用户名: 密码: 验证码:
TWIST在胃癌及其血管生成中的作用与分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【背景】最早在研究果蝇发育过程中发现,TWIST参与调节多种发育过程,尤其在早期中胚层的形成方面起重要作用。1996年人类TWIST基因被成功克隆,定位于7p21.2,编码203个氨基酸,分子量约28Kd。TWIST蛋白是具有碱螺旋-环-螺旋(basic helix-loop-helix, bHLH)结构的转录因子家族成员,其可以与另外一个同源或异源的bHLH因子结合,形成二联DNA结合域,特异性地结合E-box consensus sequence (CANNTG)从而激活或抑制特异性的靶基因转录。
     近年来的研究表明TWIST是个新的癌基因,TWIST可以通过p53依赖与非依赖的途径参与细胞的凋亡抵抗。目前研究表明,TWIST过表达在肿瘤的发生、侵袭转移、血管生成与肿瘤细胞耐药中发挥重要作用,但是其中的具体机制尚不清楚。有关TWIST在胃癌发生、发展中的作用尚无深入的研究,参与调控TWIST的分子及其机制未见报道。本研究拟构建TWIST不同表达水平的胃癌细胞亚系,观察TWIST对胃癌细胞生物学行为的影响,探讨TWIST在胃癌发生、进展与血管生成中的作用,以及参与调控TWIST的分子及其机制。
     【目的】1.研究TWIST在胃腺癌中的表达及其临床意义;2.观察TWIST对胃癌细胞生物学行为及肿瘤血管生成的影响,并探讨可能的机制;3.研究缺氧与TWIST的关系及其调控的分子机制。
     【方法】1.采用免疫组织化学方法观察TWIST在胃癌组织中表达与细胞内的定位,并分析TWIST蛋白表达与临床病理资料之间的关系。2.采用半定量RT-PCR与Western blot方法检测TWIST在不同胃癌细胞系和永生化的胃上皮细胞中的mRNA和蛋白表达水平,以及新鲜胃癌及癌旁组织中TWIST的蛋白表达情况。3.将含有TWIST全长cDNA的正义真核表达质粒pcDNA3.0-TW与构建的TWIST特异性的小干扰RNA质粒pSilencer-TW1与pSilencer-TW2分别转染胃癌细胞系SGC7901,经G418筛选,建立TWIST不同表达水平的胃癌细胞亚系。4.采用MTT实验,流式细胞仪技术、细胞损伤刮擦实验、细胞侵袭实验、裸鼠移植瘤实验研究不同TWIST表达水平对胃癌细胞SGC7901的生长、细胞周期、细胞凋亡、移动、侵袭以及体内形成肿瘤能力的影响,并且Western blot方法检测凋亡相关分子的变化。5.应用ELISA法检测不同胃癌细胞亚系培养上清中VEGF蛋白含量。6.免疫组织化学方法检测裸鼠移植瘤组织中Ⅷ因子相关抗原的表达,比较分析不同移植瘤组织中微血管密度(MVD)。7.建立体外缺氧模型,检测缺氧条件下胃癌细胞系SGC7901中缺氧诱导因子-1(HIF-1)的表达变化,以及TWIST在基因转录和蛋白翻译水平的变化,利用HIF-1αsiRNA转染的细胞系SGC7901,研究缺氧条件下TWIST的表达变化,初步确立HIF-1α与TWIST之间的调控关系。8.构建TWIST的报告基因载体,利用双荧光素酶报告基因实验检测在缺氧条件下或共转染HIF-1α真核表达质粒时,TWIST启动子活性的变化。9.利用染色质免疫共沉淀(ChIP)实验初步筛选鉴定TWIST启动子上的HIF-1α结合位点。10.利用凝胶电泳迁移率变动实验(EMSA)与超变动分析(Super shift assay)确定TWIST启动子中与HIF-1α结合的功能位点。
     【结果】1.免疫组化的结果显示:与正常胃黏膜相比,胃癌组织中TWIST染色强度明显增强;TWIST在不同分化程度的胃癌组织、黏液癌及印戒细胞癌、淋巴结转移癌中均有阳性表达,TWIST蛋白在胃癌组织中主要定位于细胞胞浆,也可见部分细胞核着色;76例胃癌中TWIST的阳性率为46.1% (35/76,与正常胃黏膜比较p<0.05),中、低分化腺癌阳性率高于高分化腺癌(p<0.05),在有淋巴结转移的胃癌组织中TWIST阳性率高于无淋巴结转移的胃癌组织(p<0.05)。2.Western blot检测显示:与对应的癌旁组织相比,胃癌组织中TWIST的表达显著升高。3.半定量RT-PCR与Western blot的结果显示:与永生化的胃黏膜上皮细胞GES-1相比,TWIST mRNA与蛋白质在多种胃癌细胞系中高表达。4.成功构建了TWIST特异性的小干扰RNA质粒pSilencer-TW1与pSilencer-TW2,分别转染TWIST正义质粒pcDNA3.0-TW与pSilencer-TW1、pSilencer-TW2到SGC7901细胞,经Western blot鉴定,获得TWIST表达上调、下调SGC7901细胞亚系: SGC7901/pcDNA3-TW和SGC7901/pSi-TW1。5.MTT结果显示: SGC7901/pcDNA3-TW细胞增殖速率较对照细胞加快;SGC7901/pSi-TW1细胞增殖速率较对照细胞减慢。6.流式细胞仪技术检测细胞周期分布的结果提示: SGC7901/pcDNA3-TW细胞增殖指数较对照增加(45.4 vs 40);SGC7901/pSi-TW1细胞增殖指数降低(32.8 vs 39.7)。7.流式细胞仪检测细胞凋亡结果表明: SGC7901/pcDNA3-TW细胞中凋亡细胞所占百分比低于亲本细胞和空载体转染的细胞;SGC7901/pSi-TW1细胞中凋亡细胞所占比例高于亲本细胞和空载体转染的细胞。8.Western blot结果显示: SGC7901/pcDNA3-TW细胞中bcl-2表达升高,bax表达下降,bcl-2/bax比值升高;SGC7901/pSi-TW1细胞中bcl-2表达下降,bax表达升高,bcl-2/bax比值降低。9.