用户名: 密码: 验证码:
有机芳香分子非共价修饰碳纳米管的机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管自被发现以来就受到极为广泛的关注。碳纳米管优美的几何机构,独特的电子结构令物理学家为之着迷,而碳纳米管极大的比表面积和优良的光电性能使其在超分子化学方面有着广阔的前景。对于化学家来说,基于碳纳米管的非共价修饰来构筑新型超分子体系非常有吸引力。通过构筑有机分子-碳纳米管超分子体系可以解决碳纳米管的分散、增强材料和生物体系中的界面相容性问题、不同性质碳纳米管的分离等问题,而且可以得到极为丰富的电子给-受体系,在光电材料和光电器件方面具有重要的应用前景。本论文首先研究了有机分子与碳纳米管非共价相互作用的机制与影响因素,在此基础上设计构筑了一系列新型芳香有机分子/碳纳米管复合体系。利用不同构型的稠环芳香分子与碳纳米管的选择性的相互作用,成功实现了对半导体性与金属性碳纳米管的分离,并进一步研究了有机分子非共价修饰的碳纳米管在不同方面的应用。主要内容如下:
     (1)研究了稠环芳香分子的分子构型对其与碳纳米管的相互作用的影响。考察了九个具有不同结构的有机分子在碳纳米管表面非共价吸附的吸附量,发现分子结构对于它们与碳纳米管的作用有显著的影响。其中平面型稠环分子具有最大的吸附量,其次是准平面型分子与偶氮苯分子,而非平面有机芳香分子与碳纳米管的作用力最弱。通过研究吖啶橙分子不同带电状态下在碳纳米管表面的吸附发现分子带电荷时在碳纳米管表面有更大的吸附量,与碳纳米管的相互作用更强。同时发现大部分有机分子的荧光发生淬灭,说明这些共轭芳香分子与碳纳米管之间可能存在电荷转移作用,有可能用于光电转换材料。
     (2)应用有机分子实现了在无表面活性剂条件下单壁碳纳米管的分散。在应用中需要碳纳米管以很好的分散的状态存在,因此碳纳米管尤其是单壁碳纳米管在水相与有机相中的分散性就成为一个亟待解决的关键问题。以往为了能使碳纳米管稳定分散在水溶液中,往往要使用大量的表面活性剂,因表面活性剂绝缘,容易起泡且不易除去,所以对碳纳米管在光电器件中的应用非常不利。我们发现使用一种二甲酚橙类有机物就能使大量碳纳米管分散在水溶液中,对碳纳米管的分散性能要远好于大多数常用表面活性剂,使得对碳纳米管的定量研究能够容易地进行。同时,由于此芳香分子对pH的敏感性,我们能够通过调节溶液pH值来控制碳纳米管的分散与团聚。为碳纳米管作为化学传感器,生物传感器,电子器件的大量制备和复合增强材料等方面的应该提供了很有价值的方法。
     (3)应用稠环芳烃成功地分离金属性与半导体性单壁碳纳米管。目前,合成的单壁碳纳米管都是金属性单壁管与半导体性单壁管的混合物。在光电器件的应用中需要对金属性碳纳米管和半导体性单壁碳纳米管进行分离。本实验室合成了多种新型的具有特殊的结构的稠苯型有机功能材料,利用这些稠苯型有机分子与不同构型的碳纳米管的π-π作用强度的区别实现选择性修饰。本工作中首次提出一种串联分离的策略。在这一方法中,第一步首先分离出大手性角的金属性碳纳米管,第二步分离出大手性角的半导体性碳纳米管。理论计算与实验结果都证明了以上设想的正确性和可行性。实验中对影响分离效率的因素进行了考察,发现分子结构和溶剂对于所得分离产品中金属性管与半导体性管的含量有很大的影响。研究证明线形并苯分子比圆盘状的稠苯分子有更好的选择性,而且长径比越大的线形并苯分子具有越好的分离效果。首次提出了的溶剂的非选择性分散与有机分子选择性分散竞争的作用模型,此模型对于非共价修饰分离体系均适用,为分离工作中选用合适的溶剂提供了指导。
     (4)利用(?)衍生物,二-正丁基-二酰亚胺花(PTB)与碳纳米管之间的π-π相互作用,首次构筑了PTB/SWNTs异质结杂化体系,并研究了该杂化体系的光电转换性能。(?)系化合物都具有特殊的稠环结构,庞大的共轭π电子体系,这种结构赋予它很强的荧光性能和光电性能的同时,可以与碳纳米管产生很强的π-π相互作用,实现紧密的非共价吸附。碳纳米管作为优良的电子受体与理想的一维量子导体,可以实现光生电子的迅速迁移和传输,有效地避免了激子对的复合,提高能量转换效率。通过荧光滴定实验发现碳纳米管与PTB之间存在电荷转移。以PTB/SWNTs作为活性层的电化学光电池性能表现出较好的光电响应,光电流已经达到了文献报道值。说明这一体系在光电转换方面有较好的应用前景。
Since their discovery, carbon nanotubes (CNTs) have attracted great scientific attention, owning to their unique structural, mechanical and electronic properties. CNTs are expected to have potential applications in many fields, such as nanocomposite materials, reinforced structures, nanoelectronic devices and field emission displays etc. Because of the intrinsic inert surface properties, unmodified CNTs exhibit low reactivity and solubility in most solvent systems, making the dispersion, modification, and assembly difficult. Controlling the surface functionality and thus surface properties of CNTs is therefore critical for many fundamental researches and potential applications. Sidewall functionalization is one of the most important ways to make functionalized nanotubes. The most obvious advantage of using noncovalent binding is that it maintains the sp graphene structures and thus preserving the unique electronic characteristics of CNTs. The noncovalent modification with aromatic molecules is a very simple operation and the interaction is strong enough to help CNTs compatible with the chemical and biological environments. This thesis focuses on the nonconvalent modification of CNT sidewalls using different polycyclic aromatic molecules. A series of molecule/CNT adducts was fabricated and the factors affecting the molecule/CNT interactions were investigated. Using different aromatic molecules, separation of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) were successfully achieved. Further investigations on the applications of these novel molecule/CNT adducts in photovoltaic energy conversion were carried out. The main contents of this theisi are listed blow.
