG C, et al. Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires [J]. Advanced Materials, 2004, 16(2): 137-40.
    [29] HE K, XU C-Y, ZHEN L, et al. Hydrothermal Synthesis And Characterization of Single-Crystalline Fe3O4 Nanowires with High Aspect Ratio and Uniformity [J]. Materials Letters, 2007, 61(14-15): 3159-62.
    [30] FUJISHIMA A, HONDA K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature, 1972, 238(5358): 37-8.
    [31] PRUDEN A L, OLLIS D F. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water [J]. Journal of Catalysis, 1983, 82(2): 404-17.
    [32] FUJISHIMA A, RAO T N, TRYK D A. Titanium Dioxide Photocatalysis [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1-21.
    [33] WANG X, PEHKONEN S O, RAY A K. Removal of Aqueous Cr(VI) by a Combination of Photocatalytic Reduction and Coprecipitation [J]. Industrial & Engineering Chemistry Research, 2004, 43(7): 1665-72.
    [34] WANG R, HASHIMOTO K, FUJISHIMA A, et al. Light-induced amphiphilic surfaces [J]. Nature, 1997, 388(6641): 431-2.
    [35] NAKAJIMA A, HASHIMOTO K, WATANABE T, et al. Transparent Superhydrophobic Thin Films with Self-Cleaning Properties [J]. Langmuir, 2000, 16(17): 7044-7.
    [36] CHEN W-J, TSAI P-J, CHEN Y-C. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria [J]. Small, 2008, 4(4): 485-91.
    [37] LIZAMA C, FREER J, BAEZA J, et al. Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO Suspensions [J]. Catalysis Today, 2002, 76(2-4): 235-46.
    [38] AKYOL A, YATMAZ H C, BAYRAMOGLU M. Photocatalytic Decolorization of Remazol Red RR in Aqueous ZnO Suspensions [J]. Applied Catalysis B: Environmental, 2004, 54(1): 19-24.
    [39] BAMWENDA G R, UESIGI T, ABE Y, et al. The Photocatalytic Oxidation of Water to O2 over Pure CeO2, WO3, and TiO2 Using Fe3+ and Ce4+ as Electron Acceptors [J]. Applied Catalysis A: General, 2001, 205(2): 117-28.
    [40] XIN G, GUO W, MA T. Effect of Annealing Temperature on the Photocatalytic Activity of WO3 for O2Evolution [J]. Applied Surface Science, 2009, 256(1): 165-9.
    [41] SONG L, ZHANG S. Formation ofα-Fe2O3/FeOOH Nanostructures with Various Morphologies by a Hydrothermal Route and Their Photocatalytic Properties [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 348(1-3): 217-20.
    [42] KAWAHARA T, YAMADA K-I, TADA H. Visible Light Photocatalytic Decomposition of 2-naphthol by Anodic-Biasedα-Fe2O3 Film [J]. Journal of Colloid and Interface Science, 2006, 294(2): 504-7.
    [43] LINSEBIGLER A L, LU G, YATES J T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results [J]. Chemical Reviews, 2002, 95(3): 735-58.
    [44] ANPO M, SHIMA T, KODAMA S, et al. Photocatalytic Hydrogenation of Propyne with Water on Small-Particle Titania: Size Quantization Effects and Reaction Intermediates [J]. The Journal of Physical Chemistry, 1987, 91(16): 4305-10.
    [45] NIKAZAR M, GHOLIVAND K, MAHANPOOR K. Photocatalytic Degradation of Azo Dye Acid Red 114 in Water with TiO2 Supported on Clinoptilolite as a Catalyst [J]. Desalination, 2008, 219(1-3): 293-300.
    [46] WANG X, LIU Y, HU Z, et al. Degradation of Methyl Orange by Composite Photocatalysts Nano-TiO2 Immobilized on Activated Carbons of Different Porosities [J]. Journal of Hazardous Materials, 2009, 169(1-3): 1061-7.
    [47] YAZAWA T, MACHIDA F, KUBO N, et al. Photocatalytic Activity of Transparent Porous Glass Supported TiO2 [J]. Ceramics International, 2009, 35(8): 3321-5.
