用户名: 密码: 验证码:
磁强化好氧反硝化菌的生物脱氮机制与效能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素污染控制是当今水污染防治领域的关注焦点。传统生物脱氮工艺在处理过程中存在弊端,亟待研发高效、稳定、节省占地的新型生物脱氮工艺。本论文将好氧反硝化和磁生物强化理论引入新型生物脱氮工艺的研发,研究高效好氧反硝化功能菌的筛选、鉴定、生理特性及脱氮效能;构建基于好氧反硝化菌的新型强化生物脱氮系统,探讨磁强化技术对功能菌效能和对SBR系统污水处理效果的强化作用;考察反应系统中的微生物群落结构演替规律,解析系统中的硝化功能菌群、反硝化功能菌群间的生态学关系及动态变化趋势,为现有污水处理系统的强化及同步脱氮机理提供进一步参考。
     定向筛选高效好氧反硝化菌,确定其最适生长和反应条件,结果表明:所筛选菌株T13(Pseudomonas sp.)为硝酸盐去除率97.75 %,总氮去除率89.74 %的高效好氧反硝化菌。其适宜生长和反硝化温度范围为25-35℃,μmax=0.3079 h-1,代时G =2.25 h。并在15℃的低温下仍具有脱氮能力;适宜的pH为中性偏碱;适宜的C/N为3-12;能够利用硝酸盐、亚硝酸盐为电子受体进行硝酸盐呼吸,并实现90 %以上的硝酸盐、亚硝酸盐去除率。
     结合菌株微生物特性,探讨磁场对好氧反硝化进程的影响与机制,结果表明:磁场强度和磁作用方式均对好氧反硝化功能菌的生理特性产生影响,当磁场强度150 mT时,T13的微生物生长量、硝氮去除率、脱氢酶活性最佳,其中硝氮去除率、脱氢酶活性分别较未加磁场时提高了7.2%和2.38倍;投加磁粉后T13生长显著,T13加磁粉的比生长速率μ明显高于其他两组。磁粉投加量为2g/L时,硝氮去除率达到100 %,经统计学差异显著分析,磁作用效果明显。将高效好氧反硝化菌T13接入SBR系统,可见磁作用对硝氮和COD去除的明显增强作用。功能菌蛋白凝胶分析推断,磁致生物效应主要为通过磁效应对微生物的酶活性产生影响,进而调控微生物反应的进行。
     考察磁作用对污染物去除及污泥性质的影响并优化磁作用参数,结果表明:常温条件下,综合考虑氨氮和COD的去除效果,60-90 mT磁场范围能达到对污染物去除较佳。磁作用可以使污泥颗粒zeta电位降低,促进了污泥的沉降速率的提高,活性污泥的脱氢酶活性随着磁场梯度的增加呈现出较明显的增加趋势。
     考察生物-磁复合强化技术的低温同步脱氮效能及稳定性,结果表明:磁效应可以缩短最佳停留时间,增大了SND稳定高效运行pH值的耐受范围,增强了处理系统的稳定性,实现污染物的高标准达标排放。低温运行期间,平均进水COD 377 mg/L、氨氮67 mg/L,MSBR-SND(Magnetic-SBR-SND)出水平均氨氮去除率为95.76 %,出水平均总氮去除率为60 %,COD去除率为82 %左右,出水氨氮浓度符合《城镇污水处理厂污染物排放标准》(2002)一级A标准,磁作用效果显著。
     基于PCR-DGGE技术,结合聚类分析与Shannon多样性指数分析,结果表明,磁效应导致适应磁环境的细菌生物活性增强,使系统更快形成稳定的群落结构。在系统HRT与DO改变时其微生物群落结构相对稳定,pH改变时群落结构变化相对激烈,但外界条件对加磁系统微生物多样性的影响均较小。系统中的反硝化菌群和硝化功能菌群结构与多样性的变化受上述条件影响,所筛选菌株T13有较强的适应能力,所代表的条带在整个运行期间的DGGE图谱上始终存在,为菌群中的优势种属之一,从而保证了系统硝氮的稳定去除。
     通过上述研究,可以确定:磁效应对好氧反硝化功能菌的生长代谢与生态优势地位具有显著促进与稳定作用,基于好氧反硝化菌的磁复合强化生物脱氮技术能够有效提高污水处理系统的处理能力和效率,并在低温条件下具备稳定性与高效性的优势,为完善城镇污水的生物脱氮工艺,尤其是北方低温环境下污水的高效稳定处理提供了有效的新途径。
Recently, nitrogen removal which plays an important role in controlling water pollution has received more and more attention. Due to the disadvantage of traditional technologies for biological nitrogen removal, the research on novel technology which focuses on enhancing the efficiency and stabilization of biological nitrogen removal, as well as saving the consumption of construction and operation become an urgent need. With the development of aerobic denitrification and magnetic strengthening, in this paper, the aerobic denitrifier which having high potential of denitrification was isolated, the performance of magnetic strengthening on the denitrification characteristics of function microbe and the efficiency of biological nitrogen removal system was further investigated, meanwhile, under the magnetic condition, the microbial community structure in the system was detected, and the relationship and dynamic variation of nitrobacteria and denitrifying bacteria was analyzed.