损伤刮擦实验的结果显示:相同时间内SGC7901/pcDNA3-TW组细胞进入划痕区域的细胞数目较空载体SGC7901/pcDNA3组多,而SGC7901/pSi-TW1组细胞进入划痕区域的细胞数目较空载体SGC7901/pSi组少。10.Transwell小室实验结果显示: SGC7901/pcDNA3-TW组穿过膜细胞数较对照组增多,而SGC7901/pSi-TW1组穿过膜细胞数目较对照减少,相对侵袭指数差异有显著性(p<0.05)。11.转染细胞裸鼠体内成瘤实验结果:接种31天处死裸鼠取出瘤体,测量裸鼠移植瘤体积(±SD,mm3)示:SGC7901/pcDNA3-TW组为1558.40±270.36,与对照组比较肿瘤体积大(p<0.05),SGC7901/pSi-TW1组为389.46±80.63,与对照组比较肿瘤体积小(p<0.05);瘤体重量(±SD,mg)示:SGC7901/pcDNA3-TW组为1364.40±271.30,SGC7901/ pSi-TW1组为370.25±80.61,组间统计学分析与肿瘤体积结果一致。12. ELISA法检测细胞培养上清中VEGF蛋白含量表明:SGC7901/pcDNA3-TW细胞分泌VEGF的水平明显高于SGC7901与SGC7901/pcDNA3细胞(p<0.05),而SGC7901/pSi-TW1细胞分泌VEGF的水平低于SGC7901与SGC7901/pSi细胞(p<0.05)。13.Ⅷ因子相关抗原免疫组织化学染色显示:胃癌裸鼠移植瘤组织内微血管内皮细胞染色阳性,其中SGC7901/pcDNA3-TW肿瘤组的MVD(31.20±4.30)高于SGC7901组和SGC7901/pcDNA3组(p<0.05),而SGC7901/pSi-TW1组(7.50±1.83)低于SGC7901组和SGC7901/pSi组(p<0.05),对照组间比较差异无显著性。14. RT-PCR与Western-blot结果显示:随着缺氧时间的延长HIF-1α的mRNA表达水平无明显变化而蛋白表达水平升高;缺氧诱导胃癌细胞系SGC7901中TWIST mRNA及蛋白表达上调,并且具有时间依赖性;应用siRNA技术抑制HIF-1α表达后再进行缺氧诱导,与对照细胞系相比TWIST mRNA与蛋白的表达均无明显上调,提示缺氧通过HIF-1α调控TWIST的表达。15.生物信息学分析发现:在TWIST转录启始点附近-1442~+152范围内存在6个HRE的可能结合位点,利用PCR技术克隆了包含6个HRE的长1601bp的启动子片段,通过基因重组技术与PGL3-enhancer载体连接,经酶切、测序证实成功地构建了报告基因载体pGL3-TW。16.双荧光素酶报告基因实验结果显示:缺氧或者转染pcDNA3.1/HIF-1使TWIST的启动子活性升高3.0~4.5倍,说明缺氧通过HIF-1α对TWIST启动子有转录激活作用。17.染色质免疫共沉淀实验结果显示:在TWIST启动子-1014~-799bp区域(包含-1003~-997、-887~-880、-817~-811,3个疑似HRE)扩增出阳性条带,条带大小与预期一致,提示在TWIST启动子-1014~-799bp区域中存在HIF-1的结合位点。18.EMSA和Super shift试验结果显示:在转录起始位点的-1014~-799bp区域内的第一个潜在的HRE结合位点(-1009~-991)与缺氧条件下提取的核蛋白提取物有很强的结合能力,启动子探针电泳滞后,抗HIF-1α抗体可以导致电泳条带的进一步滞后,加入冷探针竞争后HIF-1α/DNA复合物的条带明显减弱,加入突变探针竞争后HIF-1α/DNA复合物的条带无变化,而其余两个潜在的结合位点迁移率变动没有影响。提示:在TWIST启动子距转录起始位点的-1003~-997处存在与HIF-1α结合的功能位点,HIF-1α通过结合该位点发挥作用。
     【结论】我们的研究结果表明:1.TWIST在胃癌组织、细胞系中表达显著上调,提示其在胃癌的发生及发展中起重要的作用,并且参与了肿瘤的转移,TWIST可能成为判断胃癌预后的指标与治疗的靶点。2. TWIST可通过细胞周期、凋亡、侵袭及血管生成等机制在胃癌的发生发展中发挥作用。3.缺氧可以诱导TWIST的表达,并且是通过HIF-1α与TWIST的启动子直接结合,从而激活TWIST mRNA转录、蛋白翻译。
【Background】: TWIST was originally identified in Drosophila as a protein involved in the regulation of diverse developmental processes, particularly in the formation of mesoderm. The human TWIST gene is located at chromosome 7p21.2.The TWIST protein consists of 201 amino acids and its molecular weight is about 28kd. TWIST protein is a transcription factor that belongs to the family of basic helix-loop- helix (bHLH) protein. The mechanism of bHLH molecules require that they either homo- or heterodimerize with other bHLH molecules, form a bipartite DNA-binding domain and bind to a conserved E-box region (CANNTG) on the promoter of genes which activate or inhibit transcription.