    [48] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science, 2001, 293(5528): 269-71.
    [49] OHNO T, AKIYOSHI M, UMEBAYASHI T, et al. Preparation of S-doped TiO2 Photocatalysts and Their Photocatalytic Activities under Visible Light [J]. Applied Catalysis A: General, 2004, 265(1): 115-21.
    [50] CHOI H, ANTONIOU M G, PELAEZ M, et al. Mesoporous Nitrogen-Doped TiO2 for the Photocatalytic Destruction of the Cyanobacterial Toxin Microcystin-LR under Visible Light Irradiation [J]. Environmental Science & Technology, 2007, 41(21): 7530-5.
    [51] SATHISH M, VISWANATHAN B, VISWANATH R P, et al. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst [J]. . Chemistry of Materials, 2005, 17(25): 6349-53.
    [52] WANG J, TAFEN D N, LEWIS J P, et al. Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts [J]. Journal of the American Chemical Society, 2009, 131(34): 12290-7.
    [53] WANG E, YANG W, CAO Y. Unique Surface Chemical Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity [J]. The Journal of Physical Chemistry C, 2009,
    [54] WANG X H, LI J G, KAMIYAMA H, et al. Wavelength-Sensitive Photocatalytic Degradation of Methyl Orange in Aqueous Suspension over Iron(III)-doped TiO2 Nanopowders under UV and Visible Light Irradiation [J]. The Journal of Physical Chemistry B, 2006, 110(13): 6804-9.
    [55] GOPIDAS K R, BOHORQUEZ M, KAMAT P V. Photophysical and Photochemical Aspects of Coupled Semiconductors: Charge-Transfer Processes in Colloidal Cadmium Sulfide-titania and Cadmium Sulfide-Silver(I) Iodide Systems [J]. The Journal of Physical Chemistry, 1990, 94(16): 6435-40.
    [56] AGRAWAL M, GUPTA S, PICH A, et al. A Facile Approach to Fabrication of ZnO-TiO2 Hollow Spheres [J]. Chemistry of Materials, 2009, 21 (21):5343–8
    [57] LI D, DONG W, SUN S, et al. Photocatalytic Degradation of Acid Chrome Blue K with Porphyrin-Sensitized TiO2 under Visible Light [J]. The Journal of Physical Chemistry C, 2008, 112(38): 14878-82.
    [58] MELE G, DEL SOLE R, VASAPOLLO G, et al. Photocatalytic Degradation of 4-nitrophenol in Aqueous Suspension by Using Polycrystalline TiO2 Impregnated with Functionalized Cu(II)-porphyrin or Cu(II)-phthalocyanine [J]. Journal of Catalysis, 2003, 217(2): 334-42.
    [59] SUN B, VORONTSOV A V, SMIRNIOTIS P G. Role of Platinum Deposited on TiO2 in Phenol Photocatalytic Oxidation [J]. Langmuir, 2003, 19(8): 3151-6.
    [60] CHEN J, OLLIS D F, RULKENS W H, et al. Photocatalyzed Oxidation of Alcohols and Organochlorides in the Presence of Native TiO2 and Metallized TiO2 Suspensions. Part (I): photocatalytic activity and pH influence [J]. Water Research, 1999, 33(3): 661-8.
    [61] BAE E, CHOI W. Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light [J]. Environmental Science & Technology, 2002, 37(1): 147-52.
    [62] YUN H J, LEE H, KIM N D, et al. Characterization of Photocatalytic Performance of Silver Deposited TiO2 Nanorods [J]. Electrochemistry Communications, 2009, 11(2): 363-6.
    [63] PRIYA R, BAIJU K V, SHUKLA S, et al. Comparing Ultraviolet and Chemical Reduction Techniques for Enhancing Photocatalytic Activity of Silver Oxide/Silver Deposited Nanocrystalline Anatase Titania [J]. The Journal of Physical Chemistry C, 2009, 113(15): 6243-55.
    [64] IDAKIEV V, YUAN Z Y, TABAKOVA T, et al. Titanium Oxide Nanotubes as Supports of Nano-SizedGold Catalysts for Low Temperature Water-gas Shift Reaction [J]. Applied Catalysis A: General, 2005, 281(1-2): 149-55.
