用户名: 密码: 验证码:
短碳纤维表面金属化及其铜基复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强铜基复合材料具有优异的导电、导热、减磨和耐磨性能以及较低的热膨胀系数,在航空航天、机械和电子等领域具有广泛的应用前景。短碳纤维增强铜基复合材料的制备工艺一般采用粉末冶金法,由于碳纤维与铜粉间密度相差很大,球磨混合难以得到组织结构均匀和性能优异的碳纤维增强铜基复合材料。本文尝试采用碳纤维表面金属化新工艺预先制备短碳纤维/铜复合丝,后采用粉末冶金法制备短碳纤维增强铜基复合材料。此外,对采用空气氧化法进行碳纤维表面改性处理时,煅烧温度对表面含氧活性官能团的影响进行了分析,获得了碳纤维表面含氧活性官能团最多时的处理工艺参数。在此基础上,从外加电压和官能团两个角度出发,探讨了短碳纤维电镀铜的沉积机理。
     碳纤维表面金属化可采用化学镀工艺。目前化学镀铜多采用以甲醛为还原剂的配方体系,虽然这种方法较为成熟,但甲醛本身具有毒性。本论文尝试采用以次磷酸钠为还原剂的化学镀铜工艺制备了界面结合良好、镀铜层厚度均匀的短碳纤维/铜复合丝。对短碳纤维增强铜基复合材料的密度、导电性、导热性、热膨胀性以及纤维硬度进行测试,得到以下实验结果:碳纤维体积含量为10.2%时复合材料导电性(沿纤维轴向)最好,可达纯铜导电性的85%。分别在30oC和200oC下测量复合材料的导热率(沿纤维轴向),测得当短碳纤维体积含量为10.2%时,复合材料的导热性能最好,对应的导热系数分别为47.9 W/m K、67.9 W/m K。复合材料的热膨胀系数随着短碳纤维含量的增加而减小,当温度变化区间为30oC-100oC时,30%含量的碳纤维/铜复合材料的热膨胀系数最小,为13.9×10-6/K;当温度变化区间为30oC-200oC,最小的热膨胀系数为15.2×10-6/K。当纤维体积含量为30%时,短碳纤维增强铜基复合材料的显微硬度为121HV。
     未经过改性处理的碳纤维表面惰性大、表面能低,缺乏有化学活性的官能团,因而与基体材料进行复合时,常因界面结合不好而影响复合材料性能的发挥。无论采用化学镀还是电镀法制备短碳纤维增强铜基复合材料时,我们希望在碳纤维表面含氧活性官能团最多时进行表面金属化工艺。工业中常使用电化学氧化法将活性含氧基团引入碳纤维表面,但这种方法的后续处理工作十分繁琐,因此本文采用空气氧化法对碳纤维表面进行氧化处理。将经过不同煅烧温度对碳纤维进行1小时煅烧处理后的碳纤维进行XPS、FTIR等检测,得出以下结论:经400 oC煅烧1小时处理后,在保持碳纤维原有状态的基础上,碳纤维表面含氧活性基团-OH和C=O最多。论文对比分析了电压及表面活性官能团对电镀铜形貌的影响,尝试探讨了在短碳纤维表面电镀铜的沉积机理,并得出以下结论:对于电镀铜来说,外加沉积电位以及活性基团自身更低电极电位的加成作用才是反应的驱动力,因此当外加电位较低时,只有具有活性基团的位置才能发生反应沉积出铜,其他位置由于不能满足反应所需的最小驱动力而不能反应。当电位增大,活性官能团的促进作用逐渐不明显,由沉积电压控制的初始形核过程占主导地位,发生均匀形核过程,表面获得均匀光滑沉积层。
Because of their excellent electrical、thermal conductivity and other properties, short carbon fiber reinforced Cu-based composites are widely used in the field of spaceflight, aviation, machine, electron, chemical industry, etc. Nowadays, powder metallurgy is a common-used method for acquiring the C/Cu composite. However, the homogeneity between the SCFs and Cu matrix is bad,which will cause the overall properties of the composites bad, restricting the short carbon fiber reinforced Cu-based composites further growth. A new method of pretreatment was used to make the SCFs/Cu composite filament. Then, powder metallurgy method was used to make the short carbon fiber reinforced Cu-based composites. Besides, we get the relationship between the surface oxygenic functional groups and the calcinations temperature, one of the most important parameters of air oxidation process. From the experimental result, optimum technology was acquired. In the end, we try to discuss the mechanism of the electro-copper plating from the perspectives of applied voltage and surface oxygenic functional groups respectively.