     Recent studies have shown that TWIST is a potential oncogene and be involved in the protection of apoptosis via both p53-dependent and independent pathways. To date several studies revealed that TWIST played crucial roles in tumorigenesis, invasion and metastasis, angiogenesis and drug resistance, but its accurate molecular mechanisms remain unclear. However, there have been little available data on the role of TWIST in the development and progession of gastric cancer; the molecule involved in the regulation of TWIST and its mechanism was still unclear. In this study, we have constructed several gastric cancer cell lines with different expression of TWIST. We observed the effects of TWIST on the biological behavior of gastric cancer cells and explored its roles in the development, progression and angiogenesis of gastric cancer. We researched for the molecule involved in the regulation of TWIST and its mechanisms.
     【Objectives】: (1) To investigate the expression of TWIST in gastric cancer tissue and cells and analyze the relationship of expression intensity with the clinicopathologic characteristics of gastric cancer. (2) To explore the effects of TWIST protein on malicious biological behaviours and tumor angiogenesis of gastric cancer. (3) To study the relationship of hypoxia with TWIST and the molecular mechanism.【Methods】: (1) The expression and sucellualr location of TWIST protein in gastric cancer tissues was investigated by immunohistochemistry and the relationship between the TWIST expression and the clinicopathologic characteristics was statistically analyzed. (2) The expression of TWIST mRNA and protein in gastric cancer cells and immortalized gastric epithelial cells were measured by semiquantitative RT-PCR and Western blot, respectively. The expression of TWIST protein in fresh gastric cancer tissues and normal gastric tissues was detected by Western blot. (3) The pcDNA3-TW vector which contained the full length of TWIST cDNA and the TWIST siRNA vector were transfected into gastric cancer cells SGC7901 respectively, followed by screening and verifying. (4) MTT assay, Flow cytometry, wound-healing assay, cell invasion assay and nude mice tumor formation assay were used to detect the proliferation, apoptosis, cycle, migration and invasion, and tumorigenesis effects of TWIST on the gastric cancer cells. The apoptosis related molecules were dectede by Western blot. (5) The concentration of VEGF in the supernatant of transfectants was determined by ELISA. (6) The expression of factorⅧrelated antigen in xenograft tumor was detected by immunohistochemistry and the MVD was compared among different xenograft tumors. (7) The hypoxia model in vitro was established and the expression of TWIST mRNA and protein was dected respectively under hypoxia condition. The changes of TWIST in HIF-1αsiRNA transfected cells under hypoxia and the regulation relationship of HIF-1 and TWIST were observed. (8) The TWIST reporter gene vector was constructed; The TWIST promoter activity was evaluated by dual luciferase reporter assay when co-transfected with HIF-1 or under hypoxia condition. (9) The possible binding sites of HIF-1 on the promoter of TWIST were selected by Chromatin Immunoprecipitation Assay (ChIP). (10) The functional binding site of HIF-1αon the promoter of TWIST was determined by Electrophoretic Mobility shift DNA-binding Assay (EMSA).