     A high efficient aerobic denitrifying bacterium belonging to Pseudomonas sp. was isolated from activated sludge, named T13, having the excellent removal efficiency of nitrate and total nitrogen which achieved 97.75 % and 89.74 % respectively. The optimal temperature for the growth and denitrification of T13 ranged from 25 to 35℃, and a nitrogen removal ability of T13 could be found even at a lower temperature such as 15℃. The optimal pH was neutral and low alkali, and the optimal C/N was 3-12. Such a strain could utilize nitrate and nitrite as electron acceptors for nitrate respiration, achieving high-efficiency removal of nitrate and nitrite which were higher than 90 %.
     Both the intensity and modes of magnetic interaction had great effects upon the physiological characteristics of function microbe regarding aerobic denitrification. Strain T13 showed better performance at the magnetic intensity of 150 mT, the nitrate removal efficiency and dehydrogenase activity increased 7.2 % and 2.38 folders respectively compared to the control condition without magnetic interaction. And the removal of nitrate caused by T13 could reach 100 % when adding magnetic powder into the system. Further, the remarkable improvement of nitrate and COD removal by magnetic interaction was also found in SBR system incubated strain T13. It was presumed that magnetic field had a particular biological effect on the micro activity in order to regulate the reaction of biological nitrogen removal.
     Considered with the tendency of COD and nitrogen removal, the optimal range of magnetic field was 60-90 mT. Magnetic treatment could reduce the zeta potential of sludge particle and increase the sludge sedimentation rate correspondingly.
     Magnetic strengthening biological nitrogen removal based on aerobic denitrifiers was investigated at low temperature. It was found that magnetic field was beneficial for the operation of simultaneous nitrification and denitrification (SND) system including shortening the HRT, improving the stabilization and efficiency, enhancing the tolerance to pH and achieving the contamination removal with high standard. Under low temperature, the MSBR-SND (Magnetic-SBR-SND) fed with 377 mg/L of COD and 67 mg/L of ammoniac nitrogen showed a high degree of contamination removal, the average removal of ammoniac nitrogen, total nitrogen and COD was 95.76 %, 60 % and around 82 % respectively.
     Based on the PCR-DGGE (denaturing gradient gel electrophoresis of polymerase chain reaction) protocol, together with the cluster analysis and Shannon divergence, it was clear that magnetic interaction could induce to a better micro activity of bacterium which adapting the magnetic field and help for forming the stable community structure in the ecosystem rapidly. Under different HRT and DO, the total community structure was stable, while it changed much more intensely with the changed pH, but the effect of these operational parameters on microbial community diversity in the magnetic-added system of biological nitrogen removal was uniformly low. The community structure and microbial diversity of nitrification bacteria and denitrifiers were also affected by the above parameters, but the function microbe T13 which became the dominance strain in this ecosystem presented perfect tolerance to the variation in these conditions, indicating the stabilization of the magnetic-added system for nitrogen removal.