     Electro-less plating and electro plating are the wildly used methods. The electro-less copper plating with formaldehyde as reducing agent is a common method. However, because the reducing agent is a kind of toxic substance, this method is not environmentally friendly and unhealthy. We use the electro-less copper plating with sodium hypophosphite as reducing method to acquire the C/Cu composite wires, which are both environmental protection and healthy. In addition, the relationship between microstructure and properties, such as density, electrical conductivity, thermal conductivity, thermal expansivity and the HV value, is analyzed. Results were as follows: the electrical conductivity along the axis of the SCFs can reach 85% of the pure Cu, when 10.2% of the composites are the SCFs; Thermal conductivity is the best along the axis when 10.2% of the composites are the SCFs. The values are 47.9 W/m K at 30oC、67.9 W/m K at 200oC, respectively. In regard to the thermal expansivity, the best value appears when 30% of the composites are the SCFs. And the specific values are 13.9×10-6/K from 30oC to 100oC, 15.2×10-6/K from 30oC to 200oC. HV value can reach 121HV when the percent by volume of the SCFs is 30%.
     Carbon fibers untreated are surface inactive, low surface energy, and less oxygen functional groups. So, it will restrict the development of the composites because of the poor fiber/Cu interfacial adhension. We expect to make the SCFs metal-coated surface in the condition of the most oxygen functional groups both of adopting electroplating and electro-less plating method. Electrochemical oxidation is a commonly used method in daily industrial production. However, the follow-on work is cockamamie as well as inefficient while the air oxidation process is so convenient that we choose it as the method of surface treatment of SCFs. In this paper, we find the relationship between the calcining temperature and the quantity of the surface oxygenic functional groups. The XPS and FTIR show that there are the most oxygen-containing active function group, such as–OH and -C=O, when the calcining temperature is 400oC. In addition, we find that the driving forces of the reaction of the electro-plating are the applied voltage and the surface oxygenic functional groups. When the applied voltage is too low to promote the common reaction, only the positions which pocess the surface oxygenic functional groups can be deposited copper. This means that the surface oxygenic functional groups can lower the electrode potential of the carbon fibers. Then, the surface oxygenic functional groups will be weakened as the applied voltage is increased big enough to get the smooth Cu coating.
引文
[1]贺福,王茂章,碳纤维及其复合材料,科学出版社,北京,1995
    [2]殷永霞,沃西源,碳纤维表面改性研究进展,航天返回与遥感2004,25(3):51-54
    [3]林志勇,杜慷慨,叶葳,碳纤维表面氧化还原研究[J],华侨大学学报(自然科学版),1999,20(4):354-357
    [4]曾庆冰,溶胶-凝胶法TiO2涂层碳纤维增强铝基复合材料的研制[J],高分子材料科学与工程,1999,15(4):171-175
    [5] Delannay F, Froyen L, Deruytture A, Review-The wetting of solids by molten metals and its relation to the preparation of metal properties of infiltrated carbon fiber felt[J],Carbon,1999,37(8):1311-1322
    [6]贺福,王润娥等,碳纤维表面处理方法及其设备[P],中国:1032042,1989-03-29.