     【Results】: (1) Immunohistochemistry carried out on 76 paraffin-embedded gastric cancer sections showed that TWIST was mainly expressed in the cytoplasm of the epithelial cells, and only occasionally in the nuclei. TWIST expression was very low and at the lower limit of detection in most normal epithelial cells. TWIST expression was significantly increased in 35 (46.1%) of the 76 cancers. The positive rate of TWIST was higher in moderately and poorly differentiated gastric cancers compared to that in well-differentiated (p<0.05) and in the tumors with lymph-node metastasis compared to that without metastasis (node positive rate 60.4%; node negative rate 21.4%; P<0.05). (2) The expression of TWIST protein was higher levels in fresh cancer tissues compared to that in adjacent normal tissues. (3) The expression of mRNA and protein of TWIST in gastric cancer cell lines were up-regulated compared to that in GES-1 detected by semiquantitative RT-PCR and Western blot, respectively. (4) The TWIST specific siRNA plasmid pSilencer-TW1 and pSilencer-TW2 were constructed successfully. The plasmid pSilencer-TW1, pSilencer-TW2, and pcDNA3-TW were transfected into SGC7901 cell lines respectively. The cell lines with forced ectopic or knocked out expression of TWIST were established and identified, and named as SGC7901/pcDNA3-TW and SGC7901/pSi-TW1, respectively. (5) The growth of the sense transfectants was accelerated while the RNAi transfectants was slowed down, showed by MTT assay. (6) The FCM indicated that the proliferation index of SGC7901/pcDNA3-TW was higher compared to control group (45.4 vs 40) while the SGC7901/pSi-TW1 was lower than that of control group (32.8 vs 39.7).(7) The FCM also showed that the apoptosis rate was lower in sense transfectants while higher in RNAi transfectants when compared to vector transfectants. (8) Western blot revealed that the Bcl-2 and the Bcl-2/bax ratio increased in sense transfectants, while the Bcl-2 and the Bcl-2/bax ratio decreased in RNAi transfectants. (9) The wound-healing assay showed that the migration ability were elevated in sense transfectants while cut down in RNAi transfectants. (10) The Transwell assay indicated that the number of the invasive cells through the membrane were much more in sense transfectants than in RNAi transfectants (p<0.05). (11) The weights of xenograft tumor from sense transfectants were higer than that from RNAi transfectants (p<0.05); the volumes of xenograft tumor from sense transfectants were bigger than that from RNAi transfectants (p<0.05). (12) The concentration of VEGF in the supernatant of sense transfectants were increased while decreased in RNAi transfectants when compared to the control cells. (13) The stain of factorⅧ-related antigen was positive in the microvessel endothelial of nude mice xenograft tumors. The microvessel density was higher in the sense transfectants while lower in the RNAi transfectants when compared to control groups (p<0.05). (14) RT-PCR and Western blot results indicated that the expression of HIF-1αmRNA was unchanged, yet the HIF-1αprotein was increased under hypoxia condition. Both the expression of TWIST mRNA and protein of SGC7901 cells were upregulated under hypoxia condition while the HIF-1αspecific RNAi transfected SGC7901 cells were not induced. (15) By biological information analysis, six potential binding sites of HRE were located in the upstream region of the initial of transcription (-1442~+152). A length of 1.6 kb promoter of TWIST was cloned into PGL3-enhancer vector and identified right by sequencing and enzyme digestive. (16) The dual luciferase reporter assay demonstrated that the transfection of HIF-1αsense plasmids or under hypoxia could lead to a 3.0~4.5-fold increase of enzyme activety compared to empty vector transfection. (17) ChIP assay indicated that a length of 200bp DNA was amplified which located in -1014~-799bp of the TWIST promoter(containing three potential HRE binding sites). (18) To determine the functional sites of HIF-1αbinding to the TWIST promoter, EMSA and Super shift assay were applied and -1003~-997 site away from the transcriptional start was proved to be the functional binding site of HIF-1α.
     【Conclusion】: (1) Our results suggest that up-regulation of TWIST plays a role in the neoplastic transformation to gastric cancer and subsequent development of lymph nodes metastasis. TWIST may serve as a useful prognostic marker for predicting the development of metastasis and a target for therapy in gastric cancer. (2) The roles of TWIST in the development and progression of gastric cancer may be associated with cell cycle, apoptosis, invasion, and angiogenesis mechanisms. (3) TWIST expression in the gastric cancer cell can be induced by hypoxia and this is due to the HIF-1αbinding to the HRE site in the TWIST promoter region.
引文
1. Jan YN, Jan LY. HLH proteins fly neurogenesis, and vertebrate myogenesis. Cell.1993; 75: 827–830.
    2. Kadesch T. Consequences of heteromeric interactions among helixloop-helix proteins. Cell Growth Differ.1993; 4: 49–55.
    3. Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell.1993; 75:1241–1244.
    4. Murre C, McCaw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell. 1989; 56: 777–783.
    5. Hu JS, Olson EN, Kingston RE. HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol.1992; 12:1031–1042.
    6. Lassar, AB, Davis RL, Wright WE, Kadesch T, Murre C, Voronova A, Baltimore D, Weintraub H. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell.1991; 66:305–315.
    7. Anderson DJ. Stem cells and transcription factors in the development of the mammalian neural crest. FASEB J.1994; 8: 707–713.
    8. Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science.1995; 268: 836–844.
    9. Naya FJ, Stellrecht CM, Tsai M J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev.1995; 9:1009–1019.
    10. Benezra R, Davis RL, Lassar A, Tapscott S, Thayer M, Lockshon D, Weintraub H. Id: a negative regulator of helix-loop-helix DNA binding proteins control of terminal myogenic differentiation. Ann N Y Acad Sci.1990; 599: 1–11.
    11. Baylies, MK, Bate M. Twist: a myogenic switch in Drosophila. Science.1996; 272:1481–1484.
    12. Ip YT, Park RE, Kosman D, Bier E, Levine M. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo. Genes Dev.1992; 6: 1728–1739
    13. Leptin M. Twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev. 1991; 5: 1568– 1576
    14. Roes Charlotte S P, Malcoln S. A TWIST in development. Trends Genet. 1997; 13: 384-387
    15. Li L, Cserjesi P, Olson EN. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol. 1995; 172: 280–292
    16. Bialek P, Kern B, Yang X, Schrock M, Sosic D, Hong N, Wu H, Yu K, Ornitz DM, Olson EN, Justice MJ, Karsenty G. A twist code determines the onset of osteoblast differentiation. Dev Cell. 2004; 6: 423–435
    17. Fuchtbauer EM. Expression of M-twist during postimplantation plantation development of the mouse. Dev Dyn.1995; 204: 316-322.