     Through the systemic research on performance and mechanism on magnetic strengthening biological nitrogen removal based on aerobic denitrifiers, it can be determined that magnetic effect could promote the growth and metabolism of aerobic denitrifiers and help for keeping their dominance state in ecosystem of nitrogen removal, and the technology of magnetic strengthening composite biological nitrogen removal have obvious advantages on improving treatment capable and efficiency of biological nitrogen removal system,especially under low temperature conditions. Therefore this investigation provides a new approach to novel technology of biological nitrogen removal and feasible application in the cold regions of north china.
引文
1.张利平,夏军,胡志芳.中国水资源状况与水资源安全问题分析.长江流域资源与环境. 2009.18(2):116-120
    2.孙锦宜.含氮废水处理技术与应用.北京:化学工业出版社.2003:33-35
    3.姜明姣.异养硝化菌的分离鉴定及其硝化特性的研究.湖南农业大学.2008.6:22-24.
    4.苏俊峰.异养型同步硝化反硝化脱氮技术及微生物特性研究.哈尔滨工业大学. 2007.6:12-14.
    5.张智,林艳,梁健.水体富营养化及其治理措施.重庆环境科学.2002,24(3):52-54.
    6.郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社.2004:5-7.
    7.国家环保总局.《城镇污水处理厂污染物排放标准》(GB18918-2002).2002.
    8. G.Demoulin,A Rudiger,M.C.Goronszy.Cyclic activated sludge technology recent operating experience with a 90000 p.e.plant in Germany. Wat.Sci.Tech. 2001, 43(3):331-337.
    9. Seghers.Technical report, brewery wastewater treatment with UNITANK, UNITAN K two stage aerobic;UNITANK two stage anaerobic-aerobic.2000.
    10. W.Wu, P.Timpany, D.Dawson. Simulation and application of a novel modified SBR for biological removal.Wat.Sci.Tech.2001,43(3):215-222.
    11.李军,杨秀山,彭永臻.微生物与水处理工程.化学工业出版社.2002:370-390.
    12.李常留.阶段流入式多级A/O生物脱氮工艺研究与应用.大连理工大学.2010.1.
    13.任南琪,马放,杨基先等.污染控制微生物学.哈尔滨工业大学出版社.2006:328-333.
    14. L.A. Robertson, Kuinin.Nitrogen removal from water and waste.Combridge University Press.1992:227-267.
    15.尤勇军,沈澄英.膜生物反应器处理氨氮废水的研究进展.污染防治技术.2006,19(2):35-37.
    16. A.B.Kshirsagar,S.K.Gupta.Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha.Environ.Technol.1994,16:35-43.
    17. M.Kshirsagar, A.B.Gupta.Aerobic denitrification studies on activated sludgemixed with Thiosphaera pantotropha. Environ. Technol.1994,16:35-43.
    18. S.M.Mike Jetten,Susanne logemann,Gerard Muyzer et al. Novel principle in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek. 1997,71:75-93.
    19. A.A.A.Mulder,Van de Graaf,L.A. Robertson,et al.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol..1995,16:177-183.
    20. J.G. Kuenen,L.A. Robertson. Combined nitrification-denitrification process. EMS Microbiol. Rev. 1994,15(2):109-117
    21. L. Kuai,W. Verstrartr. Autotrophic denitrification with elemental sulphur in small-scale wastewater treatment facilities. Environ. Tech.1999,20:201-20.
    22. N. Bernet,C. Bizeau,R. Moletta,et al. Study of physicochemical factors controlling nitrite build-up during heterotrophic denitrification. Environ. Tech.1995,16:165-179.
    23. J.P Voets, H. Wanstaen and W. Verstraete, Removal of nitrogen from highly nitrogenous wastewater, J. Wat. Pollut. Control Fed. 1975, 47:394–398.
    24. S.Sutherson, J.J.Ganczarczk. Inhibition of nitrite oxidation during nitrification some observations. Wat. Poll. Rse.J.Can.1986,21:257-256.
    25. O.Turk, D.S.Mavininc. Preliminary assessment of shotcut in nitrogen removal from wastwater.Can.J.Civ.Eng.1986,13:600-605.
    26.刘欣.厌氧氨氧化生物滤池脱氮特性研究.河北理工大学.2008.3:44-48.