     1. A systematic study on the noncovalent interaction between single walled carbon nanotubes (SWCNTs or SWNTs) and a series of aromatic molecules has been conducted. The main purpose of this work is to understand how the molecular structure affects their adsorptions on the SWCNTs. Two factors have been found to play the key roles, which are molecular morphology and charge. It was found that the adsorption quantity of aromatic molecules was strongly dependent on the molecular morphology, which follows the general rule as polynuclear > pseudo planar molecules > planar azo > non-planar. Meanwhile, when the molecular morphology is similar, the adsorption is dependent on the molecular charge. The above finding reveals thatπ-πstacking between the aromatic molecules and the SWCNT side wall is the main driving force for the adsorption, while electrostatic interaction also plays an important role. Fluorescence quenching was observed on most of the molecules, but different quenching mechanisms may exist for different molecules. This work provides a general guideline for choosing aromatic molecules for non-covalent modification of SWCNTs, and insights to the interactions between SWCNTs and the aromatic molecules.
     2. Surfactant free dispersion of SWCNTs in aqueous solutions were achieved by using an aromatic molecule Xylenol Orange (XO). Dispersion of SWCNTs in aqueous solutions is an important issue for many applications. Conventional methods for dispersing SWCNTs relys on using different surfactants, which causes foaming problem and introduces insulate surface coating to SWCNTs. We have found that an aromatic molecule XO exhibited excellent ability to disperse SWCNTs and gave stable suspensions with higher concentration than conventional surfactants. The XO dispersed SWCNTs are sensitive to pH values of the solution and therefore can be used as adjust the degree of aggregation of the SWCNTs. This work provides new hybrid SWCNTs for potential applications in the fields of sensing, and composite materials.
     3. Separation of metallic and semiconducting single-walled carbon nanotubes (SWCNTs) are of great importance for SWCNT-based nano-electronics. We propose a tandem extraction strategy for efficient separation of different types of SWCNTs. This strategy is based on a chiral angle discriminated adsorption of soluble condensed benzenoid aromatic molecules on SWCNTs, which induce different dispersibility of SWCNTs in various organic solvents. The proposed tandem extraction strategy involves two extraction steps, in which the first step extracts metallic SWCNTs with large chiral angles and the subsequent step enriches large chiral angle semiconducting SWCNTs. This separation strategy is tested on a series of condensed benzenoid aromatic molecules. Both experimental and theoretical results show that the separation efficiency is strongly dependent on the molecular morphology, i.e. higher aspect ratio gives better separation results. The separation efficiency is also dependent on the SWCNT diameter and the solvent properties. This tandem extraction strategy may also be applied to other available noncovalent separation reagents to improve their separation efficiency.
     4. Novel SWCNTs/perylene heterojunction were constructed byπ-πstacking interactions and their light-induced charge transfer properties were studied. In this work, we synthesized N,N'-di-(n-butyl)-3,4,9,10-perylenetetracarboxylic diimide (PTB) to make perylene derivatives soluble in many solvents. The fluorescence quenching of PTB solution was observed when SWCNT is present, indicating possible photo-induced charge transfer took palce in the nanohybrids. The SWNTs/PTB bulk hybrids were drop-casted onto ITO electrode for photoelectrochemistry measurements. From photocurrent measurements under different bias give stable and high photocurrent response which is promising for novel photovoltaic devices.
引文
1.S.Iijima,Nature 1991,354,56.
    2.S.Ihara,S.Itoh,Carbon 1995,33,931.
    3.S.Ihara,S.Itoh,J.Kitakami,Phys.Rev.B 1993,48,5643.
    4.E.T.Thostenson,Z.F.Ren,T.W.Chou,Composites Science and Technology 2001,61,1899.
    5.M.Meyyappan,E.Barrera,E.L.Corral,J.Han,J.Li,R.O.Loutfy,K.McGuire,P.M.Alexander,C.V.Nguyen,A.M.Rao,Carbon Nanotubes:Science and Applications.CRC press,2005.
    6.Y.Chen,R.C.Haddon,S.Fang,A.M.Rao,W.H.Lee,E.C.Dickey,E.A.Grulke,J.C.Pendergrass,A.Chavan,B.E.Haley,R.E.Smalley,J.Mater.Res.1998,13,2423.
    7.J.W.G.Wildoer,L.C.Venema,A.G.Rinzler,R.E.Smalley,C.Dekker,Nature 1998,391,59.
    8.C.Journet,W.K.Maser,P.Bernier,A.Loiseau,M.L.delaChapelle,S.Lefrant,P.Deniard,R.Lee,J.E.Fischer,Nature 1997,388,756.
    9.S.J.Tans,M.H.Devoret,H.J.Dai,A.Thess,R.E.Smalley,L.J.Geerligs,C.Dekker,Nature 1997,386,474.
    10.A.Thess,R.Lee,P.Nikolaev,H.J.Dai,P.Petit,J.Robert,C.H.Xu,Y.H.Lee,S.G Kim,A.G Rinzler,D.T Colbert,GE.Scuseria,D.Tomanek,J.E.Fischer,R.E.Smalley,Science 1996,273,483.
    11.S.Iijima,T.Ichihashi,Nature 1993,363,603.
    12.D.S.Bethune,C.H.Klang,M.S.de Vries,G Gorman,R.Savoy,J.Vazquez,R.Beyers,Nature 1993,363,605.
    13.T.W.Ebbesen,P.M.Ajayan,Nature 1992,368,220.
    14.R.Saito,F.Fujita,G Dresselhaus,M.S.Dresselhaus,Phys.Rev.1992,46,1804.
    15.N.Hamada,S.Sawada,S.Oshiyama,Phys.Rev.Lett.1992,68,1579.
    16.J.W.Mintmire,B.I.Dunlap,C.T.White,Phys.Rev.Lett.1992,68,631.
    17.W.A.Deheer,A.Chatelain,D.Ugarte,Science 1995,270,1179.
    18.H.Xu,D.Li,B.S.Han,F.W.Wang,S.S.Fan,Q.Q.Li,W.J.Liang,H.Y.Dang,J.Appl.Phys.1999,85,5507.
    19.A.G Rinzler,J.H.Hafher,P.Nikolaev,L.Lou,S.G Kim,D.Tomanek,P.Nordlander,D.T.Colbert,R.E.Smalley,Science 1995,269,1550.
    20.J.M.Bonard,J.P.Salvetat,T.Stockli,W.A.de Heer,L.Forro,A.Chatelain,Appl.Phys.Lett.1998,73,918.
    21.M.Jie,S.Li,K.Hua,C.Y Wang,X.T.Guo,H.Y.Xu,S.S.Xie,New Carbon Mater.2004,19,166.
    22.S.R.P.Silva,J.D.Carey,GY.Chen,D.C.Cox,R.D.Forrest,C.H.P.Poa,R.C.Smith,Y.F.Tang,J.M.Shannon,IEE Proc.-Circuit Device Syst.2004,151,489.