    18. Sosic D, Richardson JA, Yu K, Ornitz DM, Olson EN. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-B activity. Cell. 2003; 112: 169–180
    19. Pantke OA, Cohen Jr MM, Witkop Jr CJ, Feingold M, Schaumann B, Pantke HC, Gorlin RJ. The Saethre–Chotzen syndrome. Birth Defects Orig Arti Ser.1975; 11: 190–225
    20. Chen ZF, Behringer RR. Twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev.1995; 9: 686–699
    21. Zhang Y, Xiong Y. Mutations in human ARF exon 2 disrupts its nucleolar localization and impairs its ability to block nuclear export of MDM2 and p53. Mol Cell. 1999; 3: 579–591
    22. Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, Doglioni C, Beach DH, Hannon GJ. Twist is a potential oncogene that inhibits apoptosis. Genes Dev. 1999; 13: 2207–2217
    23. Hjiantoniou E, Iseki S, Uney JB, Phylactou LA. DNazyme mediated cleavage of Twist transcripts and increase in cellular apoptosis. Biochem Biophys Res Commun. 2003; 300: 178–181
    24. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003; 3: 203–216
    25. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell. 1992; 69: 119–128
    26. Zindy F, Eischen CM, Randle DH, Kamijo T, Cleveland JL, Sherr CJ, Roussel MF. Myc signalling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 1998; 12: 2424– 243
    27. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell. 2002; 1:289–298
    28. Vogan K, Bernstein M, Leclerc JM, Brisson L, Brossard J, Brodeur GM, Pelletier J, Gros P. Absence of p53 gene mutations in primary neuroblastomas. Cancer Res. 1993; 53: 5269–5273
    29. Borriello A, Roberto R, Della Ragione F, Iolascon A. Proliferate and survive: cell division cycle and apoptosis in human neuroblastoma. Haematologica. 2002; 87: 196–214
    30. Valsesia-Wittmann S, Magdeleine M, Dupasquier S, Garin E, Jallas AC, Combaret V, Krause A, Leissner P, Puisieux A. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell. 2004; 6: 625–630
    31. Carroll SB. Homeotic genes and the evolution of arthropods and chordates. Nature. 1995; 376: 479-485.
    32. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J, Sukumar S. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature. 2000; 405: 974–978
    33. Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard Jr P, Raman V. HOXA5-twist interaction alters p53 homeostasis in breast cancer cells. J Biol Chem. 2005; 280: 2294–2299
    34. Agrawal A, Yang JH, Murphy RF, Agrawal DK. Regulation of the p14ARF-Mdm2-p53 pathway: An overview in breast cancer. Experimental and Molecular Pathology. 2006; 81:115-122.
    35. Hamamori Y, Sartorelli V, Ogrysko V, Puri PL, Wu H-Y, Wang JYJ, Nakatani Y,Kedes L. Regulation of HAT p300 and pCAF by the bHLH Twistand adenoviral oncoprotein E1A. Cell. 1999; 96: 405–413
    36. Sosic D, Olson E. A new Twist on Twist. Cell Cycle. 2003; 2: 76-78.
    37. Sharif MN, Sosic D, Rothlin CV, Kelly E, Lemke G, Olson EN, Ivashkiv LB. Twist mediates suppression of inflammation by type I IFNs and Axl. JEM. 2006; 203: 1891-1901.
    38. Nikiforov MA, Hagen K, Ossovskaya VS, Connor TM, Lowe SW, Deichman GI, Gudkov AV. p53 modulation of anchorage independent growth and experimental metastasis. Oncogene. 1996; 13: 1709–1719
    39. Miller SJ, Rangwala F, Williams J, Ackerman P, Kong Sue, Jegga AG, Aronow BJ, Frahm S, Kluwe L, Mautner V, Upadhyaya M, Muir D, Wallace M, Hagen J, Quelle DE, Watson MA, Perry A, Gutmann DH, Ratner N. Large-Scale molecular comparison of human Schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues.Cancer Res.2006; 66: 1-8.
    40. Reinhold MI, Kapadia RM, Liao ZX, Naski M. The Wnt-inducible transcription factor Twist1 inhibits chondrogenesis. J Bio Chem, 2006; 281: 1381-1388.
    41. Yuen HF, Chan YP, Wang ML, Kwok WK, Chan KK, Lee PY, Srivastava G, Law SY, Wong YC, Wang XH, Chan KW. Up-regulation of TWIST in oesophgeal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis. J Clin Pathol. Published Online First: 1 Aug 2006
    42. Song LB, Liao WT, Mai HQ, Zhang HZ, Zhang L, Li MZ, Hou JH, Fu LW, Huang WL, Zeng YX, Zeng MS. The clinical significance of twist expression in nasopharyngeal carcinoma. Cancer Letter. 2006; 242: 258-265.
    43. Zhang Z, Xie D, Li X, Wong YC, Xin DQ, Guan XY, Chua CW, Leung SC, Na YQ, Wang XH. Significance of TWIST expression and its association with E-cadherin in bladder cancer. Human Pathology. 2007; 38: 598-606.