    [65] BEYDOUN D, AMAL R, LOW G K C, et al. Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution [J]. The Journal of Physical Chemistry B, 2000, 104(18): 4387-96.
    [66] HE Q, ZHANG Z, XIONG J, et al. A Novel Biomaterial -- Fe3O4:TiO2 Core-Shell Nano Particle with Magnetic Performance and High Visible Light Photocatalytic Activity [J]. Optical Materials, 2008, 31(2): 380-4.
    [67] XU M-W, BAO S-J, ZHANG X-G. Enhanced Photocatalytic Activity of Magnetic TiO2 Photocatalyst by Silver Deposition [J]. Materials Letters, 2005, 59(17): 2194-8.
    [68] CHEN Y-H, LIU Y-Y, LIN R-H, et al. Photocatalytic Degradation of p-Phenylenediamine with TiO2-Coated Magnetic PMMA Microspheres in an aqueous solution [J]. Journal of Hazardous Materials, 2009, 163(2-3): 973-81.
    [69] GAD-ALLAH T A, KATO S, SATOKAWA S, et al. Role of Core Diameter and Silica Content in Photocatalytic Activity of TiO2/SiO2/Fe3O4 Composite [J]. Solid State Sciences, 2007, 9(8): 737-43.
    [70] CHEN Y-H, CHEN L-L, SHANG N-C. Photocatalytic Degradation of Dimethyl Phthalate in an Aqueous Solution with Pt-Doped TiO2-Coated Magnetic PMMA Microspheres [J]. Journal of Hazardous Materials, 2009, 172(1): 20-9.
    [71] TAWKAEW S, SUPOTHINA S. Preparation of Agglomerated Particles of TiO2 and Silica-Coated Magnetic Particle [J]. Materials Chemistry and Physics, 2008, 108(1): 147-53.
    [72] SONG X, GAO L. Fabrication of Bifunctional Titania/Silica-Coated Magnetic Spheres and their Photocatalytic Activities [J]. Journal of the American Ceramic Society, 2007, 90(12): 4015-9.
    [73] LI X, XIONG Y, LI Z, et al. Large-Scale Fabrication of TiO2 Hierarchical Hollow Spheres [J]. Inorganic Chemistry, 2006, 45(9): 3493-5.
    [74] NELSON K, DENG Y. Enhanced Light Scattering from Hollow Polycrystalline TiO2 Particles in a Cellulose Matrix [J]. Langmuir, 2008, 24(3): 975-82.
    [75] NAKASHIMA T, KIMIZUKA N. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids [J]. Journal of the American Chemical Society, 2003, 125(21): 6386-7.
    [76] CLIMENT E, BERNARDOS A, MARTI R, et al. Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers [J]. Journal of the American Chemical Society, 2009, 131(39): 14075-80.
    [77] LIN Y-S, WU S-H, HUNG Y, et al. Multifunctional Composite Nanoparticles: Magnetic, Luminescent,and Mesoporous [J]. Chemistry of Materials, 2006, 18(22): 5170-2.
    [78] HU S-H, LIU T-Y, LIU D-M, et al. Controlled Pulsatile Drug Release from a Ferrogel by a High-Frequency Magnetic Field [J]. Macromolecules, 2007, 40(19): 6786-8.
    [79] HU S-H, TSAI C-H, LIAO C-F, et al. Controlled Rupture of Magnetic Polyelectrolyte Microcapsules for Drug Delivery [J]. Langmuir, 2008, 24(20): 11811-8.
    [80] DENG Y, QI D, DENG C, et al. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins [J]. Journal of the American Chemical Society, 2007, 130(1): 28-9.
    [81] BOURLINOS A B, SIMOPOULOS A, BOUKOS N, et al. Magnetic Modification of the External Surfaces in the MCM-41 Porous Silica: Synthesis, Characterization, and Functionalization [J]. The Journal of Physical Chemistry B, 2001, 105(31): 7432-7.
    [82] SHI D. Integrated Multifunctional Nanosystems for Medical Diagnosis and Treatment [J]. Advanced Functional Materials, 2009, 19(21): 3356-73.