    23.H.Kataura,Y.Kumazawa,Y.Maniwa,I.Umezu,S.Suzuki,Y Ohtsuka,Y Achiba,Synth.Met.1999,103,2555.
    24.V.R.Coluci,S.O.Dantas,A.Jorio,D.S.Galvao,Phys.Rev.B 2007,75.
    25.A.Pantano,M.C.Boyce,D.M.Parks,Physical Review Letters 2003,91.
    26.Z.Gu,H.Peng,R.H.Hauge,R.E.Smalley,J.L.Margrave,Nano Letters 2002,2,1009.
    27.S.T.Purcell,P.Vincent,C.Journet,V.T.Binh,Phys.Rev.Lett.2002,88.
    28.L.Feng,Y.L.Song,J.Zhai,B.Q.Liu,J.Xu,L.Jiang,D.B.Zhu,Angew.Chem.-Int.Edit.2003,42,800.
    29.T.Kashiwagi,E.Grulke,J.Hilding,R.Harris,W.Awad,J.Douglas,Macromol.Rapid Commun.2002,23,761.
    30.D.Bom,R.Andrews,D.Jacques,J.Anthony,B.L.Chen,M.S.Meier,J.P.Selegue,Nano Lett.2002,2,615.
    31.A.Bachtold,C.Strunk,J.P.Salvetat,J.M.Bonard,L.Forro,T.Nussbaumer,C.Schonenberger,Nature 1999,397,673.
    32.S.Zaric,GN.Ostojic,J.Kono,J.Shaver,V.C.Moore,M.S.Strano,R.H.Hauge,R.E.Smalley,X.Wei,Science 2004,304,1129.
    33.S.Roche,G Dresselhaus,M.S.Dresselhaus,R.Saito,Phys.Rev.B 2000,62,16092.
    34.S.Niyogi,M.A.Hamon,H.Hu,B.Zhao,P.Bhowmik,R.Sen,M.E.Itkis,R.C.Haddon,Accounts Chem.Res.2002,35,1105.
    35.J.L.Bahr,J.M.Tour,J.Mater.Chem.2002,12,1952.
    36.S.Banerjee,S.S.Wong,J.Am.Chem.Soc.2004,126,2073.
    37.D.Tasis,N.Tagmatarchis,A.Bianco,M.Prato,Chem.Rev.2006,106,1105.
    38.V.C.Moore,M.S.Strano,E.H.Haroz,R.H.Hauge,R.E.Smalley,J.Schmidt,Y.Talmon,Nano Lett.2003,3,1379.
    39.M.J.O'Connell,S.M.Bachilo,C.B.Huffman,V.C.Moore,M.S.Strano,E.H.Haroz,K.L.Rialon,P.J.Boul,W.H.Noon,C.Kittrell,J.P.Ma,R.H.Hauge,R.B.Weisman,R.E.Smalley,Science 2002,297,593.
    40.M.Zheng,A.Jagota,M.S.Strano,A.P.Santos,P.Barone,S.G Chou,B.A.Diner,M.S.Dresselhaus,R.S.McLean,GB.Onoa,GG Samsonidze,E.D.Semke,M.Usrey,D.J.Walls,Science 2003,302,1545.
    41.D.A.Britz,A.N.Khlobystov,Chem.Soc.Rev.2006,35,637.
    42.N.Nakashima,Y.Tomonari,H.Murakami,Chem.Lett.2002,638.
    43.A.B.Artyukhin,O.Bakajin,P.Stroeve,A.Noy,Langmuir 2004,20,1442.
    44.P.Petrov,F.Stassin,C.Pagnoulle,R.Jerome,Chem.Commun.2003,2904.
    45.S.Campidelli,C.Sooambar,E.L.Diz,C.Ehli,D.M.Guldi,M.Prato,J.Am.Chem.Soc.2006,128,12544.
    46.Q.Yuan,R.D.K.Misra,Mater.Sci.Technol.2006,22,742.
    47.N.Robertson,C.A.McGowan,Chem.Soc.Rev.2003,32,96.
    48.H.Murakami,T.Nomura,N.Nakashima,Chem.Phys.Lett.2003,378,481.
    49.T.Yamaguchi,N.Ishii,K.Tashiro,T.Aida,J.Am.Chem.Soc.2003,125,13934.
    50.GV.Nazin,X.H.Qiu,W Ho,Science 2003,302,77.
    51.L.Cao,H.Z.Chen,M.Wang,J.Z.Sun,X.B.Zhang,F.Z.Kong,J.Phys.Chem.B 2002,106,8971.
    52.G.de la Torre,W.Blau,T.Torres,Nanotechnology 2003,14,765.
    53.A.Dceda,Y.Tsuchiya,T.Konishi,S.Ogasawara,J.I.Kikuchi,Chem.Mat.2005,17,4018.
    54.R.J.Chen,Y.Zhan,D.Wang,H.Dai,J.Am.Chem.Soc.2001,123,3838.
    55.D.Nepal,K.E.Geckeler,Small 2007,3,1259.
    56.S.C.Tsang,Y.K.Chen,P.J.F.Harris,M.L.H.Green,Nature 1994,372,159.
    57.S.Banerjee,T.Hemraj-Benny,S.S.Wong,Adv.Mater.2005,17,17.
    58.S.S.Wong,E.Joselevich,A.T.Woolley,C.L.Cheung,CM.Lieber,Nature 1998,394,52.
    59.S.S.Wong,A.T.Woolley,E.Joselevich,C.L.Cheung,CM.Lieber,J.Am.Chem.Soc.1998,120,8557.
    60.Y.Chen,R.C Haddon,S.Fang,A.M.Rao,W.H.Lee,E.C Dickey,E.A.Grulke,J.C Pendergrass,A.Chavan,B.E.Haley,R.E.Smalley,J.Mater.Res.1998,13,2423.
    61.GD.Zheng,H.D.H.Stover,Macromolecules 2002,35,6828.
    62.B.Fragneaud,K.Masenelli-Varlot,A.Gonzalez-Montiel,M.Terrones,J.Y.Cavaille,Chem.Phys.Lett.2006,419,567.
    63.A.Loiseau,F.Willaime,N.Demoncy,G Hug,H.Pascard,Phys.Rev.Lett.1996,76,4737.
    64.K.Awasthi, A.Srivastava, O.N.Srivastava, Journal of Nanoscience and Nanotechnology 2005,5,1616.
    65.J.W.Seo,K.Hernadi,C.Miko,L.Forro,Appl.Catal.A-Gen.2004,260,87.
    66.A.M.Morales,CM.Lieber,Science 1998,279,208.