    44. Bacac M, Migliavacca E, Stehle JC, Mckee T, Delorenzi M, Coindre JM, Guillou L, Staenkovic I. A gene expression signature that distinguishes desmoid tumours from nodular fasciitis. Journal of Pathology. 2006; 208: 543-553
    45. Ohuchida K, Mizumoto K, Ohhashi S, Yamaquchi H, Konomi H, Naqai E, Yamaquchi K, Tsuneyoshi M, Tanaka M. Twist, a novel oncogene, is upregulated in pancreatic cancer: clinical implication of Twist expression in pancreatic juice. Int J Cancer. 2007; 120: 1634-1640.
    46. Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF. Differential expression of the epithelial–mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol. 2002; 161: 1881– 1891
    47. Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, Wu T, Niinobe M, Yoshikawa K, Hannigan GE, Halaban R. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004; 64: 5270–5282
    48. Van Doorn R, Dijkman R, Vermeer MH, Out-Luiting JJ, van der Raaij-Helmer EM, Willemze R, Tensen CP. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis. Cancer Res. 2004; 64: 5578–5586
    49. Watanabe O, Imamura H, Shimizu T, Kinoshita J, Okabe T, Hirano A, Yoshimatsu K, Konno S, Aiba M, Ogawa K. Expression of twist and wnt in human breast cancer. Anticancer Res. 2004; 24: 3851–3856
    50. Entz-Werle N, Stoetzel C, Berard-Marec P, Kalifa C, Brugiere L, Pacquement H, Schmitt C, Tabone MD, Gentet JC, Quillet R, Oudet P, Lutz P, Babin-Boilletot A, Gaub MP, Perrin-Schmitt F. Frequent genomic abnormalities at TWIST in human pediatric osteosarcomas. Int J Cancer. 2005; 117: 349–355
    51. Kwok WK, Ling MT, Lee TW, Lau TC, Zhou C, Zhang X, Chua CW, Chan KW, Chan FL, Glackin C, Wong YC, Wang X. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 2005; 65: 5153–5162
    52. Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005; 12: 488 –496
    53. Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S, Young DC, Rassenti L, Kipps TJ, Grever MR, Byrd JC, Plass C. TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol. 2005; 23: 3877–3885
    54. Thompson EW, Newgreen DF. Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition. Cancer Res. 2005; 65: 5991– 5995
    55. Tarin D. The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 2005; 65: 5996–6000
    56. Vernon AE and Labonne C. Tumor metastasis: a new twist on epithelial-mesenchymal transitions. Current Biology. 2004; 14: R719-R721.
    57. Derycke LDM, Bracke ME. N-cadherin in the spotlight of cell– cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol. 2004; 48: 463– 476
    58. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial– mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005; 17: 548–558
    59. Heimann R, Lan F, McBride R, Hellman S. Separating favourable from unfavourable prognostic markers in breast cancer: the role of E-cadherin. Cancer Res. 2000; 60: 298 –304
    60. Vleminckx K, Vakaet L, Mareel M, Fiers W, Van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991; 66: 107–119
    61. Oda H, Tsukita S, Takeichi M. Dynamic behavior of the cadherinbased cell-cell adhesion system during Drosophila gastrulation. Dev Biol. 1998; 203: 435–450
    62. Alexander NR, Tran NL, Rekapally H, Summers CH, Lacking C, Heimark RL. N-cadherin gene expression in prostate carcinoma is modulated by integrin- dependent nuclear translocation of Twist1. Cancer Res. 2006; 66: 3365-3369
    63. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, Guan XY, Man K, Chau KI, Fan ST. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial- mesenchymal transition. Clin Cancer Res. 2006; 12: 5369-5376
    64. Howe LR, Watanabe O, Leonard J, Brown AMC. Twist is upregulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 2003; 63: 1906–1913
    65. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004; 117: 927–939
    66. Roberts AB, Wakefi eld LM. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl. Acad. Sci. USA. 2003; 100: 8621–8623.
    67. Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A. Transforming growth factor-β employs HMGA2 to elicit epithelial- mesenchymal transition. J Cell Biology. 2006; 174: 175-183.
    68. Horikawa T, Yang J, Kondo S, Yoshizaki T, Joab I, Furukawa M, Pagano JS. Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma. Cancer Res. 2007; 67: 1970-1978.
    69. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulated AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007; 67: 1979-87.
    70. Wang X, Ling MT, Guan XY, Tsao SW, Cheung HW, Lee DT, Wong YC. Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells. Oncogene. 2004; 23: 474–482
    71. Zhang X, Wang Q, Ling MT, Wong YC, Leung SC, Wang X. Anti-apoptotic role of TWIST and its association with Akt pathway in mediating taxol resistance in nasopharyngeal carcinoma cells. Int J Cancer. 2007; 120: 1891-1898
    72. Li J, Wood WH, Becker KG, Weeraratna AT, Morin PJ. Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene. online publication 30 October 2006; doi: 10.1038/sj.onc.1210086
    73. Man TK, Chintagumpala M, Visvanathan J, Shen J, Perlaky L, Hicks J, Johnson M, Davino N, Murray J, Helman L, Meyer W, Triche T, Wong KK, Lau CC. Expression profiles of osteosarcoma that can predict response to chemotherapy. Cancer Res, 2005; 65: 8142-8150.
