用户名: 密码: 验证码:
生物信息学分析TBX5和GLI1同源蛋白及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     TBX5是T-box转录因子家族成员之一,编码518个氨基酸,在胚胎心脏和发育中的肢体组织中表达,并且在正常心脏和肢体发育中起重要作用。TBX5基因突变可引起心手综合征,后者是以先天性心脏和上肢畸形为特点的常染色体显性遗传病。大多数发生在TBX5羧基端的突变引起心手综合征的分子机制尚不清楚,而且,TBX5羧基端的转录激活机制在很大程度上未知。因此,TBX5羧基端序列特征的研究对探索突变引起的心手综合征致病分子机制和阐明TBX5的转录激活作用很有必要。目前已知,TBX5与其它心脏发育相关转录因子GATA4和NKx2-5存在相互作用。研究表明,发生于TBX5蛋白的G80R,R237Q和R237W突变可减低TBX5与靶基因的DNA结合能力,导致TBX5对靶基因的转录激活水平降低,并且丧失了与NKx2-5的协同转录激活功能;TBX5蛋白的G80R和R237W错义突变可干扰与人类心脏间隔缺损相关转录因子GATA4的相互作用,而Q49K、I54T、G169R和S252I突变则不具有这种作用。因此,进一步确定是否还存在与TBX5相互作用的其它蛋白,对于揭示人类心脏发育机制和先天性心脏病发病机制具有重要意义。
     与TBX5同属于转录因子的GLI1蛋白介导Hedgehog通路,在果蝇和脊椎动物胚胎发育中起关键作用。GLI1蛋白含有两个已知的结构域,即锌指蛋白区域和假定的转录抑制子SFP1区域。最近报道并命名了GLI1氨基端中一段富含丝氨酸的N-端调控区,它在GLI/Ci家族中高度保守,功能未明。尽管如此,对GLI1蛋白氨基端的序列-功能研究仍然很少,并且该序列对GLI1转录活性的影响也不清楚。据报道,大约三分之一的致死性肿瘤与Hedgehog通路成员突变或者对Hedgehog配体过度反应引起Hedgehog过度激活有关,而GLI1介导Hedgehog通路,在其中起重要作用。GLI1过表达与许多肿瘤发生有关,例如,胶质瘤,黑色素瘤,前列腺癌,食道鳞状细胞癌和胃癌。目前的许多抗肿瘤药物均以信号传导通路中关键的激酶为靶点。MEK、PI3K抑制剂具有应用于临床治疗肿瘤的前景,但由于其特异地抑制MEK、PI3K通路,可能存在着一定的不可预见的毒副作用,并未全面开展其临床实验研究。因此,掌握MEK、PI3K抑制剂对肿瘤细胞中某些肿瘤相关蛋白的表达和细胞侵袭力的影响,将为MEK、PI3K抑制剂应用于肿瘤临床治疗提供理论基础。
     方法
     一、实验材料
     1、全部物种蛋白数据库http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&cmd=search&term=
     2、人类非冗余数据库(Non-redundant Database)http://www.ncbi.nlm.nih.gov/RefSeq/
     3、PSI-BLAST(位置特异性叠代BLAST)网址PSI-BLAST:http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
     4、FFAS03(折叠和功能预测系统)网址FFAS03:http://ffas.ljcrf.edu/ffas-cgi/cgi/ffas.pl
     5、HHpred(隐马尔科夫模型的同源检测和结构预测)网址:HHpred:http://toolkit.tuebingen.mpg.de/hhpred
     6、比对软件M-Coffee:M-Coffee:http://tcoffee.vital-it.ch/cgi-bin/Tcoffee/tcoffee_cgi/index.cgi
     7、蛋白磷酸化位点预测软件PredPhospho:PredPhospho:http://pred.ngri.re.kr/PredPhospho.htm
     8、昆明种小白鼠由中国医科大学实验动物部提供
     9、胃癌细胞SGC7901
     人胃癌细胞SGC7901常规在1640培养基(10%胎牛血清,含青霉素及链霉素)中,于37℃、5%CO_2及饱和湿度的条件下培养。
     10、MEK、PI3K抑制剂
     MEK抑制剂U0126(Camarillo,San Diego,CA)浓度12.51μM,PI3K抑制剂LY29400(Calbiochem,San Diego,CA)浓度25μM。以DMSO溶解以上两种抑制剂。
     二、实验方法
     1、应用PSI-BLAST、FFAS03、HHpred生物信息学同源检测工具对非冗余数据库进行TBX5、GLI1同源蛋白检测。
     2、采用M-Coffee进行不同物种TBX5、GLI1蛋白的多重比对。
     3、采用PredPhospho进行TBX5羧基端、GLI1氨基端磷酸化位点预测。
     4、提取小鼠心肌组织核蛋白以TBX5为抗体进行免疫沉淀,目的条带进行质谱鉴定。应用核蛋白提取试剂盒(Pierce)提取核蛋白。采用Pierce免疫共沉淀试剂盒#23600进行免疫沉淀。实验组:有活性gel+15μl Tbx5多克隆抗体,对照组:无活性gel+15μl Tbx5多克隆抗体,IgG组:有活性gel+5μl IgG,分别加入20μl小鼠心肌组织核蛋白进行免疫沉淀。
     5、质谱分析确定目的蛋白后,应用Western印迹杂交验证免疫共沉淀蛋白的相互作用。
     6、胃癌细胞SGC7901分组及处理
     实验分为对照组(正常培养的胃癌SGC7901细胞)、DMSO组(在4ml培养基中加入2μl DMSO),以及MEK抑制剂组(浓度12.5μM)、PI3K抑制剂组(浓度25μM)和一组两种抑制剂共同作用组(MEK抑制剂与PI3K抑制剂共同作用,浓度同上),共5组。
     7、应用RT-PCR和Western印迹杂交分别检测MEK、PI3K抑制剂作用第0、12、24、48、72小时胃癌SGC7901细胞中GLI1基因和GLI1蛋白表达水平。