    27.徐海江,张仁志,韩恩山等.厌氧氨氧化的研究进展.能源环境保护.2006,19(2):13-15.
    28. A.A. Vande,P. Graaf,D. Bruijn,et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor. Microbiology. 1996,142(8):2187-2196.
    29. W. H. Zhao,S. D. Mavinic,K.W. Oldham. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage.Wat.Res. 1999, 33(4): 961-970.
    30. E.V. Elisabeth Munch, Paul Lant, J. Keller. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors, Wat. Res.1996, 30(2):277-284.
    31.王学江,夏四清,陈玲等. DO对MBBR同步硝化反硝化生物脱氮影响研究. 2006,34(4):514-517.
    32. Y. Watanabe, S.Masuda,M. Ishiguro. Simultaneous nitrification and denitrification in micro-aerobic biofilms. Water Sci. Technol. 1992,46:511–522.
    33. W.J. Davies,M.S. Less,C.R.Heath. Intensifed activated sludge process with suberged mombrane microfiltration. Wat. Sci.Tech.1998,38 (4):421-428.
    34. E.B.Muller,A.H.Stouthamer,H.W.Verseveld,et al. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration. Wat. Res. 1995,29 (4):1179-1189
    35. A.B. Gupta, S.K. Gupta. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerohic RBC biofilm. Water Res . 2001,35:1714-1722.
    36.涂保华,王利平,李定龙.曝气过滤一体化装置中同步硝化反硝化的研究.环境科学与技术.2005,28(增刊) :132-134.
    37.张小玲,王志盈.生物紊动床内短程硝化过程研究.环境科学与技术.2006,29(01):28-30.
    38.李飞,张雁秋,李晓红等.同步硝化反硝化影响因素的研究.江苏环境科技.2006,19(4):16-18.
    39.张立东,冯丽娟.同步硝化反硝化技术研究进展.工业安全与环保.2006,32(3):22-25.
    40.叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社. 2006:10-13:47-50.
    41.王宗平,陶涛,金儒霖.污水生物脱氮研究进展.环境科学进展.1999:124-129.
    42.王琳,王宝贞.废水生物处理新技术.北京:中国建筑工业出版社. 2000:197-203.
    43.柯国华.好氧反硝化动力学研究.北京工商大学. 2006,6:24-30.
    44. L. Frette,B. Gejlsbjerg,P. Westermann. Aerobic denitrifiers isolated from an alternating active sludge system.FEMS Microbiology Ecology.1997,24:363-370.
    45. L.A Robertson,J.G. Kuenen.Thiosphaeera Pantotropha gen.nov.sp.nov.,a facultative autotrophic sulphur bacterium.J Gen Microbiol.1983,129 2847-2855.
    46. P.Bonin,Gilewiz,M cent,Oceanol Marseille,Fac.Sci.Luminy,Marseille,Fr.A direct demonstration of“co-respiration”of oxygen and nitrogen oxides by Pseudomonas nautical:some spectral and kinetic properties of the respiratorycomponents.FEMS Microbiology Letters.1991,80(2-3):183-188.
    47. J.M. Krul. Dissimilatory nitrate and nitrite reduction under aerobic conditions by an aerobically and anaerobically grown Alcaligenes sp.and by activated sludge. Journal of applied bacteriology.1976,40(3):245-260.
    48. D.Patureau,J.Davison,N.Bernet,Moletta R.Denitrification under various aeration conditions in Comamonas sp.,strain SGLY2. FEMS Microbiology Ecology. 1994,14(1):71-78.
    49. L.A.Robertson,W.J VAN Niel ED.,A.M Torremans ROB,et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaeera Pantotropha Applied and Environmental Microbiology.1988,54(11):2812-2818.
    50.郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社.2004:68-75.
    51. S.M. Mike Jetten,Susanne logemann,Gerard Muyzer,et al. Novel principle in the microbial conversion of nitrogen compounds Antonie van Leeuwenhoek. 1997,71(1-2):75-93.
    52. T. Naoki,A.B Maria,S. Yasushi,et al. Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Applied and Environmental Microbiology. 2003,69(6):3152-3157.