    74. Dupont J, Fernandez AM, Glackin CA, Helman L, LeRoith D. Insulinlike growth factor 1 (IGF-1)-induced twist expression is involved in the anti-apoptotic effects of the IGF-1 receptor. J Biol Chem. 2001; 276: 26699–26707
    75. Sharon GN, Jean-Eudes D, Michal GM, Sivan O, Alex B, Ninette A, Eytan D, Gideon R, David G, Joseph IE. Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Developmental Dynamics 2005; 232: 487–497
    76. Yelena M, Paul TW, Jr. Farhad V, Yoshinori K, Flonne W, Arvind P. P, Scott K, Dmitri A, Zaver B, Paul VD, Horst B, Carlotta G, Venu R. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Research 2005; 65: 10801-10809.
    77. Lacking C. Twist overexpression promotes chromosomal instability in the breast cancer cell line MCF-7. Cancer Genetics and Cytogenetics. 2006; 167: 189-191
    78. Hosono S, Kajiyama H, Terauchi M, Shibata K, Ino K, Nawa A, Kikkawa F. Expression of Twist increases the risk for recurrence and for poor survival in epithelial ovarian carcinoma patients. British J Cancer. 2007; 96: 314-320
    79. Folkman J. Tumor angiogenesis: therapeutic implication. N England J Med. 1971; 285:1182-1186
    80. Fidler IJ, Ellis LM. The implication of angiogenesis for the biology and therapy of cancer metastasis. Cell. 1994; 79: 185-188
    81. Folkman J. The vascularization of tumors. Sci Am. 1976; 234: 58-64.
    82. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991; 64: 327-336.
    83. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003; 3: 643-651
    84. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003; 3: 401-410
    85. Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Cell. 2005; 7: 513-520
    86. Wang GL, Semenza GL. Purification and characterization of Hypoxia-inducible Factor-1. J Biol Chem. 1995; 270: 1230-1237
    87. Powis G, Kirkpatrick l. Hypoxia inducible factor-1 alpha as a cancer drug target. Mol Cancer Ther. 2004; 3: 647-654.
    88. Semenza GL. HIF-1α: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000; 88: 1474-1480
    89. Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer. 2002; 2: 38-47
    90. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001; 7: 345-350
    91. Semenza GL. Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol. 2002; 64: 993-998
    92. Damert A, Machein M, Breier G. Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res. 1997; 57: 3860-3864
    93. Schmedtje JF Jr, Ji YS, Liu WL, Dubois RN, Runge MS. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J Biol Chem. 1997; 272: 601-608
    94. Xu Q, Ji YS, Schmedtje JF Jr. Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium implications for the mechanisms of aortic aneurysm and heart failure. J Biol Chem. 2000; 275: 24583-9
    95. Ji YS, Xu Q, Schmedtje JFJr. Hypoxia induces high-mobility-group protein-1 and transcription of the cyclooxygenase-2 gene in human vascular endothelium. Circ Res. 1998; 83: 295-304
    96. Chiarugi V, Magnelli L, Chiarugi A, Gallo O. Hypoxia induces pivotal tumor angiogenesis control factors including p53, vascular endothelial growth factor and the NF kappaB-dependent inducible nitric oxide synthase and cyclooxygenase-2. J Cancer Res Clin Oncol. 1999; 125: 525-528
    97. Garayoa M, Martinez A, Lee S. Hypoxia inducible factor-1(HIF-1) up-regulated adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol. 2000; 14: 848-862
    98. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407: 249-257.
    99. Barbareschi M, Gasparini G, Moreli L. Novel methods for the determination of the angiogenic activity of human tumors. Breast Cancer Res Treat. 1995; 36: 181-192
    100. Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol. 2000; 156:361-381
    101. Chang YS, Tomaso E, McDonald DM. Mosaic blood vessels in tumors: f requency of cancer cells in contact with flowing blood. PNAS. 2000; 97: 14608-14613
    102. Benoy IH, Salgado R, Elst H, Van Dam P, Weyler J, VanMarck E. Relative microvessel area of the primary tumour and not lymph node status, predicts the presence of bone marrow micrometastases detected by reverse transcriptase polymerase chain reaction in patients with clinically non-metastatic breast cancer. Breast Cancer Res. 2005; 7: R210– R219.
    103. Fukata S, Inoue K, Kamada M, Kawada C, Furihata M, Ohtsuki Y. Levels of angiogenesis and expression of angiogenesis-related genes are prognostic for organ-specific metastasis of renal cell carcinoma. Cancer 2005; 103: 931–942.