    67.H.C Shim,H.W.Lee,S.Yeom,Y.K.Kwak,S.S.Lee,S.H.Kim,Nanotechnology 2007,18.
    68.L.Zhang,J.Z.Yang,C.L.Edwards,L.B.Alemany,V.N.Khabashesku,A.R.Barron,Chemical Communications 2005,3265.
    69.Z.X.Chen,GC Cao,Z.L.Lin,D.den Engelsen,Journal Of Vacuum Science & Technology B 2006,24,1017.
    70.V.Djordjevic,J.Djustebek,J.Cveticanin,S.Velicknovic,M.Veljkovic,M.Bokorov,B.B.Stojic,O.Neskovic,J.Optoelectron.Adv.Mater.2006,8,1631.
    71.E.Unger,M.Liebau,G.S.Duesberg,A.P.Graham,F.Kreupl,R.Seidel,W.Hoenlein,Chemical Physics Letters 2004,399,280.
    72.J.L.Zimmerman,R.K.Bradley,C.B.Huffman,R.H.Hauge,J.L.Margrave,Chemistry of Materials 2000,12,1361.
    1.施耀曾,孙祥祯,蒋燕灏,赵焘南,朱惠祥,有机化合物光谱和化学鉴定.第一版,江苏科学技术出版社,南京,1988.
    2.M.Meyyappan,E.Barrera,E.L.Corral,J.Han,J.Li,R.O.Loutfy,K.McGuire,P.M.Alexander,C.V.Nguyen,A.M.Rao,Carbon Nanotubes:Science and Applications.CRC press,2005.
    3.H.Kataura,Y.Kumazawa,Y.Maniwa,I.Umezu,S.Suzuki,Y.Ohtsuka,Y.Achiba,Synth.Met.1999,103,2555.
    4.陈国珍,黄贤智,郑朱梓,许金钩,王尊本,荧光分析法.第二版,科学出版社,北京,1990.
    5.R.B.Weisman,S.M.Bachilo,Nano Lett.2003,3,1235.
    6.M.J.O'Connell,S.M.Bachilo,C.B.Huffman,V.C.Moore,M.S.Strano,E.H.Haroz,K.L.Rialon,P.J.Boul,W.H.Noon,C.Kittrell,J.P.Ma,R.H.Hauge,R.B.Weisman,R.E.Smalley,Science 2002,297,593.
    7.T.Murakami,K.Kisoda,T.Tokuda,K.Matsumoto,H.Harima,K.Mitikami,T.Isshiki,Diamond and Related Materials 2007,16,1192.
    8.Y.Oyama,R.Saito,K.Sato,J.Jiang,GG Samsonidze,A.Gruneis,Y Miyauchi,S.Maruyama,A.Jorio,G Dresselhaus,M.S.Dresselhaus,Carbon 2006,44,873.
    9.A.Jorio,C.Fantini,M.A.Pimenta,D.A.Heller,M.S.Strano,M.S.Dresselhaus,Y Oyama,J.Jiang,R.Saito,Applied Physics Letters 2006,88.
    10.T.Okazaki,T.Saito,K.Matsuura,S.Ohshima,M.Yumura,S.Iijima,Nano Lett.2005,5,2618.
    11.K.Matsuda,Y.Kanemitsu,K.Irie,T.Saiki,T.Someya,Y Miyauchi,S.Maruyama,Applied Physics Letters 2005,86.
    12.M.Jones,C.Engtrakul,W.K.Metzger,R.J.Ellingson,A.J.Nozik,M.J.Heben,G Rumbles,Phys.Rev.B 2005,71.
    13.M.S.Dresselhaus,G Dresselhaus,A.Jorio,A.G Souza Filho,R.Saito,Carbon 2002,40,2043.
    14.A.Jorio,M.A.Pimenta,C.Fantini,M.Souza,A.G Souza,GG Samsonidze,G Dresselhaus,M.S.Dresselhaus,R.Saito,Carbon 2004,42,1067.
    15.A.M.Rao,E.Richter,S.Bandow,B.Chase,P.C.Eklund,K.A.Williams,S.Fang,K.R.Subbaswamy,M.Menon,A.Thess,R.E.Smalley,G Dresselhaus,M.S.Dresselhaus,Science 1997,275,187.
    16.M.S.Strano,J.Am.Chem.Soc.2003,125,16148.
    17.A.Jorio,M.A.Pimenta,A.G Souza,R.Saito,G Dresselhaus,M.S.Dresselhaus,New J.Phys.2003,5,139.1.
    18.M.Ouyang,J.L.Huang,C.L.Cheung,CM.Lieber,Science 2001,292,702.
    19.蔡炳新,胡瑶村,刘跃龙,肖晓明,基础物理化学.第一版,科学出版社,北京,2001.
    20.American Society for Testing and Materials,“Zeta Potential of Colloids in Water and Waste Water” 1985,D 4187.
    1.X.H.Li,J.Zhang,Q.W.Li,H.L.Li,Z.F.Liu,Carbon 2003,41,598.
    2.M.Ouyang,J.L.Huang,CM.Lieber,Acc.Chem.Res.2002,35,1018.
    3.S.Niyogi,M.A.Hamon,H.Hu,B.Zhao,P.Bhowmik,R.Sen,M.E.Itkis,R.C.Haddon,Acc.Chem.Res.2002,35,1105.
    4.S.Banerjee,T.Hemraj-Benny,S.S.Wong,Adv.Mater.2005,17,17.
    5.J.E.Fischer,Ace.Chem.Res.2002,35,1079.
    6.O.Matarredona,H.Rhoads,Z.R.Li,J.H.Harwell,L.Balzano,D.E.Resasco,J.Phys.Chem.B 2003,107,13357.
    7.K.Shen,S.Curran,H.F.Xu,S.Rogelj,Y.B.Jiang,J.Dewald,T.Pietrass,J.Phys.Chem.B 2005,109,4455.
    8.RJ.Chen,Y.Zhan,D.Wang,H.Dai,J.Am.Chem.Soc.2001,123,3838.
    9.J.Zhang,J.K.Lee,Y.Wu,R.W.Murray,Nano Lett.2003,3,403.
    10.K.A.S.Fernando,Y.Lin,W.Wang,S.Kumar,B.Zhou,S.Y.Xie,L.T.Cureton,Y.P.Sun,J.Am.Chem.Soc.2004,126,10234.
    11.J.J.Zhao,H.K.Park,J.Han,J.P.Lu,J.Phys.Chem.B 2004,108,4227.
    12.F.Tournus,S.Latil,M.I.Heggie,J.C.Charlier,Phys.Rev.B 2005,72.