    53. E.W.J.Van,Neil. Nitrification by Heterotrophic Denitrifiers and ItsRelationship to AutotrophicNitrification. PhD Thesis, DelftUniversity of Technology, Delft,1991:77-82.
    54. J.W Moir,D.J Richardson,S.J Ferguson.The expression of redox proteins of denitrification inThiosphaera pantotrophagrown with oxygen, nitrate, and nitrous oxide as electron acceptors.Archives of Microbiology. 1995,164:43-49.
    55. L.P Wilson,E.J Bouwer.. Biodegradation of aromatic compounds undermixed oxygen/denitrifying conditions: A review.Journal of Industrial Microbiology & Biotechnology.1997,18:116-130.
    56.殷士学,陈丽敏.土壤中硝化、反硝化微生物的研究进展.土壤学报.2002,39(增刊):116-124.
    57.孔庆鑫,李君文,王新为,金敏,古长庆.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现.应用与环境生物学报.2005,11(2):222-225.
    58. L.A. Robertson,J.G. Kuenen Aerobic Denitrification: a Controversy Revived. Arch. Microbiol.1984,139(5):351-354.
    59. H. K. Huang,S. K. Tseng. Nitrate reduction by Citrobacter diversus underaerobic enviroment. Appl. Microbiol Biotechnol.2001,55:90-94.
    60.李丛娜,吕锡武,稻森悠平.同步硝化反硝化脱氮研究.给水排水. 2001,27(1):22-24.
    61. A. B. Gupta, S. K. Gupta. Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Wat. Res. 1999,33(2):555-561.
    62.马放,王弘宇,周丹丹.活性污泥体系中好氧反硝化菌的选择与富集.湖南科技大学学报.2005,20(2):80-83.
    63.周丹丹,马放,王弘宇,等.关于好氧反硝化菌筛选方法的研究.微生物学报.2004,44(6):837-839.
    64. A.B.Gupta, S.K. Gupta Simultaneous carbon and nitrogen removal in a mixed culture aerobic RBC biofilm. Wat. Res..1999,33(2):555-561.
    65. M. Kshirsagar, A.B Gupta,S.K. Gupta. Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. Environ. Technol. 1994,16(1):35-43.
    66. S. E. Fantroussi, Spiros N. Agathos. Is Bioaugmentation a Feasible Strategy for Pollutant Removal and Site Remediation.Current Opinion in Microbiology. 2005, (8):268~275.
    67.刘洋,陈双基,刘建国.生物强化技术在废水处理中的应用[J].环境污染治理技术与设备,2002,3(5):36-40.
    68. C Y.Young The use of enzymes and biocatalytic additives for wastewater treatment process. Water Pollut Control Fed High-lights,1976,13:5.
    69. M. W. Britt, L. N. Jeppe, K. Kristian, et al. Influence of Microbial Activity on the Stability of Activated Sludge Flocs. Collids and Surfaces B: Biointerfaces. 2000,18(2):145-156.
    70.陈朋:反硝化细菌的筛选、鉴定及其强化处理硝酸盐废水的研究.山东大学硕士学位论文,2009:5.
    71.王焘.以污泥水富集硝化菌为添加源强化城市污水生物脱氮系统功能研究.西安建筑科技大学硕士学位论文,2009:6.
    72. Y. T. Hung, D. B. Shah, F. L. Horsfall. Effect of Bioaugmentation on the Performance of Activated Sludge Reactors. Process Biochemistry. 1987,(7):68-73.
    73. Chong Nyuk-Min, Pai Shwu-ling, Chen Chei-Hsiang. Bioaugmentation of an Activated Sludge Receiving pH Shock Loadings. Bioresource Technology, 1997,(59):235-240.
    74.杨小丽,叶峰,宋海亮,王阿华.基于污水厂运行数据的低温生物脱氮强化研究,中国给水排水,2009,25(1):82-88.
    75.孟雪征,曹相生,姜安玺.利用耐冷菌处理低温污水的研究.山东建筑工程学院学报,2001,16(2):39-44.