    104. Fox SB, Gasparini G, Harris AL. Angiogenesis: pathological, prognostic and growth-factor pathways and their link to trial design and anticancer drugs.Lancet Oncol. 2001; 2: 278–289
    105. Guang-Wu H, Sunagawa M, Jie-En L, Shimada S, Gang Z, Tokeshi Y. The relationship between microvessel density, the expression of vascular endothelial growth factor (VEGF) and the extension of nasopharyngeal carcinoma. Laryngoscope. 2000; 110: 2066–2069
    106. Huang SP, Wu MS, Wang HP, Yang CS, Kuo ML, Lin JT. Correlation between serum levels of interleukin-6 and vascular endothelial growth factor in gastric carcinoma. J Gastroenterol Hepatol. 2002; 17: 1165–1169
    107. Tokunaga T, Nakamura M, Oshika Y, Abe Y, Ozeki Y,Fukushima Y. Thrombospondin 2 expression is correlated with inhibition of angiogenesis and metastasis of colon cancer. Br J Cancer. 1999; 79: 354–359
    108. Khanna C, Jaboin JJ, Drakos E, Tsokos M, Thiele C J. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In Vivo 2002; 16: 77–85
    109. Rofstad EK, Halsor EF. Vascular endothelial growth factor, interleukin 8, platelet-derived endothelial cell growth factor and basic fibroblast growth factor promote angiogenesis and metastasis in human melanoma xenografts. Cancer Res. 2000; 60: 4932–4938
    110. Stearns ME, Garcia FU, Fudge K, Rhim J, Wang M. Role of interleukin 10 and transforming growth factor beta1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin Cancer Res. 1999; 5: 711–720
    111. Polnaszek N, Kwabi-Addo B, Peterson LE, Ozen M, Greenberg NM, Ortega S. Fibroblast growth factor 2 promotes tumor progression in an autochthonousmouse model of prostate cancer. Cancer Res. 2003; 63: 5754–5760
    112. Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML. The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene. 2000; 19: 3449–3459
    113. Chen C T, Lin J, Li Q, Phipps S S, Jakubczak J L, Stewart D A. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin. Hum Gene Ther. 2000; 11: 1983–1996
    114. de Lorenzo MS, Ripoll GV, Yoshiji H, Yamazaki M, Thorgeirsson UP, Alonso DF. Altered tumor angiogenesis and metastasis of B16 melanoma in transgenic mice overexpressing tissue inhibitor of metalloproteinases-1. In Vivo. 2003; 17: 45–50
    115. Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G. Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res. 2002; 62: 603–608
    116. Viloria-Petit A, Miquerol L, Yu J L, Gertsenstein M, Sheehan C, May L. Contrasting effects of VEGF gene disruption in embryonic stem cell-derived versus oncogene induced tumors. EMBO J. 2003; 22: 4091–4102
    117. Sauter ER, Nesbit M, Watson J C, Klein-Szanto A, Litwin S, Herlyn M. Vascular endothelial growth factor is a marker of tumor invasion and metastasis in squamous cell carcinomas of the head and neck. Clin Cancer Res. 1999; 5: 775–782
    118. Vandromme M, Gauthier-Rouviere C, Lamb N, Fernandez A. Regulation oftranscription factor location: Fine-tuning of gene expression. Trends Biochem Sci. 1996; 21: 59-64
    119. Kyo S, Ohno S, Mizumoto Y, Maida Y, Hashimoto M, Nakamura M, Takakura M, Nakajima M, Masutomi K, Inoue M. High Twist expression is involved in infiltrative endometrial cancer and affects patient survival. Hum Pathol. 2006; 37: 431-438
    120. Weidner N. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 1995;36:169–180
    121. Vogelstein B and K.W. Kinzler. 1998. The genetic basis of human cancer. McGraw-Hill, New York, NY.
    122. Elias MC, Tozer KR, Silber JR, Mikheeva S, Deng M, Morrison RS, Manning TC, Silbergeld DL, Glackiny CA, Rehz TA, Rostomily RC. TWIST is expressed in human gliomas and promotes invasion. Neoplasia. 2005; 7: 824-837
    123. Fidler IJ. The pathogenesis of cancer metastasis: the seed and soil hypothesis revisited. Nat Rev Cancer. 2003; 3: 453-458.
    124. Lofstedt T, Jogi A, Sigvardsson M, Gradin K, Poellinger L, Pshlman S, Axelson H. Induction of ID2 expression by hypoxia-inducible factor-1. J Bio Chem. 2004; 279; 39223-39231.
    125. Zhong H, Semenza GL, Simons JW, Marzo AM. Up-regulation of hypoxia-inducible factor 1α is an early event in prostate carcinogenesis. Cancer Detect Prev. 2004; 28: 88-93.
    126. Jogi A, Nilsson H, Lindeheim A, Makino Y, Poellinger L, Axelson H,Pahlman S. Hypoxia alters gene expression in human neuroblastoma cells toward and immature and neural crest-like phenotype. Pro Natl Acad Sci USA. 2002; 99: 7021-7026
    127. Balaji K, Shannon BD, Brian K, Faton A, David F, Gloria F, Narayan I, Jessica L, Brian P, Panthea T, Semenza G. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res. 2003; 63: 1138-1143,
    128. Sun YX, Wang J, Shelburne CE, Lopatin DE, Chinnaiyan AM, Rubin MA, Pienta KJ, Taichman RS. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 2003; 89: 462–473
    129. Oliver S, Marya FM, Jane SW. Role of hypoxia-inducible factor 1α in gastric cancer cell growth, angiogenesis, and vessel maturation. Journal of the National Cancer Institute. 2004; 96: 946-956
    130. Semenza GL. Intratumoral hypoxia, radiation resistance, and HIF-1. Cancer Cell. 2004; 5: 405-406
    131. Yang DI, Chen SD, Yang YT. Carbamoylating chemoresistance induced by cobalt pretreatment in C6 glioma cells: putative roles of hypoxia-inducible factor-1. British Journal of Pharmacology. 2004; 141: 988–996
    132. Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 1993; 28: 3610-3615
    133. Wang GL, Semenza GL.Characterization of hypoxia-inducible factor 1 andregulation of DNA binding activity by hypoxia. J Bio Chem. 1993; 268: 21513-21518
    134. Wang GL, Semenza GL. General involvement of hypoxia inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993; 90: 4304-08.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700