用户名: 密码: 验证码:
火电厂净水站排泥水回用及污泥处置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题来源于“火力发电厂水系统零排放项目”之子项“火电厂净水站零排放项目”,以重庆某火电厂净水站排泥水处理系统为研究对象,主要研究内容为排泥水回用与污泥处置。电厂净水站排泥水主要来自于沉淀池或澄清池的排泥废水和滤池的反冲洗废水,这部分水量若不经处理直接排放不但污染环境而且造成水资源浪费。因此,排泥水的回用及污泥的资源化处置已经越来越受到重视。
     目前,电厂净水站排泥水处理系统的设计一般借鉴给水厂排泥水处理及污泥处置的研究结果和实践经验。然而火电厂净水站存在分质、分量供水的问题,其净水工艺与传统给水厂净水工艺存在差异,排泥水处理流程也有所不同。论文在对现有给水厂排泥水及污泥处置工艺流程研究和工程运用分析的基础上,从生产性和实用性的角度出发,结合该火电厂的实际情况,优选和确定符合电厂“零排放”要求的排泥水及污泥处理工艺,并对污泥最终的资源化处置进行分析。
     排泥水回用及污泥处置研究首先应确定排泥水和污泥的性质以及所产生的排泥废水和污泥量。试验研究表明,该净水站水源水悬浮固体含量与源水浊度存在函数关系,经计算其比例关系为1:1.6。通过对源水浊度区间的正态分布计算,确定在95%的保证率下,源水设计浊度值为85NTU。根据悬浮物与浊度比例关系以及源水设计值可以计算出脱水干污泥量,当净水站取水量为3万m3/d时,日产干泥量约为4.6吨/天。排泥水量则由现场测定得出,约为526m3/d,约占日产水量的3%,
     通过排泥水自然沉淀和混凝沉淀试验,确定浓缩池上清液回流比为约5%。在该回流比下运行,浓缩池上清液的回流不会过度增加净水流程负担,对澄清池及过滤器出水水质影响较小,可以实现排泥废水的回用。同时采用聚丙烯酰胺提高排泥水浓缩性能及底泥含固率,以达到离心脱水机的进泥要求。当排泥废水含固率为2.1%时,最佳投药率约为1.7‰~2‰。
     最后,对排泥水系统进行经济分析。虽然排泥水处理系统投资较大,但年收益与年成本费基本持平。因此排泥水处理及污泥处置系统的运行不会给企业造成负担,同时还带来了一定的环境和社会效益。
This study is based on“the zero discharge project of water treatment department of Hechuan electric power industry.”the wastewater from water treatment process has been studied. The wastewater consists of the sludge flushed out from the sedimentation tanks and the backwash water disposed from the filter beds. If this part of water is discharge into river where the raw water pumped from, it would pollute the raw water. Recently, wastewater and sludge from waterworks have been valued. Although wastewater treatment facilities in water plant have been constructed and studied, there is still lack of sufficient studies on wastewater treatment facilities in water department in power plant. To solve these problems, the practical and feasible waterworks’wastewater treatment process and system have been studied in details in this paper.
     Through one year’s experience, the suspended sedimentation concentration and turbidity has been tested and their proportion relation has been confirmed. The proportion relation between SS and turbidity is 2:1. According to the statistical results of turbidity intervals, the mathematic model has been built to determine the value of raw turbidity. In this case, the raw turbidity can be used to calculate the quantity of sludge. The quantity of wastewater has been calculated based on the actual operation of water treatment process. And then, simulate test was adopted to do the sludge natural settling and coagulation sedimentation test, which can be used to determine the reflux ration of supernatant fluid in the concentration tank. The quality of supernatant fluid from concentration tank and the dewatered sludge has been tested to discuss whether the supernatant fluid as well as the sludge can be reused or not. Finally, through economic analysis, the input and output of whole project have been calculated.