    [83] YANG P, QUAN Z, HOU Z, et al. A Magnetic, Luminescent and Mesoporous Core-Shell Structured Composite Material as Drug Carrier [J]. Biomaterials, 2009, 30(27): 4786-95.
    [84] FENG J, SONG S-Y, DENG R-P, et al. Novel Multifunctional Nanocomposites: Magnetic Mesoporous Silica Nanospheres Covalently Bonded with Near-Infrared Luminescent Lanthanide Complexes [J]. Langmuir, 2009,
    [85] GU Z-Z, CHEN H, ZHANG S, et al. Rapid Synthesis of Monodisperse Polymer Spheres for Self-Assembled Photonic Crystals [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1-3): 312-9.
    [86] STOBER A F, RNST B. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range [J]. Journal of Colloid and Interface Science, 1968, (26)62-9
    [87] WANG Y, MURAMATSU A, SUGIMOTO T. FTIR Analysis of Well-Definedα-Fe2O3 Particles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 134(3): 281-97.
    [88] DING T, SONG K, CLAYS K, et al. Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field [J]. Advanced Materials, 2009, 21(19): 1936-40.
    [89] CARUSO F, CARUSO R A, OUML, et al. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating [J]. Science, 1998, 282(5391): 1111-4.
    [90] CARUSO F, SPASOVA M, SUSHA A, et al. Magnetic Nanocomposite Particles and Hollow SpheresConstructed by a Sequential Layering Approach [J]. Chemistry of Materials, 2000, 13(1): 109-16.
    [91] SALGUEIRINO-MACEIRA V, CARUSO F, LIZ-MARZAN L M. Coated Colloids with Tailored Optical Properties [J]. The Journal of Physical Chemistry B, 2003, 107(40): 10990-4.
    [92] DONG A, WANG Y, WANG D, et al. Fabrication of Hollow Zeolite Microcapsules With Tailored Shapes and Functionalized Interiors [J]. Microporous and Mesoporous Materials, 2003, 64(1-3): 69-81.
    [93] KATAGIRI K, CARUSO F. Functionalization of Colloids with Robust Inorganic-Based Lipid Coatings [J]. Macromolecules, 2004, 37(26): 9947-53.
    [94] CHU M, LIU S, YE S. The Structure and Optical Properties of Fluorescent Nanospheres Coated with Mercaptoacetic Acid-Capped CdSe Nanocrystals [J]. Smart Materials and Structures, 2006, 15(6): 1646-50.
    [95] WONG J E, DIEZ-PASCUAL A M, RICHTERING W. Layer-by-Layer Assembly of Polyelectrolyte Multilayers on Thermoresponsive P(NiPAM-co-MAA) Microgel: Effect of Ionic Strength and Molecular Weight [J]. Macromolecules, 2008, 42(4): 1229-38.
    [96] ZHU Y, DA H, YANG X, et al. Preparation and Characterization of Core-shell Monodispersed Magnetic Silica Microspheres [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 231(1-3): 123-9.
    [97] SHI X, BRISENO A L, SANEDRIN R J, et al. Formation of Uniform Polyaniline Thin Shells and Hollow Capsules Using Polyelectrolyte-Coated Microspheres as Templates [J]. Macromolecules, 2003, 36(11): 4093-8.
    [98] ZHANG Y-B, QIAN X-F, XI H-A, et al. Preparation of Polystyrene Core-Mesoporous Silica Nanoparticles Shell Composite [J]. Materials Letters, 2004, 58(1-2): 222-5.
    [99] KHAN E A, HU E, LAI Z. Preparation of Metal Oxide/Zeolite Core-shell Nanostructures [J]. Microporous and Mesoporous Materials, 2009, 118(1-3): 210-7.
    [100] VALTCHEV V. Core/shell Polystyrene/Zeolite A Microbeads [J]. Chem Mat, 2002, 14(3): 956-8.
    [101] GRAF C, VOSSEN D L J, IMHOF A, et al. A General Method To Coat Colloidal Particles with Silica [J]. Langmuir, 2003, 19(17): 6693-700.