    76.山丹,马放,王金生等.生物强化技术提高SBR系统对低温苯胺废水处理能力的研究.环境工程学报,2009,3(4):577-580.
    77.都的箭,吴克宏,邓正栋.磁分离技术在水处理中的物理作用分析.给水排水. 2001,27 (9):27-30.
    78.柴诚敬,贾绍义,李宗堂等.磁化技术在化工领域中的应用.化学工业与工程.1999,16 (4):245-248.
    79.马伟,萧锦,郭丽燕.磁场效应在水处理中的作用与研究.工业水处理.1997,17 (6):1-6.
    80.皮科武,罗亚田.磁效应在水处理中的应用研究.环境科学与技术.2003,26(1):26-28.
    81.栗杰,艳丽,焦颖等.棕壤微生物和几种酶活性的磁致效应研究.土壤通报.2007,38(5):22-27.
    82.王祥三,王平.磁化处理污水的生物效应试验.环境科学与技术.2000,(02):33-36.
    83.张凡,程江,海景,等,磁致物理化学生物效应及其在废水生物降解中的应用.现代化工.2003,23(12):12-13.
    84. Hulya Yavuz,Serdar Scelebi. A typical application of magnetic field in wastewater treatment with fluidized bed biofilm reactor . Chen Eng Commun. 2003,190:5-8.
    85.易赛莉.厌氧-磁化复合系统处理城镇生活污水中试研究.武汉大学博士学位论文.2004.4:37-44.
    86.王光华.磁场对厌氧活性污泥的生物活性影响研究.工业安全与环保. 2009,35(3):6-8.
    87.韩庆祥,邵凤琴.磁场对活性污泥法处理废水的强化作用.抚顺石油学院学报.2002,22 (3):8-10.
    88. M. Koneraka,P. Kopcansky,M. Antalik,et al.I Immobilization of proteins and enzymes to finemagnetic particles.Joural of Magnetism and Magnetic Materials. 1999,201(1):427-430.
    89. Yasuzo Sakai, Takahiro Miama , Fujio Takahashi. Simultaneous removal of organic and nitrogen compounds in intermittentlyaerated activated sludge process usingmagnetic separation .Water Research,1997,31(8):2113-2116.
    90. Agnieszka Tomska,Lidia Wolny. Enhancement of biological wastewater treatment by magnetic field exposure . Desalination.2008, (222):368–373.
    91.周正.磁化处理对污泥胶体稳定性及其吸附性能影响的初步研究.苏州科技学院硕士学位论文.2007.5.
    92.朱又春,曾胜.磁分离法处理餐饮污水的除油机理中国给水排水.2002,(07):39-41.
    93.孙鸿燕,史少欣,王平宇.几种复合磁絮凝剂在餐饮废水处理中的应用.工业水处理.2006,26(8):55-58.
    94.孙水裕,张俊浩,刘炳基,罗少凡.磁种凝聚-磁分离技术处理含Ni2+电镀废水的研究环境工程. 2002,(04):17-19.
    95.舒浩华,王艳红,孙津生,白明.趋磁性细菌-磁场处理含镍废水的研究.离子交换与吸附.2005,21(4):265-269.
    96.刘建容,吴国庆.磁态厌氧流化床处理印染废水.中国环境科学.1996,16(1):64-67.
    97.赵静,刘勇健.磁流体处理印染废水初探.污染防治技术.2007,20(6):14-16.
    98.赵静,刘勇健.磁流体在印染废水处理中的应用研究.环境科学与管理.2008,33(5):118-120.
    99.韩虹,陈文松,韦朝海.印染废水处理的磁混凝-高梯度磁分离协同作用.环境工程学报.2007,1(1):64-67.
    100. Lukas Fojt,Ludek Strasak ,Vladimír Vetterl. Effect of electromagnetic fields on the denitrification activity of Paracoccus denitrificans. Bioelectrochemistry. 2007 (70):91-95.
    101. B. Gmez-Villalba,C. Calvo,R.Vilchez,et al. DGGE analysis of the diversity of ammonia-oxidizing and denitrifying bacteria in submerged filter biofilms for the treatmentofurbanwastewater .Applied and Environmental Microbiology. 2006,72:393-400.