    13.D.M.Guldi,H.Taieb,G.M.A.Rahman,N.Tagmatarchis,M.Prato,Adv.Mater.2005,17,871.
    14.J.Y.Chen,C.P.Collier,J.Phys.Chem.B 2005,109,7605.
    15.P.Petrov,F.Stassin,C.Pagnoulle,R.Jerome,Chem.Commu.2003,2904.
    16.C.Hu,Z.Chen,A.Shen,X.Shen,J.Li,S.Hu,Carbon 2006,44,428.
    17.K.D.Ausman,R.Piner,O.Lourie,R.S.Ruoff,M.Korobov,J.Phys.Chem.B 2000,104,8911.
    18.D.M.Guldi,G.M.A.Rahman,N.Jux,N.Tagmatarchis,M.Prato,Angew.Chem.Int.Ed.2004,43,5526.
    19.W.Zhang,J.Suhr,N.Koratkar,J.Nanosci.Nanotechnol.2006,6,960.
    20.C.Stampfer,T.Helbling,D.Obergfell,B.Schoberle,M.K.Tripp,A.Jungen,S.Roth,V.M.Bright,C.Hierold,Nano Lett.2006,6,233.
    21.Z.L.Li,P.Dharap,S.Nagarajaiah,E.V.Barrera,J.D.Kim,Adv.Mater.2004,16,640.
    22.M.S.Strano,M.Zheng,A.Jagota,G.B.Onoa,D.A.Heller,P.W.Barone,M.L.Usrey,Nano Lett.2004,4,543.
    23.C.Y.Lee,S.Baik,J.Q.Zhang,R.I.Masel,M.S.Strano,J.Phys.Chem.B 2006,110,11055.
    24.J.Guo,E.C.Kan,U.Ganguly,Y.G.Zhang,J.Appl.Phys.2006,99.
    25.E.Bekyarova,M.Davis,T.Burch,M.E.Itkis,B.Zhao,S.Sunshine,R.C.Haddon,J.Phys.Chem.B 2004,108,19717.
    26.X.W.Tang,S.Bansaruntip,N.Nakayama,E.Yenilmez,Y.L.Chang,Q.Wang,Nano Lett.2006,6,1632.
    27.P.W.Barone,M.S.Strano,Angew.Chem.Int.Edit.2006,45,8138.
    28.K.Kostarelos,L.Lacerda,G.Pastorin,W.Wu,S.b.Wieckowski,J.Luangsivilay,S.Godefroy,D.Pantarotto,J.-p.Briand,S.Muller,M.Prato,A.Bianco,Nature Nanotech.2006,2,108
    29.D.Pantarotto,R.Singh,D.McCarthy,M.Erhardt,J.-P.Briand,M.Prato,K.Kostarelos,A.Bianco,Angew.Chem.Int.Ed.2004,43,5242.
    30.D.Chattopadhyay,L.Galeska,F.Papadimitrakopoulos,J.Am.Chem.Soc.2003,125,3370.
    31.M.S.Arnold,A.A.Green,J.F.Hulvat,S.I.Stupp,M.C.Hersam,Nature Nanotech.2006,1,60.
    32.Y.Maeda,S.Kimura,M.Kanda,Y.Hirashima,T.Hasegawa,T.Wakahara,Y.F.Lian,T.Nakahodo,T.Tsuchiya,T.Akasaka,J.Lu,X.W.Zhang,Z.X.Gao,Y.P.Yu,S.Nagase,S.Kazaoui,N.Minami,T.Shimizu,H.Tokumoto,R.Saito,J.Am.Chem.Soc.2005,127,10287.
    33.V.C.Moore,M.S.Strano,E.H.Haroz,R.H.Hauge,R.E.Smalley,J.Schmidt,Y.Talmon,Nano Lett.2003,3,1379.
    34.C.Bower,A.Kleinhammes,Y.Wu,O.Zhou,Chem.Phys.Lett.1998,288,481.
    35.Q.Li,LA.Kinloch,A.H.Windle,Chem.Commun.2005,3283.
    36.M.G.Palmgren,Anal.Biochem.1991,192,316.
    37.Q.Li,J.Zhang,H.Yan,M.He,Z.Liu,Carbon 2004,42,287.
    38.D.Baskaran,J.W.Mays,X.P.Zhang,M.S.Bratcher,J.Am.Chem.Soc.2005,127,6916.
    39.G.G.Brownbridge,P.N.Lowee,K.J.M.Moore,M.R.Webblq,J.Biol.Chem.1993,268,10914.
    40.F.Jahnig,Proc.Natl.Acad.Sci.1979,76,6361.
    41.F.W.Sevenich,J.Langowski,V.Weiss,K.Rippe,Nucleic Acids Research 1998,26,1373.
    42.D.Canet,K.Doering,CM.Dobson,Y.Dupont,Biophys.J.2001,80,1996.
    43.S.A.E.Marras,F.R.Kramer,S.Tyagi,Nucleic Acids Research 2002,30,e122.
    44.C.A.Royer,Biophys.J.1995,68,1191.
    45.M.J.O'Connell,S.M.Bachilo,C.B.Huffman,V.C.Moore,M.S.Strano,E.H.Haroz,K.L.Rialon,P.J.Boul,W.H.Noon,C.Kittrell,J.P.Ma,R.H.Hauge,R.B.Weisman,R.E.Smalley,Science 2002,297,593.
    46.W.H.Zhu,N.Minami,S.Kazaoui,Y.Kim,J.Mater.Chem.2003,13,2196.
    47.D.M.Guldi,G.M.A.Rahman,N.Jux,N.Tagmatarchis,M.Prato,Angew.Chem.Int.Ed.2004,43,5526.
    48.D.M.Guldi,G.M.A.Rahman,M.Prato,N.Jux,S.H.Qin,W.Ford,Angew.Chem.Int.Ed.2005,44,2015.
    49.D.M.Guldi,M.Marcaccio,D.Paolucci,F.Paolucci,N.Tagmatarchis,D.Tasis,E.Vazquez,M.Prato,Angew.Chem.Int.Ed.2003,42,4206.
    1.S.Iijima,Nature 1991,354,56.
    2.P.M.Ajayan,Chem.Rev.1999,99,1787.
    3.P.Avouris,Acc.Chem.Res.2002,35,1026.
    4.P.G.Collins,P.Avouris,Scientific American 2000,December,62.
    5.C.A.Dyke,J.M.Tour,Chem.Eur.J.2004,10,813.
    6.C.A.Dyke,J.M.Tour,J.Phys.Chem.A 2004,108,11151.