     8、流式细胞仪检测MEK、PI3K抑制剂作用第12、24、48、72小时胃癌SGC7901细胞表面受体CD44、CD14和TLR2的表达。
     9、Transwell实验检测MEK和PI3K抑制剂作用第12、24、48、72小时,对胃癌SGC7901细胞体外侵袭能力的影响。
     结果
     1、TBX5羧基端、GLI1氨基端与酵母DNA指导的RNA聚合酶Ⅱ最大亚基羧基端结构域具有显著同源性。
     2、TBX5羧基端Tyr291和Tyr342是潜在的磷酸化位点,而GLI1氨基端Ser84和Ser102残基是潜在的磷酸化位点。
     3、小鼠心肌Tbx5蛋白与α-肌球蛋白重链(Myh6)相互作用。
     4、Western Blot验证小鼠Tbx5与α-肌球蛋白重链存在相互作用。
     5、MEK、PI3K抑制剂,在作用第48、72小时使胃癌SGC7901细胞中GLI1基因和GLI1蛋白表达水平降低。
     6、MEK和PI3K抑制剂在作用第72小时使胃癌SGC7901细胞中CD44表达下调,两者具有协同作用。
     7、MEK和PI3K抑制剂在作用第72小时使胃癌SGC7901细胞中CD14表达下调,两者具有协同作用。
     8、MEK和PI3K抑制剂,单独或联合使用,在作用第12至72小时,均未对胃癌SGC7901细胞中TLR2表达水平有明显的影响。
     9、MEK和PI3K抑制剂,单独或联合使用,在作用第72小时使胃癌SGC7901细胞体外侵袭能力下降。
     结论
     1、TBX5羧基端残基267-448以及GLI1氨基端残基2-175均与酵母DNA指导的RNA聚合酶Ⅱ最大亚基羧基端结构域高度同源。
     2、TBX5羧基端的部分功能可能是通过与其它蛋白相互作用或募集其它蛋白,发挥转录活性。GLI1氨基端高度保守的Ser84和Ser102残基是潜在的PKA和/或PKC磷酸化位点。
     3、小鼠心肌Tbx5蛋白与α-肌球蛋白重链(Myh6)存在相互作用。
     4、MEK和PI3K抑制剂作用第48、72小时使胃癌SGC7901细胞中GLI1基因和GLI1蛋白表达下降。
     5、MEK和PI3K抑制剂在第72小时使胃癌SGC7901细胞中CD44、CD14表达水平明显下降,并且两者存在协同作用。MEK、PI3K抑制剂,单独或联合使用,均对胃癌SGC7901细胞中TLR2的表达无影响。
     6、MEK和PI3K抑制剂,单独或联合使用,在作用第72小时使胃癌SGC7901细胞体外侵袭能力下降。
Introduction
     TBX5,as a member of the T-box-containing transcription factor family,encodes a protein of 518 amino acids and is expressed in the embryonic heart and developing limb tissues and plays an important role in normal heart and limb development.TBX5 mutations could cause Holt-Oram syndrome,an autosomal dominant condition characterized by congenital cardiac malformations and upper limb anomalies.The molecular mechanism by which most TBX5 mutations at the C-terminal region cause Holt-Oram syndrome remains unclear.Moreover,the mechanism underlying the transactivation by C-terminus of TBX5 is largely unknown.Thus,the sequence-based study of C-terminus of TBX5 is needed for a better understanding of the molecular mechanism underlying TBX5 mutation-related Holt-Oram syndrome,and of TBX5 function as a transcriptional activator.It has been shown that TBX5 interacts with GATA4 and NKx2-5 which are transcriptional factors related to heart development. G80R,R237Q and R237W mutations reduce the TBX5 DNA-binding ability with target genes,leading to decreased transcriptional activation of TBX5 target genes and a loss of synergistic transcriptional activation with NKx2-5.G80R and R237W missense mutations in TBX5 are also found to disrupt the TBX5 physical interaction with GATA4,a cardiac transcriptional factor implicated in human cardiac septal defects, whereas Q49K,I54T,G169R and S252I mutations are not.Thus,to further explore any other TBX5-interacting proteins would shed light on the mechanism for human heart development and congenital heart diseases.