    102. J.L. Nielsen,L.H. Mikkelsen,P.H. Nielsen.. In situ detection of cell surface hydrophobicity of probe2defined bacteria in activated sludge.Wat Sci Tech .2001,43 (6) :97-103.
    103. I.N Throback,K. Enwall,A. Jarvis,et al. Reassessing PCR primers targetingnirS, nirK and nosZ genes for community surveys of denitrifyingbacteria with DGGE .FEMS Microbiol. Ecol.2004,49 (3): 401-417.
    104. S.J. You. Identification of denitrifying bacteria diversity in an activated sludge system by using nitrite reductase genes .Biotechnol Lett.2005,27(19): 1477-1482.
    105. S. Yoshie,N. Noda,S. Tsuneda,et al. Salinity decreases nitrite reductase gene diversity in denitrifying bacteria ofwastewater treatment systems .Appl. Environ. Microbiol.2004,70 (5):3152-3157.
    106. T.R. Thomsen,J.L. Nielsen,N.B. Ramsing,et al. Micromanipulation and further identification of FISH labeled microcolonies of a dominant denitrifying bacterium in activated sludge .Environ. Microbiol.2004,6 (5):470-479.
    107. J.Snaidr, R. Amann,I. Huber,et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge .Appl. Environ. Microbiol.1997, 63 (7):2884-2896.
    108. M.P. Ginige,G. Carvalho,J. Keller,et al.2007. Eco-physiological characterization of fluorescence in situ hybridization probe-targeted denitrifiers in activated sludge using culture-independent methods . The Society forAppliedMicrobiology,44:399-40.
    109. Zhang D, Zhang D M,Liu Y P ,et al . Community analysis of ammonia oxidizer in the oxygen2limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH .Journal of Environmental Sciences . 2004,16(5) :838 -842.
    110. G. Braker,A. Fesefeldt,K.P. Witze. Development of PCR primer systems for amplification of nitrite reductase genes (nirKandnirS) todetect denitrifying bacteria in environmental samples .Appl.Environ. Microbiol.1998, 64 (10): 3769-3775.
    111. G. Braker,Zhou J,Wu L,et al. Nitrite reductase genes (nirKandnirS) as functional markers to investigate diversity of denitrifyingbacteria in pacific northwestmarine sediment communities .Appl. Environ. Microbiol.2000, 66 (5):2096-2104.
    112. E. Mounier,S. Hallet,D. Chèneby,et al. Influence of maize mucilage on the diversity and activity of the denitrifying community.Environ. Microbiol.2004,6 (3):301-312.
    113. D.J Scala,L.J Kerkhof. Horizontal heterogeneity of denitrifyingbacterial communities inmarine sediments by terminal restriction fragmentlengthpolymorphism analysis .Appl. Environ. Microbiol.2000,66 (5):1980-1986.
    114. S. Henry,E. Baudoin,J. López-Gutiérrez,et al. Quantification of denitrifying bacteria in soils bynirKgene targeted real-time PCR.JMicrobiol. Meth.2004,59 (3):327-330.
    115. E. Kandeler,D. Tscherko,K. D. Bruce,M. Stemmer,P. J. Hobbs,R. D. Bardgett,W. Amelung. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil Biology and Fertility of Soils. 2000,32,(5):390-400.
    116. S.A. Dar,J. G. Kuenen. Nested PCR-Denaturing Gradient Gel Electrophoresis Approach to Determined the Diversity of Sulfate Reducing Bacteria in Complex Microbial Communities. Applied and Environmental Microbiology. 2005,71(5):2325-2333.
    117. G. A. Kowalchuk,J. Stephen,W. D. Bore,et al. Analysis of Ammonia-Oxidizing Bacteria of theβ-Subdivision of the Class Proteobacteria in Coastal Sand Dunes by Denaturing Gradient Gel Electrophoresis and Sequencing of PCR-Amplified 16S Ribosomal DNA Fragments. Applied and Environmental Microbiology.1997,63(4):1489-1497.