    7.Z.L.Wang,C.Hui,L.-C.Qin,P.M.Ajayan,Y.Bando,J.-F.Colomer,W.de Heer,Electron Microscopy of Nanotubes.1st ed.,Tsinghua University Press,Beijing,2004.
    8.M.C.Hersam,Nature Nanotechnol.2008,3,387.
    9.B.M.Besancon,P.F.Green,Macromolecules 2005,38,110.
    10.S.Bellayer,J.W.Gilman,N.Eidelman,S.Bourbigot,X.Flambard,D.M.Fox,H.C.De Long,P.C.Trulove,Adv.Funct.Mater.2005,15,910.
    11.S.M.Bachilo,M.S.Strano,C.Kittrell,R.H.Hauge,R.E.Smalley,R.B.Weisman,Science 2002,298,2361.
    12.M.J.O'Connell,S.M.Bachilo,C.B.Huffman,V.C.Moore,M.S.Strano,E.H.Haroz,K.L.Rialon,P.J.Boul,W.H.Noon,C.Kittrell,J.P.Ma,R.H.Hauge,R.B.Weisman,R.E.Smalley,Science 2002,297,593.
    I3.Y.P.Sun,K.F.Fu,Y.Lin,W.J.Huang,Acc.Chem.Res.2002,35,1096.
    14.R.J.Chen,S.Bangsaruntip,K.A.Drouvalakis,N.W.S.Kam,M.Shim,Y.M.Li,W.Kim,P.J.Utz,H.J.Dai,Proc.Nat.Acad.Sci.U.S.A.2003,100,4984.
    15.K.Muller-Dethlefs,P.Hobza,Chem.Rev.2000,100,143.
    16.Z.Liu,X.Sun,N.Nakayama-Ratchford,H.Dai,ACS Nano 2007,1,50.
    17.G Rao,Mrs Bulletin 2005,30,805.
    18.J.Chen,D.Du,F.Yan,H.M.Ju,H.Z.Lian,Chem.Eur.J.2005,11,1467.
    19.O.Matarredona,H.Rhoads,Z.R.Li,J.H.Harwell,L.Balzano,D.E.Resasco,J.Phys.Chem.B 2003,107,13357.
    20.V.C.Moore,M.S.Strano,E.H.Haroz,R.H.Hauge,R.E.Smalley,J.Schmidt,Y.Talmon,Nano Lett.2003,3,1379.
    21.W.Wenseleers,Vlasov,II,E.Goovaerts,E.D.Obraztsova,A.S.Lobach,A.Bouwen,Adv.Funct.Mater.2004,14,1105.
    22.X.Xin,G Xu,T.Zhao,Y.Zhu,X.Shi,H.Gong,Z.Zhang,J.Phys.Chem.C 2008,112,16377.
    23.S.Chen,Y.Jiang,Z.Wang,X.Zhang,L.Dai,M.Smet,Langmuir 2008,24,9233.
    24.C.J.Collison,M.J.O'Donnell,J.L.Alexander,J.Phys.Chem.C 2008,112,15144.
    25.C.G Hu,X.X.Chen,S.S.Hu,J.Electroanal.Chem.2006,586,77.
    26.M.Zheng,A.Jagota,E.D.Semke,B.A.Diner,R.S.McLean,S.R.Lustig,R.E.Richardson,N.G Tassi,Nature Mater.2003,2,338.
    27.M.Zheng,A.Jagota,M.S.Strano,A.P.Santos,P.Barone,S.G Chou,B.A.Diner,M.S.Dresselhaus,R.S.McLean,GB.Onoa,GG Samsonidze,E.D.Semke,M.Usrey,D.J.Walls,Science 2003,302,1545.
    28.D.Nepal,K.E.Geckeler,Small 2007,3,1259.
    29.M.F.Islam,E.Rojas,D.M.Bergey,A.T.Johnson,A.G Yodh,Nano Lett.2003,3,269.
    30.B.White,S.Banerjee,S.O'Brien,N.J.Turro,I.P.Herman,J.Phys.Chem.C 2007,111,13684.
    31.C.-H.Liu,Y.-Y.Liu,Y.-H.Zhang,R.-R.Wei,J.-J.Li,H.-L.Zhang,B.-R.Li,J.Nanosci.Nanotechnol.2009,9,1254.
    32.C.-H.Liu,Y.-Y.Liu,Y.-H.Zhang,R.-R.Wei,B.-R.Li,H.-L.Zhang,Y Chen,Chem.Phys.Lett.2009,471,97.
    33.C.-H.Liu,Y.-Y.Liu,Y.-H.Zhang,R.-R.Wei,H.-L.Zhang,Phys.Chem.Chem.Phys.2009 DOL10.1039/B901517E.
    34.C.-H.Liu,J.-J.Li,H.-L.Zhang,B.-R.Li,Y.Guo,Colloid Surf.A:Physicochem.Eng.Aspects 2008,313-314,9.
    35.American Society for Testing and Materials,“Zeta Potential of Colloids in Water and Wastewater” 1985,D4187.
    36.Z.Sun,V.Nicolosi,D.Rickard,S.D.Bergin,D.Aherne,J.N.Coleman,J.Phys.Chem.C2008,112,10692.
    37.N.B.Saleh,L.D.Pfefferle,M.Elimelech,Environ.Sci.Technol.2008,42,7963.
    38.T.Liu,S.Luo,Z.Xiao,C.Zhang,B.Wang,J.Phys.Chem.C,2008,112,19193.
    39.C.H.Villa,M.R.McDevitt,F.E.Escorcia,D.A.Rey,M.Bergkvist,C.A.Bart,D.A.Scheinberg,Nano Lett.2008,8,4221.
    40.J.A.Fagan,M.L.Becker,J.Chun,P.Nie,B.J.Bauer,J.R.Simpson,A.Hight-Walker,E.K.Hobbie,Langmuir 2008,24,13880.
    41.Y.Q.Tan,D.E.Resasco,J.Phys.Chem.B 2005,109,14454.
    42.M.S.Arnold,J.Suntivich,S.I.Stupp,M.C.Hersam,ACS Nano 2008,2,2291.
    43.B.Zhao,M.E.Itkis,S.Niyogi,H.Hu,J.Zhang,R.C.Haddon,J.Phys.Chem.B 2004,108,8136.
    44.M.E.Itkis,D.E.Perea,S.Niyogi,S.M.Rickard,M.A.Hamon,B.Zhao,R.C.Haddon,Nano Lett.2003,3,309.
    45.N.Nair,M.L.Usrey,W.J.Kim,R.D.Braatz,M.S.Strano,Anal.Chem.2006,78,7689.
    46.S.M.Bachilo,L.Balzano,J.E.Herrera,F.Pompeo,D.E.Resasco,R.B.Weisman,J.Am.Chem.Soc.2003,125,11186.