     Also playing a role as a transcriptional factor like TBX5,GLI1 mediates hedgehog (Hh)pathway and plays a crucial role during development of embryos in Drosophila and vertebrate.GLI1 protein contains two known domains,that is,Zn-finger region and putative transcriptional repressor SFP1 region.A serine-rich region conserved through the GLI/Ci family in the NH_2-terminal region was recently termed as N-terminal Regulatory region,the function of which remains elusive.Nevertheless,the sequence-function study for the NHE-terminal region of GLI1 is rare.The contribution of NHE-terminal region to the transcriptional activity of GLI1 is unclear.About one third of lethal cancers are associated with mutations of the components in Hh pathway or the super activation of Hh pathway by excessive response to its ligands,with GLI1 mediating this process and playing an important role.GLI1 overexpression is related to a variety of neoplasms,for instance,glioma,melanomas,prostate cancer,esophageal squamous cell carcinoma and gastric cancer.So far,many antitumor drugs target the crucial kinases in the signaling pathway.MEK and PI3K inhibitors are promising for their application in clinical cancer therapy.Due to their specific inhibition of MEK and PI3K pathways,however,these two inhibitors may have certain unforeseeable side-effects and the comprehensive clinical application is restricted.Thus,to study the impact of MEK and PI3K inhibitors on the tumor-related protein expression and tumor cell invasiveness would offer theory foundation for their application in clinical tumor therapy.
     Methods
     Experimental materials:
     1.The protein database of all species http://www.ncbi.nlm.nih.gov/sites/entrez?db=protein&cmd=search&term=
     2.The non-redundant database of protein http://www.ncbi.nlm.nih.gov/RefSeq/
     3.PSI-BLAST(Position-Specific Iterated BLAST)website PSI-BLAST:http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
     4.FFAS03(Fold & Function Assignment System)websites FFAS03:http://ffas.ljcrf.edu/ffas-cgi/egi/ffas.pl
     5.HHpred(Homology detection & structure prediction by HMM-HMM)websites HHpred:http://toolkit.tuebingen.mpg.de/hhpred
     6.M-coffee for alignment: http//www.ch.embnet.org/software/TCoffee.html
     7.Phosphorylation sites prediction: http://pred.ngri.re.kr/PredPhospho.htm
     8.The kunming mice were provided by China Medical University.
     9.Gastric cancer SGC7901 cells were cultured in 1640 medium supplemented with 10%(v/v)calf serum,penicillin and streptomycin in humidified 5%(v/v)CO_2 atmosphere at 37℃.
     10.MEK,PI3K inhibitor concentration:12.5μM and 25μM in DMSO, respectively.
     Experimental Methods
     1.Non-redundant database search for TBX5 and GLI1 homologous proteins by bioinformatic tools(PSI-BLAST,FFAS03 and HHpred)
     2.Multiple alignments of TBX5 and GLI1 proteins from different species by M-Coffee
     3.Phosphorylation sites prediction for C-terminal region of TBX5 and NH_2-terminal region of GLI1 by PredPhospho
     4.Immunoprecipitation study of nuclear protein from mouse heart tissue using Tbx5 antibody and the band of interest is subject to mass spectrometry analysis.Pierce nuclear protein extraction protocol and immunoprecipitation protocol(#23600)were used.Experimental group:active gel with 15μl Tbx5 polyclonal antibody,control group:inactive gel with 15μl Tbx5 polyclonal antibody,IgG group:active gel with 5μl IgG.20μl mouse heart tissue nuclear protein were used for immunoprecipitation.