    [102] LU Y, YIN Y, MAYERS B T, et al. Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol-gel Approach [J]. Nano Letters, 2002, 2(3): 183-6.
    [103] YIN Y, LU Y, SUN Y, et al. Silver Nanowires Can Be Directly Coated with Amorphous Silica To Generate Well-Controlled Coaxial Nanocables of Silver/Silica [J]. Nano Letters, 2002, 2(4): 427-30.
    [104] LU Y, YIN Y, LI Z-Y, et al. Synthesis and Self-Assembly of Au@SiO2 Core@shell Colloids [J]. NanoLetters, 2002, 2(7): 785-8.
    [105] MINE E, YAMADA A, KOBAYASHI Y, et al. Direct coating of gold nanoparticles with silica by a seeded polymerization technique [J]. Journal of Colloid and Interface Science, 2003, 264(2): 385-90.
    [106] LOU X W, ARCHER L A. A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles [J]. Advanced Materials, 2008, 20(10): 1853-8.
    [107] TOM R T, NAIR A S, SINGH N, et al. Freely Dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 Core@shell Nanoparticles: One-Step Synthesis, Characterization, Spectroscopy, and Optical Limiting Properties [J]. Langmuir, 2003, 19(8): 3439-45.
    [108] LI Y, KUNITAKE T, FUJIKAWA S. Efficient Fabrication and Enhanced Photocatalytic Activities of 3D-Ordered Films of Titania Hollow Spheres [J]. The Journal of Physical Chemistry B, 2006, 110(26): 13000-4.
    [109] IMHOF A. Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells [J]. Langmuir, 2001, 17(12): 3579-85.
    [110] WANG P, CHEN D, TANG F-Q. Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis [J]. Langmuir, 2006, 22(10): 4832-5.
    [111] YU J, ZHAO L, CHENG B. Facile preparation of monodispersed SiO2/TiO2 composite microspheres with high surface area [J]. Materials Chemistry and Physics, 2006, 96(2-3): 311-6.
    [112] BREEN M L, DINSMORE A D, PINK R H, et al. Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals [J]. Langmuir, 2001, 17(3): 903-7.
    [113] HOSEIN I D, LIDDELL C M. Homogeneous, Core@shell, and Hollow-Shell ZnS Colloid-Based Photonic Crystals [J]. Langmuir, 2007, 23(5): 2892-7.
    [114] KIM S-W, KIM M, LEE W Y, et al. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions [J]. Journal of the American Chemical Society, 2002, 124(26): 7642-3.
    [115] SUN X, LIU J, LI Y. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres [J]. Chemistry - A European Journal, 2006, 12(7): 2039-47.
    [116] SUN X, LI Y. Ga2O3 and GaN Semiconductor Hollow Spheres [J]. Angewandte Chemie International Edition, 2004, 43(29): 3827-31.
    [117] SUN X, LI Y. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles13 [J]. Angewandte Chemie International Edition, 2004, 43(5): 597-601.
    [118] SUN Y, XIA Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles [J]. Science, 2002, 298(5601): 2176-9.
    [119] Peng Z, WU J, YANG H. Synthesis and Oxygen Reduction Electrocatalytic Property of Platinum Hollow and Platinum-on-Silver Nanoparticles [J]. Chemistry of Materials, 2009, XX(X):XXX-X
    [120] YANG J, LEE J Y, TOO H-P. Core@shell Ag@Au Nanoparticles from Replacement Reaction in Organic Medium [J]. The Journal of Physical Chemistry B, 2005, 109(41): 19208-12.
    [121] CHEN J, WILEY B, MCLELLAN J, et al. Optical Properties of Pd@Ag and Pt@Ag Nanoboxes Synthesized via Galvanic Replacement Reactions [J]. Nano Letters, 2005, 5(10): 2058-62.
    [122] ZENG J, ZHANG Q, CHEN J, et al. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles [J]. Nano Letters, 2009,
    [123] SKRABALAK S E, AU L, LI X, et al. Facile synthesis of Ag nanocubes and Au nanocages [J]. Nature Protocols, 2007, 2(9): 2182-90.