    [7]张乾,谢发勤,碳纤维的表面改性研究进展[J],金属热处理,2001(26):1-4
    [8]彭佳,电化学氧化改性对碳纤维功能材料性能的影响,重庆大学硕士论文,2006
    [9]林慷慨,林志勇,碳纤维表面氧化的研究[J],华侨大学学报(自然科学版),1990,20(2):136-141
    [10] Wang Yu Qing, Zhang Feng Qiu,Sherwood,Peter M A.,Interfacial Interactions between Polyvinyl Alcohol and Carbon Fibers Eletrochemically Oxidized in Nitric Acid Solution[J],Chem.Mater.,1999,11(9):2573-2583
    [11]房宽峻,蔡玉青,戴瑾瑾,王菊生,电解质浓度对电化学氧化后碳纤维表面基团含量的影响[J],青岛大学学报,1999,14(1):7-10
    [12] Carol Koaewsk etal,J. Chem. Soc, Faraday Trams, 1984, B0(1):2099
    [13] Donnet, Carbon, 1989.37(5):749
    [14] Sherwood Neffe, Carbon, 1987,25(6):761
    [15]吴庆,陈惠芳,潘鼎,碳纤维表面处理与上浆综述,材料导报,2000年6月第14卷
    [16]王浩伟,商宝禄,周尧和,低压液相浸渗制造高强度C/Al复合材料,西北工业大学学报,1992
    [17]杨胜良,卓钺,尹新芳,碳纤维增强铝基复合材料的界面微观结构,材料工程,2001.7,19-21
    [18]权高峰,柴东浪,宋余九,增强体种类和含量对金属基复合材料力学性能的影响,复合材料学报,1999.Vol,16 No.2
    [19]王玉林,万怡灶,曹阳,碳毡/铜复合材料的制备及其物理性能的研究,材料工程,1996.9,14-17
    [20] S.Y. Zhang, Debonding and cracking energy release rate of the fiber /matrix interface, Com.Sei.T.589(1998)331-335
    [21]邹祖讳,复合材料的结构与功能,科学出版社,1999,72-75
    [22] P.S, G.G, P.SEBO, Thermal expansion of copper matrix composite with spiral arrangement of carbon fibers, J.M.SCI., L.16(1997)392-394
    [23]曹海琳,黄玉东,张志谦,碳纤维阳极氧化法处理对复合材料界面性能的影响,2000,2,12-18
    [24] M.J, F.J., The influence of thermochemical treatments on interface quality and properties of copper/carbon-fiber composites, Com. Sci. Tech,59(1999).7969-1975
    [25]周其胜,汽车用电刷工艺及性能[D],上海交通大学学报,1997
    [26] Lee P.K, High-current Brush Material Development[J], IEEE Tchmt, 1980(1):4-8
    [27] Huybrechts. F, Powder metal, 1991(34):281
    [28]韩风,潘鼎,黄永秋,电化学表面处理提高碳纤维复合材料界面性能的机理研究,化学新型材料,2000(9),20-23
    [29]甘永学,吴云书,碳纤维增强铜基复合材料。兵器材料科学与工程,1999(2),48-53
    [30]董树荣,张孝彬,材料研究学报,2000,14(1):132
    [31] W. A. Curtin,Composites Science and Technology,60(2000)543-551
    [32] MR. Wisnom, Size effects in the testing of fiber-composite materials, Composite Science and Technology, 59(1999)1937-1957
    [33]王玲等.金属基复合材料及其浸渗制备的理论与实践[M].冶金工业出版社. 2005.
    [34]李坤,裴志亮,官骏,等.碳纤维增强镁基复合材料的界面反应和拉伸性能研究[J].空间科学学报[J], 2009,29:6-9.
    [35]上官倩芡,蔡泖华,碳纤维及其复合材料的发展及应用[J].上海师范大学学报(自然科学版).2008(37):275-279.
    [36] Tang Y P , LIU L. Loose porous composites of Ni/ short carbon fibers prepared by electro deposition[J] . J Mater Sci. 2005, 40(16): 4399-4401.