     5.After the verification of the protein of interest by mass spectrometry,the interaction of the two interacting proteins was confirmed by western blotting.
     6.The grouping of gastric cancer SGC7901 cells and treatment:The five groups of gastric cancer SGC7901 cells:control group(normal gastric cancer SGC7901 cells), DMSO group(2μl DMSO in 4ml medium),MEK inhibitor group(concentration: 12.5μM),PI3K inhibitor group(concentration:25μM)and co-acting group(MEK inhibitor and PI3K inhibitor added together in the medium,12.5μM and 25μM in concentration,respectively).
     7.The GLI1 gene and GLI1 protein expression level in gastric cancer SGC7901 cells detected by RT-PCR and western blotting at the 0,12~(th),24~(th),48~(th)and 72~(nd)hour of MEK and PI3K inhibitors treatment.
     8.Detection of CD14,CD44 and TLR2 expression by flow cytometry in gastric cancer SGC7901 cells at the 12~(th),24~(th),48~(th)and 72~(nd)hour of MEK and PI3K inhibitors treatment.
     9.Transwell test to measure in vitro invasiveness of gastric cancer SGC7901 cells at the 12~(th),24~(th),48~(th)and 72~(nd)hour of MEK and PI3K inhibitors treatment.
     Results
     1.C-terminus of TBX5 and N-terminus of GLI1 are highly homologous to the C-terminal domain of yeast DNA-direeted RNA polymeraseⅡlargest subunit.
     2.Tyr291 and Tyr342 at C-terminus of TBX5,and Ser84 and Ser102 at N-terminus of GLI1 are identified as potential phosphorylation sites.
     3.Tbx5 protein in mouse heart tissue interacts with Myh6.
     4.Western blotting confirmed the interaction between mouse Tbx5 and Myh6.
     5.At the 48~(th)and 72~(nd)hour of MEK and PI3K inhibitors treatment,the GLI1 gene and GLI1 protein expression in gastric cancer SGC7901 cells were downregulated.
     6.At the 72~(nd)hour of MEK and PI3K inhibitors treatment,CD44 protein expression in gastric cancer SGC7901 cells were downregulated.MEK and PI3K inhibitors had synergistic effect.
     7.At the 72~(nd)hour of MEK and PI3K inhibitors treatment,CD14 protein expression in gastric cancer SGC7901 cells were downregulated.MEK and PI3K inhibitors had synergistic effect.
     8.MEK and PI3K inhibitors,alone or in combination,do not affect the TLR2 expression level significantly in gastric cancer SGC7901 cells from 12~(th)to 72~(nd)of treatment.
     9.MEK and PI3K inhibitors,alone or in combination,make the gastric cancer SGC7901 cells less invasive at the 72nd hour of treatment.
     Conclusion
     1.Residues 267-448 at C-terminus of TBX5 and residues 2-175 at N-terminus of GLI1 both are highly homologous to the C-terminal domain of yeast DNA-directed RNA polymeraseⅡlargest subunit.
     2.The partial function of the C-terminus of TBX5 might be to interact with or recruit other proteins for its transcriptional activity.GLI1 Ser84 and Ser102 residues were identified as potential PKA and/or PKC phosphorylation sites.
     3.The Tbx5 protein in the mouse heart tissue interacts with Myh6 protein.
     4.At the 48~(th)and 72~(nd)hour of MEK and PI3K inhibitors treatment,the GLI1 gene and GLI1 protein expression in gastric cancer SGC7901 cells were downregulated.
     5.At the 72~(nd)hour of MEK and PI3K inhibitors treatment,CD44 and CD14 protein expression in gastric cancer SGC7901 cells were significantly downregulated. MEK and PI3K inhibitors had synergistic effect.MEK and PI3K inhibitors,alone or in combination,do not affect the TLR2 expression level in gastric cancer SGC7901 cells.
     6.MEK and PI3K inhibitors,alone or in combination,made the gastric cancer SGC7901 cells less invasive at the 72~(nd)hour of treatment.
引文
1 Li QY, Newbury-Ecob RA, Terrett JA, et al. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet 1997; 15: 21-29.
    2 Moskowitz IP, Kim JB, Moore ML, et al.. A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 2007; 129:1365-1376.
    3 Hasson P, Del Buono J, Logan MR Tbx5 is dispensable for forelimb outgrowth. Development 2007;134:85-92.
    4 Hiroi Y, Kudoh S, Monzen K, et al. Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 2001; 28:276-280.
    5 Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997; 15: 30-35.