    [124] CHEN M, GAO L. Synthesis and Characterization of Ag Nanoshells by a Facile Sacrificial Template Route through in situ Replacement Reaction [J]. Inorganic Chemistry, 2006, 45(13): 5145-9.
    [125] YAN H, HE R, JOHNSON J, et al. Dendritic Nanowire Ultraviolet Laser Array [J]. Journal of the American Chemical Society, 2003, 125(16): 4728-9.
    [126] ZHANG X, WANG G, LIU X, et al. Copper Dendrites: Synthesis, Mechanism Discussion, and Application in Determination of l-Tyrosine [J]. Crystal Growth & Design, 2008, 8(4): 1430-4.
    [127] QIN Y, SONG Y, SUN N, et al. Ionic Liquid-Assisted Growth of Single-Crystalline Dendritic Gold Nanostructures with a Three-Fold Symmetry [J]. Chemistry of Materials, 2008, 20(12): 3965-72.
    [128] SUN X, HAGNER M. Novel Preparation of Snowflake-like Dendritic Nanostructures of Ag or Au at Room Temperature via a Wet-Chemical Route [J]. Langmuir, 2007, 23(18): 9147-50.
    [129] QINGQING W, GANG X, GAORONG H. Synthesis and Characterization of Large-Scale Hierarchical Dendrites of Single-Crystal CdS [J]. Crystal Growth & Design, 2006, 6(8): 1776-80.
    [130] CAO H, GONG Q, QIAN X, et al. Synthesis of 3-D Hierarchical Dendrites of Lead Chalcogenides in Large Scale via Microwave-Assistant Method [J]. Crystal Growth & Design, 2007, 7(2): 425-9.
    [131] ZHOU X-M, WEI X-W. Single Crystalline FeNi3 Dendrites: Large Scale Synthesis, Formation Mechanism, and Magnetic Properties [J]. Crystal Growth & Design, 2008, 9(1): 7-12.
    [132] WU Z, PAN C, YAO Z, et al. Large-Scale Synthesis of Single-Crystal Double-Fold Snowflake Cu2S Dendrites [J]. Crystal Growth & Design, 2006, 6(7): 1717-9.
    [133] YANG D, LIU H, ZHENG Z, et al. An Efficient Photocatalyst Structure: TiO2(B) Nanofibers with a Shell of Anatase Nanocrystals [J]. Journal of the American Chemical Society, 2009,
    [134] SHANKAR K, BASHAM J I, ALLAM N K, et al. Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry [J]. The Journal of Physical Chemistry C, 2009, 113(16): 6327-59.
    [135] MOR G K, KIM S, PAULOSE M, et al. Visible to Near-Infrared Light Harvesting in TiO2 Nanotube Array Based Heterojunction Solar Cells [J]. Nano Letters, 2009,
    [136] MEEKINS B H, KAMAT P V. Got TiO2 Nanotubes Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance [J]. ACS Nano, 2009,
    [137] LI T C, GOES M S, FABREGAT-SANTIAGO F, et al. Surface Passivation of Nanoporous TiO2 via Atomic Layer Deposition of ZrO2 for Solid-State Dye-Sensitized Solar Cell Applications [J]. The Journal of Physical Chemistry C, 2009, 113(42): 18385-90.
    [138] KIM Y J, GAO B, HAN S Y, et al. Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst [J]. The Journal of Physical Chemistry C, 2009,
    [139] LU H F, LI F, LIU G, et al. Amorphous TiO2 Nanotube Arrays for Low-Temperature Oxygen Sensors [J]. Nanotechnology, 2008, 19(40): 405504.
    [140] KAVAN L, KALBAC M, ZUKALOVA M, et al. Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth [J].Chemistry of Materials, 2004, 16(3): 477-85.
    [141] KELLER V, KELLER N, LEDOUX M J, et al. Biological Agent Inactivation in a Flowing Air Stream by Photocatalysis [J]. Chemical Communications, 2005, 23): 2918-20.
    [142] LU Z-X, ZHANG Z-L, ZHANG M-X, et al. Core/Shell Quantum-Dot-Photosensitized Nano-TiO2 Films: Fabrication and Application to the Damage of Cells and DNA [J]. The Journal of Physical Chemistry B, 2005, 109(47): 22663-6.