    [37]罗贤,杨延清,王含英,等.铜基复合材料的研究现状[J].材料导报, 2006(20):76-79.
    [38]唐谊平,刘磊,赵海军.短碳纤维增强铜基复合材料制备新工艺[J].机械工程材料, 2006(30):21-27.
    [39]孙跃军,仲伟深,时海芳.金属基复合材料的研究现状与发展[J].铸造技术, 2004(25):158-160.
    [40]张国定,赵昌正.金属基复合材料[M].上海交通大学出版社,1996.
    [41]湛永钟.非连续增强铜基复合材料的研究现状[J],材料开发与应用, 2005(20):41-46.
    [42] Y.Z. Wan, Y.L. Wang, H.L. Luo. Effects of fiber volume fraction, hot pressing parameters and alloying elements on tensile strength of carbon fiber reinforced matrix[J]. Material Science and Engineering. 2000, (288): 26-33
    [43]王春江、王强、赫冀成.液态金属铸造法制备金属基复合材料的研究现状[J].材料导报, 2005(19):53-57.
    [44]罗守靖.复合材料液态挤压[M].北京:冶金工业出版社,2002. 25.
    [45]姚佳岩,胡连喜,王尔德.液态浸渗后直接挤压铝基复合材料的力学性能[J].轻合金加工技术,1999,(27):43.
    [46]唐谊平.短碳纤维表面处理新工艺及其在铝基、铜基复合材料中的应用研究[D].博士论文. 2007.6
    [47]徐金城,李晓龙,夏龙,等.短碳纤维增强铜基复合材料的制备及其性能的研究[J].兰州大学学报, 2004(40):28-32.
    [48]施琪,吴亚平.碳纤维复合材料抗拉性能测试结果的影响因素分析[J].兰州交通大学学报.2008(27):51-54.
    [49] S. Ochiai, K. Osamura, Influences of matrix ductility, interfacial bonding strength, and fiber volume fraction on tensile strength of unidirectional metal matrix composite ,Met. Trans. 1990, 21: 971-977.
    [50]凤仪,应美芳.碳纤维含量对短碳纤维-铜复合材料性能的影响[J].复合材料学报, 1994(11):37-41.
    [51] Hull D. An Introduction To Composite Materials[M]. Cambridge: Cambridge University Press, 1981.
    [52] Long Xia, Binbin Jia, Jun Zeng. Wear and mechanical properties of carbon fiber reinforced copper alloy composites[J]. Materials Characterization, 2009, 60: 363-369.
    [53]凤仪,钟宁,应美芳.短碳纤维-铜复合材料的研制及导热性研究[J].功能材料, 1992, 23:372-388.
    [54]龙卧云1 ,丁晓坤,杨晓华,等.碳纤维增强铜基复合材料的性能研究[J].理化检验-物理分册. 2006(42):379-381.
    [55]张国定,陈煜,刘澄.金属基复合材料微区力学性能的不均匀现象[J].材料研究学报, 1997(11):21-24.
    [56]陶宁,凤仪,王成福.纤维分布方式对碳纤维-铜复合材料导热性能的影响[J].材料导报,1999(13):60-61.
    [57] Yiping Tang, Hezhou Liu, Haijun Zhao, et al. Friction and wear properties of copper matrix composites reinforced with short carbon fibers[J].Materials & Design, 2008(29): 257-261.
    [58] Dong S.R., Tu J.P., Zhang X.B. An investigation of the sliding wear behavior of Cu-matrix compositer einforced by carbon nanotubes[J]. Mate SciEngA, 2001(7):313:83.
    [59] Guan Q.F, Li G.Y , Wang H.Y , et al. Friction-wear characteristics of carbon fiber reinforced friction[J]. material.JMaterSci.2004(39):641–643.
    [60] [33] 57Lei Liu, Weiwei Li, Yiping Tang, et al. Friction and wear properties of short carbon fiber reinforced aluminum matrix composites[J]. Wear, 2009(266):733-738.