    6 Ghosh TK, Packham EA, Bonser AJ, et al. Characterization of the TBX5 binding site and analysis of mutations that cause Holt-Oram syndrome. Hum Mol Genet 2001; 10:1983-1994.
    7 Zaragoza MV, Lewis LE, Sun G, et al. Identification of the TBX5 transactivating domain and the nuclear localization signal. Gene 2004; 330:9-18.
    8 Gong LG, Qiu GR, Qiu GB, et al. Studies on the mutation and expression of TBX5 gene in human simple congenital heart disease. Yi Chuan (Chin) 2003; 25: 533-537.
    9 Heinritz W, Shou L, Moschik A, et al. The human TBX5 gene mutation database. Hum Mutat 2005; 26:397.
    10 Mori, A.D, Bruneau, B.G. TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol 2004; 19: 211-215.
    11 Borozdin W, Bravo Ferrer Acosta AM, Bamshad MJ, et al. Expanding the spectrum of TBX5 mutations in Holt-Oram syndrome: detection of two intragenic deletions by quantitative real time PCR, and report of eight novel point mutations. Hum Mutat 2006; 27: 975-976.
    12 Reamon-Buettner S, Mand Borlak J. TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat 2004; 24:104.
    13 Fan C, Liu M, Wang Q. Functional analysis of TBX5 missense mutations associated with Holt-Oram syndrome. J Biol Chem 2003; 278: 8780-8785.
    14 Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003; 424: 443-447.
    15 Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001,15 (23): 3059-3087.
    16 Bok J, Dolson DK, Hill P, et al. Opposing gradients of Gli repressor and activators mediate Shh signaling along the dorsoventral axis of the inner ear. Development 2007, 134(9): 1713 -1722.
    17 Vanderlaan G, Tyurina OV, Karlstrom RO, et al. Gli function is essential for motor neuron induction in zebrafish. Dev Biol 2005,282(2): 550-570.
    18 Park HL, Bai C, Platt KA, et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 2000,127(8): 1593-1605.
    19 Ruiz i Altaba A, Sanchez P, Dahmane N. Gli and hedgehog in cancer: Tumours, embryos and stem cells. Nat Rev Cancer 2002,2(5): 361-372.
    20 Clement V, Sanchez P, de Tribolet N, et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007, 17(2): 165-172.
    21 Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci U S A 2007, 104(14): 5895-5900.
    22 Hernandez AM, Stecca B, Kahler AJ, et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci U S A 2004, 101(34): 12561-12566.
    23 Mori Y, Okumura T, Tsunoda S, et al. Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma. Oncology 2006, 70(5): 378-389.
    24 Katoh Y, Katoh M. Hedgehog signaling pathway and gastric cancer. Cancer Biol Ther 2005, 4(10): 1050-1054.
    25 Fu WN, Shang C, Huang DF, et al. Average-12.9 chromosome imbalances coupling with 15 differential expression genes possibly involved in the carcinogenesis, progression and metastasis of supraglottic laryngeal squamous cell cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2006,23(1): 7-11.
    26 Qiu GR, Gong LG, He G, et al. Association of the GLI gene with ventricular septal defect after the susceptibility gene being narrowed to 3.56 cM in 12q13.Chin Med J (Engl). 2006, 119 (4): 267-74.
    27 Kinzler KW, Bigner SH, Bigner DD, et al. Identification of an amplified, highly expressed gene in a human glioma. Science 1987, 236 (4797): 70-73.
    28 Ruppert JM, Kinzler KW, Wong AJ, et al. The GLI-Kruppel family of human genes. Mol Cell Biol 1988, 8(8): 3104-3113.
    29 Arheden K, Ronne M, Mandahl N, et al. In situ hybridization localizes the human putative oncogene GLI to chromosome subbands 12q13.3-14.1. Hum Genet 1989, 82(1): 1-2.
    30 Ruppert JM, Vogelstein B, Arheden K, et al. GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol Cell Biol 1990, 10(10): 5408-5415.
    31 Croker JA, Ziegenhorn SL, Holmgren RA. Regulation of the Drosophila transcription factor, Cubitus interruptus, by two conserved domains. Dev Biol 2006, 291(2): 368-381.
    32 Dunaeva M, Michelson P, Kogerman P, et al.Characterization of the physical interaction of Gli proteins with SUFU proteins. J Biol Chem 2003, 278(7): 5116-5122.
    33 Altschul SF, Madden TL, Sch(a|¨)ffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.
    34 Jaroszewski L, Rychlewski L, Li Z, et al. FFAS03: a server for profile--profile sequence alignments. Nucleic Acids Res 2005; 33: W284-W288.