    47.M.L.Usrey,E.S.Lippmann,M.S.Strano,J.Am.Chem.Soc.2005,127,16129.
    48.S.Giordani,S.D.Bergin,V.Nicolosi,S.Lebedkin,M.M.Kappes,W.J.Blau,J.N.Coleman,J.Phys.Chem.B 2006,110,15708.
    49.B.Zhao,H.Hu,A.P.Yu,D.Perea,R.C.Haddon,J.Am.Chem.Soc.2005,127,8197.
    50.J.Amiran,V.Nicolosi,S.D.Bergin,U.Khan,P.E.Lyons,J.N.Coleman,J.Phys.Chem.C 2008,112,3519.
    1.J.Bernholc,D.Brenner,M.B.Nardelli,V.Meunier,C.Roland,Annu.Rev.Mater.Res.2002,32,347.
    2.S.Iijima,Nature 1991,354,56.
    3.D.S.Bethune,C.H.Klang,M.S.de Vries,G.Gorman,R.Savoy,J.Vazquez,R.Beyers,Nature 1993,363,605.
    4.R.H.Baughman,A.A.Zakhidov,W.A.de Heer,Science 2002,297,787.
    5.P.Avouris,Acc.Chem.Res.2002,35,1026.
    6.M.S.Dresselhaus,G.Dresselhaus,A.Jorio,Annu.Rev.Mater.Res.2004,34,247.
    7.H.M.Cheng,F.Li,X.Sun,S.D.M.Brown,M.A.Pimenta,A.Marucci,G.Dresselhaus,M.S.Dresselhaus,Chem.Phys.Lett.1998,289,602.
    8.Y.Wang,Y.Liu,X.Li,L.Cao,D.Wei,H.Zhang,D.Shi,G.Yu,H.Kajiura,Y.Li,Small 2007,3,1486.
    9.B.Wang,C.H.P.Poa,L.Wei,L.J.Li,Y.H.Yang,Y.Chen,J.Am.Chem.Soc.2007,129,9014.
    10.P.C.Collins,M.S.Arnold,P.Avouris,Science 2001,292,706.
    11.R.Krupke,F.Hennrich,H.von Lohneysen,M.M.Kappes,Science 2003,301,344.
    12.G.Y.Zhang,P.F.Qi,X.R.Wang,Y.R.Lu,X.L.Li,R.Tu,S.Bangsaruntip,D.Mann,L.Zhang,H.J.Dai,Science 2006,314,974.
    13.K.H.An,J.S.Park,C.-M.Yang,S.Y.Jeong,S.C.Lim,C.Kang,J.-H.Son,M.S.Jeong,Y.H.Lee,J.Am.Chem.Soc.2005,127,5196.
    14.M.Zheng,A.Jagota,M.S.Strano,E.D.Semke,M.Usrey,D.J.Walls,Science 2003,302,1545.
    15.H.P.Li,B.Zhou,Y.Lin,L.R.Gu,W.Wang,K.A.S.Fernando,S.Kumar,L.F.Allard,Y.P.Sun,J.Am.Chem.Soc.2004,126,1014.
    16.Y.Maeda,S.Kimura,M.Kanda,Y.Hirashima,T.Hasegawa,T.Wakahara,Y.F.Lian,T.Nakahodo,T.Tsuchiya,T.Akasaka,J.Lu,X.W.Zhang,Z.X.Gao,Y.P.Yu,S.Nagase,S.Kazaoui,N.Minami,T.Shimizu,H.Tokumoto,R.Saito,J.Am.Chem.Soc.2005,127,10287.
    17.A.Nish,J.-Y.Hwang,J.Doig,R.J.Nicholas,Nat.Nanotechnol.2007,2,640.
    18.M.S.Arnold,A.A.Green,J.F.Hulvat,S.I.Stupp,M.C.Hersam,nature nanotech.2006, 1,60.
    19.R.J.Chen,Y.Zhan,D.Wang,H.Dai,J.Am.Chem.Soc.2001,123,3838.
    20.P.Petrov,F.Stassin,C.Pagnoulle,R.Jerome,Chem.Commu.2003,2904.
    21.J.Zhang,J.K.Lee,Y.Wu,R.W.Murray,Nano Lett.2003,3,403.
    22.C.A.Hunter,J.K.M.Sanders,J.Am.Chem.Soc.1990,112,5525.
    23.M.Zheng,A.Jagota,M.S.Strano,A.P.Santos,P.Barone,S.G Chou,B.A.Diner,M.S.Dresselhaus,R.S.McLean,GB.Onoa,GG Samsonidze,E.D.Semke,M.Usrey,D.J.Walls,Science 2003,302,1545.
    24.B.R.Priya,H.J.Byrne,J.Phys.Chem.C 2008,112,332.
    25.L.Piao,Q.Liu,Y.Li,C.Wang,J.Phys.Chem.C 2008,112,2857.
    26.R.Marquis,C.Greco,I.Sadokierska,S.Lebedkin,M.M.Kappes,T.Michel,L.Alvarez,J.-L.Sauvajol,S.Meunier,C.Mioskowski,Nano Lett.2008,8,1830.
    27.C.-H.Liu,J.-J.Li,H.-L.Zhang,B.-R.Li,Y.Guo,Colloid Surf.A:Physicochem.Eng.Aspects 2008,313-314,9.
    28.C.-H.Liu,Y.-Y Liu,Y.-H.Zhang,R.-R.Wei,J.-J.Li,H.-L.Zhang,B.-R.Li,J.Nanosci.Nanotechnol.2009,9,1254.
    29.K.Otobe,H.Nakao,M.Yudasaka,S.Iijima,Nano Lett.2002,2,1157.
    30.B.J.Landi,R.P.Raffaelle,S.L.Castro,S.G Bailey,Prog.Photovolt:Res.Appl.2005,13,165.
    31.J.E.Anthony,D.L.Eaton,S.R.Parkin,Org.Lett.2002,4,15.
    32.J.M.Soler,E.Artacho,J.D.Gale,A.Garcia,J.Junquera,P.Ordejon,D.Sanchez-Portal,J.Phys.:Condens.Matter 2002,14,2745.
    33.D.Sanchez-Portal,P.Ordejon,E.Artacho,J.M.Soler,Int.J.Quantum Chem.1997,65,453.
    34.P.Ordejon,E.Artacho,J.M.Soler,Phys.Rev.B 1996,53,10441.
    35.J.P.Perdew,A.Zunger,Phys.Rev.B 1981,23,5048.