     The research results show that, because of the feature of water supply department of power plant, the quantity of dewatered sludge is lesser than that in water treatment plant. The proportion between the quantity of dewatered sludge and in taking water is about 3%. The performance of sludge setting is good for sludge treatment. Supernatant fluid from concentration tank can be reused, which would not increase the burden of water treatment process or influent the effluent water quality. The heavy metal contains in dewatered sludge accord with national standard, so it can be used as turf soil. Although the input of waterworks wastewater treatment project is enormous, the cost of water purification and wastewater discharge can be saved. We can conclude that this project can bring about huge environmental, social benefit as well as economic benefit.
引文
[1]刘昌明,陈志凯.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利电力出版社, 2001.
    [2]张忠祥.城市可持续发展与水污染防治对策[M].北京:中国建筑出版社, 1995.
    [3]阎吉昌,徐书绅等编,环境分析[M].北京:化学工业出版社, 2001.
    [4]曾键.生态思维与工业用水污染[J].江西农业大学学, 2000(5): 142-146.
    [5]华冰.火电厂节水[D].华北电力大学, 2005. (学位论文).
    [6]韩志忠.全工程用水优化综合[D].大连理工大学, 2000 . (学位论文).
    [7]倪书洪.电力工业环境经济[J].水利电力出版社, 1990.
    [8]朱法华.我国火电厂废水排放与利用[J].电力环境保护,2001(12): 19-23.
    [9]刘波.火电厂水务管理[D].华北电力大学, 2005 . (学位论文).
    [10]许建华.自来水厂排泥水处理的国内外发展概况[J].中国给水排水, 2001, 24(17): 26-28.
    [11]刘辉等.自来水厂污泥处置与综合利用[J].给水排水, 2001, 11(8): 10-14.
    [12]王南威.给水厂的污水及污泥处置设计研究[D].重庆:重庆大学, 2004.(学位论文).
    [13]戚海雁等.给水厂排泥水及污泥的处置[J].上海环境科学, 2002, 21 (7): 11-14.
    [14]刘汝义,黄玉坤.发电厂用水与节水[M].水力电力出版社, 1998.
    [15]王文兵.火电厂废水零排放改造方案[J].电力建设, 2001(12): 41-45.
    [16]叶辉,乐林生,鲍士荣,许建华.自来水厂排泥水处理污泥量的确定方法[J].给水排水, 2002, 28(9): 1-4.
    [17]叶辉,乐林生,许建华.自来水厂排泥水处理技术[J].净水技术, 2001, 20(4): 23-26.
    [18]陈士才,张磊.杭州市祥符水厂的排泥水处理工程[J].中国给水排水, 2004, 20(11): 77-79.
    [19] Thompson, P.L.&Paulson, W. L. Dewater ability of Alum and Ferric Coagulation Sludges[J], Jour.AWWA, VOL.90, NO.4, (Apr.1998).
    [20]谢敏.净水厂排泥水浓缩脱水特性及调质形态学研究[D].湖南:湖南大学, 2007.(学位论文).
    [21]王圃.城市给水处理厂及泵站能耗分析与应用研究[D].重庆.重庆大学, 2004.(学位论文).
    [22] Cornwell D A, Characteristic of acid-treated alum sludge. Jour.AWWA, 71(10), 1979,104.
    [23]张怡.长江水源水厂排泥水处理处置研究[D].上海:同济大学, 2007.(学位论文).
    [24]上海市政工程设计研究院.给水排水设计手册第3册[M].北京:中国建筑工业出版社, 2004.
    [25]郑小明等,排泥水处理技术在冈行一水厂的应用[J].给水排水, 2003, 24(6):22-26.
    [26]上海申可给排水技术发展有限公司.厦门市自来水公司杏林水厂污泥实验报告[J]. 2002.
    [27]魏文捷等.西洲水厂污泥处理工程介绍[J].给水排水, 2003, 19(3): 18-22.
    [28]成都市自来水总公司水质监测站.排泥水特性研究结题报告[M]. 2001: 2-5.
    [29]国家环境保护总局水和废水监测分析方法编委会.水和废水分析监测方法[M].北京:中国环境科学出版社, 2002.
    [30]吴慧.海南省降水量的正态分布特征及正态化变换[J].广东气象, 2005, 17(2): 12-13.