    35 Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005; 33: W244-W248.
    36 Phatnani HP, Greenleaf AL. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 2006; 20: 2922-2936.
    37 Moretti S, Armougom F, Wallace IM, et al.. The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods. Nucleic Acids Res 2007; 35: W645-W648.
    38 Kim JH, Lee J, Oh B, et al.. Prediction of phosphorylation sites using SVMs. Bioinformatics 2004; 20:3179-3184.
    39 Allison LA, Moyle M, Shales M, et al.. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 1985; 42: 599-610.
    40 Zhang J, Corden JL. Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J Biol Chem 1991; 266: 2290-2296.
    41 Baskaran R, Dahmus ME, Wang JY. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl Acad Sci USA 1993; 90: 11167-11171.
    42 Baskaran R, Chiang GG, Mysliwiec T, et al. Tyrosine phosphorylation of RNA polymerase II carboxyl-terminal domain by the Abl-related gene product. J Biol Chem 1997; 272: 18905-18909.
    43 Murakami M, Nakagawa M, Olson EN, et al. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc Natl Acad Sci USA 2005; 102: 18034-18039.
    44 Myers JK, Morris DP, Greenleaf AL, et al. Phosphorylation of RNA polymerase II CTD fragments results in tight binding to the WW domain from the yeast prolyl isomerase Ess1. Biochemistry 2001; 40: 8479-8486.
    45 Camarata T, Bimber B, Kulisz A, et al. LMP4 regulates Tbx5 protein subcellular localization and activity. J Cell Biol 2006; 174: 339-348.
    46 Kobor MS, GreenblattJ. Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta 2002; 1577:261-275.
    47 Meinhart A, Kamenski T, Hoeppner S, et al. A structural perspective of CTD function. Genes Dev 2005; 19: 1401-1415.
    48 Kaesler S, L(u|¨)scher B, R(u|¨)ther U. Transcriptional activity of GLI1 is negatively regulated by protein kinase. Biol Chem 2000,381(7): 545-551.
    49 Sheng T, Chi S, Zhang X, et al. Regulation of Gli1 localization by the cAMP/protein kinase A signaling axis through a site near the nuclear localization signal. J Biol Chem 2006, 281(1): 9-12.
    50 Smelkinson MG, Zhou Q, Kalderon D. Regulation of Ci-SCFSlimb binding, Ci proteolysis, and hedgehog pathway activity by Ci phosphorylation. Dev Cell 2007, 13(4): 481-495.
    51 Jia J, Amanai K, Wang G, et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 2002, 416 (6880): 548-552.
    52 Riobo NA, Haines GM, Emerson CP Jr. Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res 2006,66(2): 839-845.
    53 Conlon FL, Fairclough L, Price BM, et al. Determinants of T- box protein specificity. Development. 2001,128:3749-3758.
    54 Brown DD, Martz SN, Binder O, et al. Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development. 2005, 132(3): 553-563.
    55 Ching YH, Ghosh TK, Cross SJ, et al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nature Genetics 2005; 37, 423 - 428.
    56 Carniel E, Taylor MR, Sinagra G, et al. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation. 2005 112(1):54-9.
    57 Budde BS, Binner P, Waldm(u|¨)ller S, et al. Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the beta-Myosin Heavy Chain Gene.PLoS ONE. 2007 Dec 26;2(12):e1362.
    58 Riobo NA, Haines GM, Emerson CP Jr. Protein kinase C-delta and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res. 2006; 66 (2): 839-845.
    59 Kubo M, Nakamura M, Tasaki A, et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer.Cancer Res. 2004,64(17):6071-6074.
    60 Shida T, Furuya M, Nikaido T, et al. Sonic Hedgehog-Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas.Cancer Biol Ther. 2006,(11): 1530-1538.
    61 Ouhtit A, Abd Elmageed ZY, Abdraboh ME, et al. In vivo evidence for the role of CD44s in promoting breast cancer metastasis to the liver. Am J Pathol. 2007,171 (6): 2033-2039.
    62 Subramaniam V, Gardner H, Jothy S. Soluble CD44 secretion contributes to the acquisition of aggressive tumor phenotype in human colon cancer cells. Exp Mol Pathol. 2007, 83 (3): 341-346.
    63 Joo M, Lee HK, Kang YK. Expression of E-cadherin, beta-catenin, CD44s and CD44v6 in gastric adenocarcinoma: relationship with lymph node metastasis. Anticancer Res. 2003, 23 (2B): 1581-1588.