    [143] DONG W, COGBILL A, ZHANG T, et al. Multifunctional, Catalytic Nanowire Membranes and the Membrane-Based 3D Devices [J]. The Journal of Physical Chemistry B, 2006, 110(34): 16819-22.
    [144] ZHANG X, ZHANG T, NG J, et al. High-Performance Multifunctional TiO2 Nanowire Ultrafiltration Membrane with a Hierarchical Layer Structure for Water Treatment [J]. Advanced Functional Materials, 2009, XXX(XX): NA.
    [145] ZHANG X, DU A J, LEE P, et al. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water [J]. Journal of Membrane Science, 2008, 313(1-2): 44-51.
    [146] STATHATOS E, LIANOS P, FALARAS P, et al. Photocatalytically Deposited Silver Nanoparticles on Mesoporous TiO2 Films [J]. Langmuir, 2000, 16(5): 2398-400.
    [147] XIN B, JING L, REN Z, et al. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2 [J]. The Journal of Physical Chemistry B, 2005, 109(7): 2805-9.
    [148] LIU Z, GUO B, HONG L, et al. Physicochemical and photocatalytic characterizations of TiO2/Pt nanocomposites [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172(1): 81-8.
    [149] Allen M R, THIBERT A, SABIO E M, BROWNING N D, et al. Evolution of Physical and Photocatalytic Properties in the Layered Titanates A2Ti4O9 (A = K, H) and in Nanosheets Derived by Chemical Exfoliation [J]. Chemistry of Materials, 2009, XX(XX):XXX-XX
    [150] GEORGEKUTTY R, SEERY M K, PILLAI S C. A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanism [J]. The Journal of Physical Chemistry C, 2008, 112(35): 13563-70.
    [151] SUBRAMANIAN V, WOLF E, KAMAT P V. Semiconductor metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films? [J]. The Journal of Physical Chemistry B, 2001, 105(46): 11439-46.
    [152] SUBRAMANIAN V, WOLF E E, KAMAT P V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration [J]. Journal of the American Chemical Society, 2004, 126(15): 4943-50.
    [153] HU C, LAN Y, QU J, et al. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria [J]. The Journal of Physical Chemistry B, 2006, 110(9): 4066-72.
    [154] HUANG Z, TANG F, ZHANG L. Morphology Control and Texture of Fe3O4 Nanoparticle-Coated Polystyrene Microspheres by Ethylene Glycol in Forced Hydrolysis Reaction [J]. Thin Solid Films, 2005, 471(1-2): 105-12.
    [155] DENG Z, CHEN M, WU L. Novel Method to Fabricate SiO2/Ag Composite Spheres and Their Catalytic, Surface-Enhanced Raman Scattering Properties [J]. The Journal of Physical Chemistry C, 2007, 111(31): 11692-8.
    [156] KASUGA T, HIRAMATSU M, HOSON A, et al. Formation of Titanium Oxide Nanotube [J]. Langmuir, 1998, 14(12): 3160-3.
    [157] XU H, WANG W. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall [J]. Angewandte Chemie International Edition, 2007, 46(9): 1489-92.
    [158] LOU X W, ARCHER L A, YANG Z. Hollow Micro-/Nanostructures: Synthesis and Applications [J]. Advanced Materials, 2008, 20(21): 3987-4019.
    [159] LIONG M, LU J, KOVOCHICH M, et al. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery [J]. ACS Nano, 2008, 2(5): 889-96.
    [160] GIL P R, PARAK W J. Composite Nanoparticles Take Aim at Cancer [J]. ACS Nano, 2008, 2(11): 2200-5.
    [161] BAO H, WANG E, DONG S. One-Pot Synthesis of CdTe Nanocrystals and Shape Control of Luminescent CdTe-Cystine Nanocomposites13 [J]. Small, 2006, 2(4): 476-80.
    [162] LI G, KANG E T, NEOH K G, et al. Concentric Hollow Nanospheres of Mesoporous Silica Shell-Titania Core from Combined Inorganic and Polymer Syntheses [J]. Langmuir, 2009, 25(8): 4361-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700