    [31]刘虎,钟波.数理统计[M].重庆大学出版社, 2004.
    [32]向平,蒋绍阶.给水厂排泥水处理回用的若干问题[J].重庆建筑大学学报, 2004, 26(4): 70-72.
    [33]岳军武,田利,韩宏大.膜技术在水厂排泥水处理中的应用[J].中国给水排水, 2002, 17(9): 71-72.
    [34]沈裘昌,给水厂污泥脱水设施建设应重视的几个问题[J].给水排水, 2003, 18(6): 24-29.
    [35] Technology transfer of handbook: Management of water treatment plant residuals, 1st, ED. New York: American society of civil engineers, AWWA, EPA, ASCE. 1996, 16-21.
    [36]陈艳萍,刘建波,张建弟.石家庄第八水厂污泥浓缩脱水絮凝剂的选择[J].净水技术, 2000, 18(2): 24-27.
    [37] H. B. Dharmappa. A. Hasia, P. Hagare. Water Treatment Plant Residuals Management. Journal of the Water science technology, 1997, 35(8): 45-56.
    [38]程曦,李田.水厂污泥的处置[J].城市公用事业, 2000, 14(2): 15-16.
    [39]陈绍伟,吴志超,张鹏等.自来水厂污泥作填埋场覆盖材料的试验研究[J].环境污染治理技术设备, 2002, 3(1): 23-26.
    [40] Management of Water Treatment Plant Residuals [M]. Washington DC: EPA, EPA, ASCE, AWWA. 1996, 23.
    [41]陈绍伟,吴志超,张鹏等.自来水厂污泥作填埋场覆盖材料的试验研究[J].环境污染治理技术设备, 2002, 3(1): 23-26.
    [42] Mark.M.Bishop, A. T. Rolan, Tom.L.Bailey. Testing of Alum Recovery for Solids Reductionand Reuse. AWWA, June, 1987, 76-83.
    [43] Committee Report. Water Treatment Plant Sludge-An Update of the State of the Art: Part 1AWWA, Sept, 1978(3): 498-503.
    [44] Carret.P.Westerhoff,David A.Comwell.A New Approach to Alum Recovery[J]. AWWA, Dec, 1978: 709-714.
    [45] Arup. K. Sengupta. Slective Alum Recovery from Clarifier Sludge[J]. AWWA, January, 1992, 96-103
    [46]高超,张桃林.农业非点源磷污染对水体富营养化的影响及对策[J].湖泊科学, 1999, 11(4): 369-375.
    [47]刘辉,张玉先.自来水厂的污泥处置与综合利用[J].给水排水,2001, 27(11): 15-18.
    [48]陈静,许建华.给水厂污泥处理[J].净水技术,1998, 65(3): 14-16.
    [49]金儒霖,刘永龄.污泥处置[M].北京:中国建筑工业出版社, 1982.
    [50]刘卫国.污水回用中的杀菌方法比较[J].石油化工技术经济, 2007(2): 16-20.
    [51] SAATY T L. There is no mathematical validity for using fuzzy number crunching in the analytic hierarchy process [J]. Journal of Systems Science and Systems Engineering, 2006, 15(4): 457-464.
    [52] SAATY T L. Multi-criteria decision making [M]. RWS Publications, Pittsburgh, PA, 1990.
    [53]程建权.城市系统工程[M].武汉:武汉大学出版社, 1999.
    [54] SaatyT.L. The analytic hierarchy Process [M].New York: McGraw一Hill Company,1980.
    [55]赵焕成,许树柏,金生.层次分析法-一种简易的新决策方法[M].北京:科学出版社, 1986.
    [56]张吉军.模糊层次分析法(FAHP)[J].模糊系统与数学, 2000, 14(6): 80-88.
    [57]金菊良,魏一鸣,付强,丁晶.计算层次分析法中排序权值的加速遗传算法[J].系统工程理论与实践, 2002, 22(11): 39-43.