    64 Subramaniam V, Vincent IR, Gilakjan M, et al. Suppression of human colon cancer tumors in nude mice by siRNA CD44 gene therapy. Exp Mol Pathol. 2007, 83 (3): 332-340.
    65 Huang B, Zhao J, Li H, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance.Cancer Res. 2005,65 (12): 5009-5014.
    66 Leulier F, Lemaitre B. Toll-like receptors-taking an evolutionary approach.Nat Rev Genet. 2008,9(3): 165-178.
    67 Chang YJ, Wu MS, Lin JT, et al. Helicobacter pylori-Induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol. 2005,175 (12): 8242-8252.
    68 Huang B, Zhao J, Shen S, et al. Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling. Cancer Res. 2007,67(9): 4346-4352.
    69 罗冰, 刘艳君, 杨翠兰, 等. TLR2在小鼠肿瘤细胞表面的表达 中国实验诊断学 2006,(10): 1245-1247.
    70 Maira SM, Voliva C, Garcia-Echeverria C. Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery. Expert Opin Ther Targets. 2008, 12 (2): 223-238.
    71 Sun Y, Eichelbaum EJ, Wang H, et al.Atrial natriuretic peptide and long acting natriuretic peptide inhibit MEK 1/2 activation in human prostate cancer cells. Anticancer Res. 2007, 27(6B): 3813-3818.
    72 Yu HG, Ai YW, Yu LL, et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer. 2008 ; 122 (2): 433-443.
    73 Chen YL, Law PY, Loh HH. Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy.. Curr Med Chem Anticancer Agents. 2005 (6):575-89.
    74 Kim JH, Go HY, Jin DH, et al. Inhibition of the PI3K-Akt/PKB survival pathway enhanced an ethanol extract of Rhus verniciflua Stokes-induced apoptosis via a mitochondrial pathway in AGS gastric cancer cell lines. Cancer Lett. 2008 Mar 29.
    75 Jiang CC, Chen LH, Gillespie S, et al. Inhibition of MEK sensitizes human melanoma cells to endoplasmic reticulum stress-induced apoptosis.Cancer Res. 2007,67(20):9750-9761.
    76 Lv W, Zhang C, Zhou DH, et al. RNAi-mediated gene silencing of vascular endothelial growth factor inhibits growth of Colorectal cancer.Cancer Biother Radiopharm. 2007, (6): 841-852.
    77 Dong-Dong L. Small interfering RNA (siRNA) inhibited human liver cancer cell line SMMC7721 proliferation and tumorigenesis. Hepatogastroenterology. 2007, 54(78): 1731-1735.
    78 Washington K, Gottfried MR, Telen MJ. Expression of the cell adhesion molecule CD44 in gastric adenocarcinomas. Hum Pathol. 1994,25 (10): 1043-1049.
    79 Means TK,Douglas T,Matthew J. The biology of Toll like receptors. Cytokine Growth Factor Rev, 2000,11(3): 219-232.
    80 Tahara T, Arisawa T, Wang F, et al. Toll-like receptor 2 -196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci. 2007,98 (11):1790-1794.
    1 Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet, 2002, 30: 13-19.
    2 Galante PA, Sakabe NJ, Kirschbaum-Slager N, et al. Detection and evaluation of intron retention events in the human transcriptome. RNA, 2004,10: 757-65.
    3 Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet, 2001,17:100-7.
    4 Faustino NA, Cooper TA. Pre-mRNA splicing and human disease. Genes Dev, 2003, 17: 419-37.
    5 Black DL. Mechanism of alternative pre_messenger RNA splicing. Annu Rev Biochem, 2003, 72:291-336.
    6 Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet, 1992, 90: 41-54.
    7 Black DL. Protein Diversity from Alternative Splicing: A Challenge for Bioinformatics and Post-Genome Biology. Cell, 2000,103: 367-370.
    8 Sigalas I, Calvert AH, Anderson JJ, et al. Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med, 1996, 2(8): 912-917.
    9 Lukas J, Gao DQ, Keshmeshian M. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res, 2001,61:3212-3219.
    10 Fridman JS, Hemando E, Hemann MT. Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res, 2003,63: 5703-5706.
    11 Gebhardt F, Zanker KS, Brandt B. Differential expression of alternatively spliced c-erbB-2 mRNA in primary tumors, lymph node metastases, and bone marrow micrometastases from breast cancer patients. Biochem Biophys Res Commun, 1998,247:319-323.
    12 Holmila R, Fouquet C, Cadranel J, et al. Splice mutations in the p53 gene: case report and review of the literature. Hum Mutat, 2003,21:101-102.