    [61]崔春翔,赵晓宏,徐华.碳纤维-铜复合材料的研究[J].河北工业大学学报, 2002(31):43-48.
    [62]赵晓宏.连续碳纤维增强统计复合材料的制备、组织及性能研究[D].河北工业大学.硕士论文. 2002.
    [63] J.B. Donnet, R.C. Bansal and M.J. Wang, Carbon Fibers (3rd ed.), Marcel Dekker, New York 1990: 57.
    [64]徐顺建,张萌,付绍云.叠层压铸法制备纳米碳纤维/铜基复合材料[J].材料科学与工艺,2007(15):503-506.
    [65]肯尼思克雷德.金属基复合材料[M].北京:国防工业出版社. 1974.
    [66] XU L C, YU H, XIA L. Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite[J]. Materials Design. 2004(25):489-493.
    [67]程继贵,应美芳,王成福.碳纤维增强铜基轴承合金的制造工艺和性能研究[J],中国机械工程,1995:59-61
    [68]高强,吴渝英,张国定,等.碳纤维对铜-石墨复合材料性能的影响[J],中国有色金属学报,2000(10):97-101.
    [69]顾斌.碳纤维化学镀铜及短碳纤维/石墨-统计复合材料组织性能研究[J],合肥工业大学,硕士论文,2006
    [70]张晓军,应美芳,王成福,短碳纤维铜基复合材料的研制,材料科学进展,1990,Vol.4, No.3, 223-227
    [71]于春田,纤维增强金属的制法及特征,铸造,1995.7,38-42
    [72]赵稼祥,碳纤维的现状与发展,材料工程,1997,12,3-6
    [73]赵晓宏,连续碳纤维增强铜基复合材料的制备_组织及性能研究,硕士论文,2002.3
    [74]李宁,化学镀实用技术,北京:化学工业出版社,2004
    [75]甘雪萍,电磁屏蔽用导电涤纶织物制备新技术及其产业化应用研究,上海交通大学博士论文,2007年
    [76]刘仁杰,非金属电镀与精蚀—技术与实践,北京:化学工业出版社,2006
    [77]王桂香,李宁,李娟等。以次亚磷酸钠为还原剂的塑料直接镀铜。精细化工,2006,23(1):70-74
    [78]唐宜平,短碳纤维表面处理新工艺及其在铝基、铜基复合材料中的应用研究,上海交通大学博士论文,2007
    [79]吴成义,张丽英,粉末成形力学原理,冶金工业出版社,北京,2003
    [80]王盘鑫,粉末冶金学,冶金工业出版社,北京,1998
    [81]黄培云,粉末冶金原理,冶金工业出版社,北京,1981
    [82]黄岳山,短纤维定向增强金属基复合材料的制备及性能研究,材料开发与应用,1999,14(6):17~20
    [83]汪长安,黄勇,复合材料挤制成型过程中晶须的定向排布,硅酸盐通报,1999(1):48~51
    [84]陶宁,凤仪,纤维分布方式对碳纤维_铜复合材料导热性能的影响,材料导报,1999年12月第12卷第6期
    [85]贺福,王茂章碳纤维及其复合材料[M].第2版。北京:科学出版社,1997,150-168
    [86] Joung-Man Park, Sang-Lee, Ki-Won Kim, et al.[J]. Journal of Colloid and Interface Science, 2001, 237(1):80-90
    [87] Chiang T-C, Seitz F. Photoemission spectroscopy in solids. Ann Phys 2001;10(1-2):61-74
    [88] Yumitori S. Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J Mater Sci 2000;35(1):139-46.
    [89]几种碳纤维的表面状态表征与分析复合材料学报Vol.18, No.3 2010.38-42
    [90] Z.R. Yue, W. Jiang, L. Wang, S.D. Gardner, C.U. Pittman Jr. Surface characterization of electrochemically oxidized carbon fibers. Carbon 37 (1999) 1785–1796

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700