    36.N.Troullier,J.L.Martins,Phys.Rev.B 1991,43,1993.
    37.H.J.Dai,Ace.Chem.Res.2002,35,1035.
    38.J.Lu,S.Nagase,X.Zhang,D.Wang,M.Ni,Y.Maeda,T.Wakahara,T.Nakahodo,T.Tsuchiya,T.Akasaka,Z.Gao,D.Yu,H.Ye,W.N.Mei,Y Zhou,J.Am.Chem.Soc.2006,128,5114.
    39.R Toumus,S.Latil,M.I.Heggie,J.C.Charlier,Phys.Rev.B 2005,72,075431.
    40.F.Tournus,J.C.Charlier,Phys.Rev.B 2005,71,165421.
    41.J.J.Zhao,J.P.Lu,J.Han,C.K.Yang,Applied Physics Letters 2003,82,3746.
    42.K.Yoshizawa,T.Yumura,T.Yamabe,S.Bandow,J.Am.Chem.Soc.2000,122,11871.
    43.M.F.Islam,E.Rojas,D.M.Bergey,A.T.Johnson,A.G Yodh,Nano Lett.2003,3,269.
    44.A.M.Rao,E.Richter,S.Bandow,B.Chase,P.C.Eklund,K.A.Williams,S.Fang,K.R.Subbaswamy,M.Menon,A.Thess,R.E.Smalley,G Dresselhaus,M.S.Dresselhaus,Science 1997,275,187.
    45.A.Jorio,R.Saito,J.H.Hafher,CM.Lieber,M.Hunter,T.McClure,G Dresselhaus,M.S.Dresselhaus,Phys.Rev.Lett.2001,86,1118.
    46.Y Maeda,M.Kanda,M.Hashimoto,T.Hasegawa,S.Kimura,Y.F.Lian,T.Wakahara,T.Akasaka,S.Kazaoui,N.Minami,T.Okazaki,Y.Hayamizu,K.Hata,J.Lu,S.Nagase,J.Am.Chem.Soc.2006,128,12239.
    47.H.Kataura,Y.Kumazawa,Y.Maniwa,I.Umezu,S.Suzuki,Y Ohtsuka,Y Achiba,Synth.Met.1999,103,2555.
    48.K.D.Ausman,R.Piner,O.Lourie,R.S.Ruoff,M.Korobov,J.Phys.Chem.B 2000,104,8911.
    49.J.L.Bahr,E.T.Mickelson,M.J.Bronikowski,R.E.Smalley,J.M.Tour,Chem.Commun.2001,193.
    50.R.B.Weisman,S.M.Bachilo,Nano Lett.2003,3,1235.
    51.M.S.Strano,J.Am.Chem.Soc.2003,125,16148.
    52.S.D.M.Brown,A.Jorio,P.Corio,M.S.Dresselhaus,G Dresselhaus,R.Saito,K.Kneipp,Phys.Rev.B 2001,63,155414.
    53.M.S.Dresselhaus,G Dresselhaus,A.Jorio,A.G Souza Filho,R.Saito,Carbon 2002,40,2043.
    54.H.Kawamoto,T.Uchida,K.Kojima,M.Tachibana,J.Appl.Phys.2006,99,094309.
    55.A.Jorio,A.G Souza Filho,G Dresselhaus,M.S.Dresselhaus,A.K.Swan,M.S.(U|¨)nl(u|¨),B.B.Goldberg,M.A.Pimenta,J.H.Hafher,CM.Lieber,R.Saito,Phys.Rev.B 2002,65,155412.
    56.K.A.S.Fernando,Y Lin,W.Wang,S.Kumar,B.Zhou,S.Y Xie,L.T.Cureton,YP.Sun,J.Am.Chem.Soc.2004,126,10234.
    57.M.M.Payne,J.H.Delcamp,S.R.Parkin,J.E.Anthony,Org.Lett.2004,6,1609.
    58.J.E.Anthony,Chem.Rev.2006,106,5028.
    59.B.B.Jang,S.H.Lee,Z.H.Kafafi,Chem.Mater.2006,18,449.
    60.M.A.Wolak,B.B.Jang,L.C.Palilis,Z.H.Kafafi,J.Phys.Chem.B 2004,108,5492.
    [1]Iijima,S.Nature.1991,354,56.
    [2]Landi,B.J.;Raffaelle,R.P.;Castro,S.L.;Bailey,S.G.Prog.Photovolt:Res.Appl.2005,13,165.
    [3]Chitta,R.;Sandanayaka,A.S.D.;Schumacher,A.L.;Souza,L.D'.;Araki,Y.;Ito,O.;and Souza,F.D'.J.Phys.Chem.C.2007,111,6947.
    [4]Ago,H.;Shaffer,M.S.P.;Ginger,D.S.;Windle,A.H.;Friend,R.H.Phys.ReV.B.2000,61,2286
    [5]Kymakis,E.;Amaratunga,G.A.J.Appl,Phys.Lett.2002,80,112.
    [6]Kymakis,E.;Amaratunga,G.A.J.AdV.Mater Sci.2005,10,300.
    [7]Nogueira,A.F.;Hummelgen,I.A.J.Phys.Chem.C.2007,111,18431
    [8]Hasobe,T.;Fukuzumi,S.;Kamat,P.V.J.Phys.Chem.B.2006,110,25477.
    [9]Barazzouk,S.;Hotchandani,S.;Vinodgopal,K.;Kamat,P.V.J.Phys.Chem.B.2004,108,17015.
    [10]Sgobba,V.;Rahman,G.M.;Guldi,D.M.;Jux,N.;Campidelli,S.;Prato,M.AdV.Mater.2006,18,2264.
    [11]Castrucci,C.;Tombolini,F.;Scarselli,M.;Speiser,E.;Del,Gobbo,S;Ritcher,W.;De Crescenzi,M.;Dioeiaiutti,M.;Gatto,E.;Venanzi,M.Appl.Phys.Lett.2006,89,253107.
    [12]Guldi,D.M.Angew.Chem.Int.Ed.2005,44,2015 -2018
    [13]董春蕾,2005,苝系染料的合成及其薄膜的光电性能研究,硕士学位论文,黑龙江大学
    [14]Langhals,H.;Krotz,O.;Polborn,K.;Mayer,P.Angew.Chem.Int.Ed.2005,44,2427
    [15]van Herrikhuyzen,J.;Syamakumari,A.;Schenning,A.P.H.J.;Meijer,E.W.J.Am.Chem.Soc.2004,126,10021
    [16]Chaudhary,S.;Lu,H.;Muller,A.M.;Bardeen,C.J.;Ozkan,M.Nano Lett.2007,7,1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700