    13 Takino T, Nakada M, Miyamori H, et al. Crk I adaptor protein modulates cell migration and invasion in glioblastoma. Cancer Res, 2003,63: 2335-7.
    14 Heller S, Scheibenpflug L,Westermark B, et al. PDGF B mRNA variants in human tumors with similarity to the v-sis oncogene: expression of cellular PDGF B protein is associated with exon 1 divergence, but not with a 3'UTR splice variant. Int J Cancer, 2000, 85: 211-22.
    15 Mazoyer S, Puget N, Perrin-Vidoz L, et al. A BRCA1 nonsense mutation causes exon skipping. Am J Hum Genet, 1998,62: 713-715.
    16 Narla G, Difeo A, Reeves HL, et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res, 2005,65: 1213-1222.
    17 Tzao C, Tsai HY, Chen JT, et al. 5'CpG island hypermethylation and aberrant transcript splicing both contribute to the inactivation of the FHIT gene in resected non-small cell lung cancer. Eur J Cancer, 2004,40: 2175-2183.
    18 Pio R, Zudaire I, Pino I, et al. Alpha CP-4, encoded by a putative tumor suppressor gene at 3p21, but not its alternative splice variant alpha CP-4a, is underexpressed in lung cancer. Cancer Res, 2004,64:4171-4179.
    19 Baudry D, Faussillon M, Cabanis MO, et al. Changes in WT1 splicing are associated with a specific gene expression profile in Wilms'Tumour. Oncogene, 2002,21: 5566-5573.
    20 Lee J H, Seo YW, Park SR, et al. Expression of a splice variant of KAI1, a tumor metastasis suppressor gene, influences tumor invasion and progression. Cancer Res, 2003, 63: 7247-7255.
    21 Xin Y, Grace A, Gallagher MM, et al. CD44v6 in gastric carcinoma: a marker of tumor progression. Appl Immunohistochem Mol Morphol, 2001, 9: 138-142.
    22 Wang L, Duke L, Zhang PS, et al. Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res, 2003, 63: 4724-4730.
    23 Borsi L, Carnemolla B, Nicolo G, et al. Expression of different tenascin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int J Cancer, 1992, 52: 688-692.
    24 Tanaka S, Sugimachi K, Saeki H, et al. A novel variant of WISP1 lacking a Von Willebrand type C module overexpressed in scirrhous gastric carcinoma. Oncogene, 2001,20: 5525-32.
    25 Lu F, Gladden AB, Diehl JA. An alternatively spliced cyclin D1 isoform, cyclin D1b, is a nuclear oncogene. Cancer Res, 2003,63: 7056-61.
    26 Zhu N, Gu L, Findley HW, et al. An alternatively spliced survivin variant is positively regulated by p53 and sensitizes leukemia cells to chemotherapy. Oncogene, 2004,23:7545-51.
    27 Fu WN, Kelsey SM, Newland AC, et al. Apaf-1XL is an inactive isoform compared with Apaf-IL. Biochem Biophys Res Commun. 2001,282 (1): 268-72.
    28 Patten LC, Belaguli NS, Baek MJ, et al. Serum response factor is alternatively spliced in human colon cancer. J Surg Res, 2004,121:92-100.
    29 Zhu X, Daffada AA, Chan CM, et al. Identification of an exon 3 deletion splice variant androgen receptor mRNA in human breast cancer. Int J Cancer, 1997, 72: 574-580.
    30 Ding Y, Wang L, Su LK, et al. Antitumor activity of IFIX, a novel interferon-inducible HIN-200 gene, in breast cancer. Oncogene, 2004,23: 4556-4566.
    31 Heider KH, Kuthan H, Stehle G, et al CD44v6: a target for antibody-based cancer therapy. Cancer Immunol Immunother, 2004, 53: 567-569.
    32 Mercatante D, Kole R. Modification of alternative splicing pathways as a potential approach to chemotherapy. Pharmacol Ther, 2000,85:237-43.
    33 Pollock AS, Turck J, Lovett DH. The production of interleukin 1 alpha interacts with elements of the RNA processing apparatus and induces apoptosis in malignant cells. FASEB J, 2003,17: 203-213.
    34 Astrof S, Crowley D, George EL, et al. Direct test of potential roles of EIIIA and EIIIB alternatively spliced segments of fibronectin in physiological and tumor angiogenesis. Mol Cell Biol, 2004, 24: 8662-8670.
    35 Bu D, Cler LR, Lewis CM, et al. A Variant of DNA Polymerase β Is Not Cancer Specific. J Invest Surg, 2004,17: 327-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700