    [58]金菊良,魏一鸣,潘金锋.修正AHP中判断矩阵一致性的加速遗传算法[J].系统工程理论与实践,2004,24(l): 63-69
    [59]李祚泳.层次分析法及其研究进展[J].自然杂志, 1991, 14(12): 904-907.
    [60]宋远方.混合因素群体AHP方法及其通用软件[J].系统工程, 1989, 7(1): 66-71.
    [61] Zilla Sinuany-Stern, Abraham Mehre, Yossi Hadad. An AHP/DEA methodology for ranking decision making units[C]. Intl.Trans. in Op. Res. 2000, 7: 109-124.
    [62]张卫中等.改进的AHP及其在地灾易发程度分区中的实践[J].土木建筑与环境工程, 2009, 31(2): 85-89.
    [63]白俊文,侍克斌.用改进的层次分析法(AHP)进行坝基防渗方案的优选[J].水利与建筑工程学报, 2004, 2(4): 11-14.
    [64]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社, 1990.
    [65]傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社, 1992.
    [66] LU S H, et al. Grey relational analysis coupled with principal component analysis for optimization design of the cutting parameters in high-speed end milling [J]. Journal of Materials Processing Technology, 2009, 209(8): 3808-3817.
    [67]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社, 2004.
    [68]王正林等.无锡市梅园水厂排泥水处理工程[J].中国给水排水, 2005, 21(3):70-73.
    [69]陈士才,张磊.杭州市祥符水厂的排泥水处理工程[J].中国给水排水, 2004,20(11): 77-79.
    [70] Miyanoshita T, et al. Economic evaluation of combined treatment for sludge from drinking water and sewage treatment plants in Japan [J]. Journal of Water Supply and Technology-AQUA, 2009, 58(3): 221-227.
    [71] SMITH K M, et al.Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications [J]. Water Research, 2009, 43(10): 2569-2594.
    [72] XU G R, et al.Recycle of Alum recovered from water treatment sludge in chemically enhanced primary treatment [J]. Journal of Hazardous Materials, 2009, 116(2): 663-669.
    [73]闫嘉钰等.基于灰色综合关联度的数控机床热误差测点优化新方法及应用[J].四川大学学报(工程科学版), 2008, 40(2): 160-164.
    [74]张方梅,陈绍伟,邹伟国等.净水厂沉淀污泥浓缩性能初探[J].给水排水, 2000, 26(7): 14-17.
    [75]伏荃.高浊度给水理论与技术[J].北京:化学工业出版社环境科学与工程出版中心, 2004.
    [76]蒋绍阶.给水厂排泥水处理回用的若干问题[J].重庆建筑大学学报vol 26 No.4 2004.
    [77]汪群慧.固体废弃物处理与资源化[M].北京:化学工业出版社, 2004, 200-210.
    [78]陶辉等.滤池反冲洗水的直接回用研究[J].中国给水排水, 2008, 24(9), 45-49.
    [79]钱纯,刘爱东,罗岳平.隐孢子虫对自来水水质的污染及其防治措施[J].中国卫生检验杂志, 2000 , 10 (1) : 88 - 90.
    [80] AroraH, DiGiovanni G, Lechevallier M. Spent filter backwash water: Contaminants and treatment strategies. AWWA , 2001 , 93(5) : 100~112.
    [81]湛含辉,张晶晶,张晓琪等.无机絮凝剂的混凝机理研究[J].湘潭矿业学院学报, 2004 , 19 (1) : 84~87.
    [82]常青.水处理絮凝学.北京:化学工业出版社, 2003. 50-57.
    [83] Guan X H, Shang C, Yu S M, etal .Exploratory study on reusing water treatment works sludge to enhance primary sewage treatment. Water Science and Technology: Water Supply, 2004, 14 (1): 159-164.
    [84]徐斌.净水厂污泥处理工艺的研究与设计[D]天津大学.2004.(学位论文)
    [85]王宁.水处理污泥中铝盐、铁盐回收利用研究[D]哈尔滨工业大学.2007.(学位论文)
    [86]姚政,赵京.种子发芽在环境污染监测中作为生物指标的尝试[J].环境保护科学. 2008, 21(4), 19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700