    118. L. Ovreas, L. Forney, F. L. Daae. Distribution of Bacterioplanklon in Meromictic Lake Selenvannet, as Determined by Denaturing Gradient Electrophoresis of PCR-Amplified Gene Fragments Coding for 16S rRNA. Applied and Environmental Microbiology. 1997,(63):3363-3367.
    119. V. Michotey, V. Me′jean, P. Bonin. Comparison of methods for quantification of cytochrome cd1-denitrifying bacteria in marine samples. Appl. Environ. Microbiol. 2000,66,1564–1571.
    120. K. Kloos,A. Mergel, C. Rosch,et al. Denitrification within the genus Azospirillum and other associative bacteria. Aust. J. Plant. Physiol. 2001, 28, 991–998.
    121. Ingela Noredal Throback , Karin Enwall, Asa Jarvis,et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE.FEMS Microbiology Ecology 49 (2004) 401–417.
    122. T. Watanabe,S. Asakawa,A. Nakamura,et al. DGGE method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil . FEMS Microbiology Letter. 2004,232(2):153-163.
    123.张光亚,方柏山,闵航,等.好氧同时硝化-反硝化菌的分离鉴定及系统发育分析.应用与环境生物学报.2005,11(2):226-228.
    124. F. Cervantes,O. Monroy,J. Gomez. Influence of ammonium on the performance of a denitrifying culture under heterotrophic conditions. Appl Biochem Biotechnol.1999,81:13-21.
    125.林沁瑛,黄灿灿.恒定磁场对中华弥猴桃蛋白酶生物效应初探.生物化学与生物物理学报.1992,24(3):253-256.
    126.陆光立,赵庆祥.磁粉活性污泥法工艺技术研究.城市环境与城市生态.1998,11 (2):10-12.
    127.张甲耀,宋碧玉,郑连爽,等.环境微生物学.北京.科学出版社, 2004: 60-64.
    128.解军,祈峰,裴海燕,胡文容.脱氢酶活性检测方法及其在环境监测中的应用.中国环境监测.2006,22(5):13-18.
    129. Y.C Chiu, Lee L.L, Chang C.N, Chao A.C. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration & Biodegradation.2007,59:1-7.
    130.柯国华,汪苹,杨志.好氧反硝化脱氮气态中间产物的研究分析.环境科学与技术.2006,29(7):45-50.
    131.李晓璐,谢勇丽,邓仕槐等.SBR系统中pH与MLSS对同步硝化反硝化的影响.四川环境.2006,25(6):1-5.
    132.邹联沛,张立秋,王宝贞.MBR中DO对同步硝化反硝化的影响.中国给水排水.2001,17(6):10-14.
    133.周丹丹,马放,董双石等.溶解氧和有机碳源对同步硝化反硝化的影响.环境工程学报.2007,1(4):25-28.
    134.李绍峰,崔崇威,黄君礼等.DO和HRT对MBR同步硝化反硝化影响研究.哈尔滨工业大学学报.2007,39(6):887-890.
    135.赵冰怡,陈英文,沈树宝.C/N比和曝气量影响MBR同步硝化反硝化的研究.环境工程学报.2009,3(3):400-404.
    136.方茜,张朝升,杜馨. 2009.间歇曝气模式对同步硝化反硝化稳定性的影响.环境科学学报, 29 (7) : 1411– 1418.
    137.张朝升,章文菁,方茜,张可方.DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响.环境工程学报.2009(3)3:413-416.
    138.张静蓉,王淑莹,尚会来,彭永臻.污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略.环境科学.2009,30(12):3625-3629.
    139.郭冬艳,李多松,孙开蓓,刘丽茹.同步硝化反硝化生物脱氮技术.安全与环境工程2009,16(3):413-416.
    140. S. Scuras, G.T Daigger,C.P.L.Grady.Modelling the activated sludge flocmicro environment. Wat.Sci.Tech.1998,37(4-5):243-251.
    141. J.J Beun,A. Hendriks,M.C.M. Van Loosdrech. Aerobic granulation in aseqencing batch reactor.Wat.Res.1999, 33(10):2283-2290.
    142.彭赵旭,彭永臻,左金龙.同步硝化反硝化的影响因素研究.给水排水.2009,35(15):167-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700