用户名: 密码: 验证码:
新型聚合物包覆硅胶吸附材料的合成及其对有机化合物的吸附性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物包覆硅胶是一类新型有机-无机复合材料,同时具有硅胶和聚合物的优良性能及某些新特性,在材料领域尤其是吸附材料领域中有重要的用途。用分子印迹技术在硅胶表面包覆聚合物,可以得到对金属离子及有机物具有特异性吸附性能的新型吸附材料。本文采用硅胶表面聚合法及硅胶表面分子印迹技术制备了八种新型聚合物包覆硅胶吸附材料。利用扫描电镜、红外光谱、孔结构分析、热重分析等方法对材料的结构和性质进行了系统表征,并系统研究了其对有机化合物的吸附性能。
     以乙烯基三乙氧基硅烷改性硅胶为中心核,分别以苯乙烯(St)和4-乙烯吡啶(4-VP)为功能单体,二乙烯基苯(DVB)为交联剂,通过硅胶表面的交联聚合,得到四种核-壳结构的聚合物包覆硅胶材料——聚苯乙烯包覆硅胶(PS/SG)、聚硝基化苯乙烯包覆硅胶(PS-NO2/SG)、聚胺基化苯乙烯包覆硅胶(PS-NH2/SG)和聚乙烯吡啶包覆硅胶(PVP/SG)。考察了四种新型吸附材料在水溶液中对有机小分子苯胺及苯酚的静态饱和吸附,着重研究了其对苯胺的吸附性能。结果表明,在本实验条件下,四种吸附材料对苯胺的吸附优于对苯酚的吸附;PS/SG,PS-NO2/SG,PVP/SG对苯胺的吸附符合Freundlich等温吸附方程式;四种吸附剂对苯胺的吸附均可以用拟二级动力学方程进行较好描述,吸附过程中存在粒内扩散,但不是唯一的控制因素,吸附可能同时受液膜扩散的影响。
     研究了上述四种聚合物包覆硅胶吸附材料在水体系和非水体系(包括无水乙醇溶液、苯溶液、环己烷溶液等)中对酚类(苯酚、对甲基苯酚、对硝基苯酚)和胺类(苯胺、N-甲基苯胺、对硝基苯胺)的吸附性能,分析了其吸附性能之间的差异及原因。考察了不同温度下PS/SG对水溶液中N-甲基苯胺的吸附性能,实验结果表明,其吸附过程能较好的用拟二级动力学方程进行描述,并符合Freundlich吸附等温方程式;热力学参数分析结果表明,吸附是自发的、放热的吸附过程,降低温度有利于吸附的进行。
     以乙烯基改性硅胶为中心核,DVB为交联剂,4-乙烯吡啶为功能单体,分别以N-甲基苯胺及甲基苯丙胺(冰毒)为模板分子,通过表面分子印迹技术,合成了硅胶表面分子印迹聚合物材料。实验结果表明,印迹材料对目标分子表现出优异的吸附性能。尤其是甲基苯丙胺分子印迹材料,将其作为固相萃取柱,可以从氯胺酮、甲基苯丙胺和咖啡因等兴奋剂混合体系中有效提取甲基苯丙胺,为新型提取苯丙胺类兴奋剂担体材料的研制提供了新思路。
Polymer coated silica adsorption materials, with excellent performance of silica gel and polymer, and even some new properties, are a kind of organic-inorganic composite material. These materials have potential applications in material fields, especially in adsorption fields. Using molecular imprinting technique can obtain novel polymer-coated silica that has specificity adsorption for metal ions and organic compounds. This thesis has designed and prepared eight novel polymer-coated adsorption materials by means of surface polymerization and molecular imprinting on silica. These adsorption materials were systematically characterized by Scanning electron microscopy(SEM), infrared spectroscopy (FT-IR), porous analysis, and thermogravimetry analysis. And adsorption properties of these materials towards organic compounds were investigated.
     Using modified silica as core, 4-vinylpyridine as functional monomer,divinylbenzene as crosslinking agent, respectively, four novel polymer-coated silica materials, including polystyrene-coated silica (PS/SG), poly(p-nitrostyrene)-coated silica (PS-NO2/SG), poly(p-aminostyrene)-coated silica (PS-NH2/SG) and poly(4-vinylpyridine)-coated silica (PVP/SG), were synthesized by means of polymerization on the surface of silica. Some organic compouds, such as phenol and aniline, were chosen as representatives to investigate static saturated adsorption. The main research focuses on the adsorption properties of aniline. The experimental results showed that the adsorption of aniline prior to phenol for the four adsorption materials in the range of the experiment. The adsorption isotherms results showed that linear Freundlich isotherm models could be well interpret the adsorption of three adsorption materials, PS/SG, PS-NO2/SG, PVP/SG, for aniline. The kinetics data indicated that the adsorption process was governed by the film diffusion and the intraparticle diffusion and well followed pseudo-second-order rate model.
     Adsorption performance of PS/SG, PS-NO_2/SG, PS-NH_2/SG, PVP/SG to phenolic substances (including phenol, p-methyl phenol, p-nitrophenol) and amine compounds(including aniline, N - methyl aniline, p- nitroaniline) from aqueous solution and nonaqueous solutions(including anhydrous alcohol solution, benzene solution and cyclohexane solution) was investigated in order to analysis the reason of the differences among these adsorption materials. The adsoption towards N- methyl aniline of PS/SG in different temperature was studied. The kinetic adsorption results showed that the adsorption process of PS/SG for N-methyl aniline was well followed pseudo-second-order rate model. The adsorption isotherms results showed that Freundlich models could be well interpret the adsorption of PS/SG for N- methyl aniline. Thermodynamic analysis revealed that the adsorption behaviors of N- methyl aniline on PS/SG could be considered as spontaneous,exothermic sorption process, resulting in their higher adsorption capacities at lower temperature.
     Using vinyl modified silica as the core, divinylbenzene as crosslinking agent, 4-vinylpyridine as functional monomer, N- methyl aniline and methamphetamine as the template, respectively, molecularly imprinted polymers were synthesed by surface of molecular imprinting technique. The experiments results showed that molecularly imprinted polymers showed excellent adsorption performance to the template, especially methamphetamine molecular imprinted on surface of silica. Using it as solid-phase extraction materials, the methamphetamine can be extracted from the complex system, including ketamine, caffeine exist and methamphetamine, which provides novel supporter materials for extracting amphetamine-derived drugs.
引文
[1]张全兴,陈金龙,李爱民,杨维本.树脂对化工废水中有毒有机化合物的吸附作用机理与技术研究[J].高分子学报, 2008, (7): 651-655.
    [2]张炜铭,陈金龙,张全兴,潘丙才.苯酚和苯胺在超高交联吸附树脂上的共吸附行为[J].高分子学报, 2006, (2):213-218.
    [3]赵桂芳.功能化聚苯乙烯包覆硅胶复合微球的合成及其吸附性能研究[D].鲁东大学, 2008: 1-4.
    [4] J. X. Wang, Z. Wang, J. F. Chen, J. Yun. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications[J]. Mater. Res. Bull., 2008, 43(12):3374-3381.
    [5] R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T. K. Chakia, A. K. Bhowmick. Polyamide-6, 6/in situ silica hybrid nanocomposites by sol-gel technique: sythesis, characterization and properties[J]. Polym., 2005, 46(10):3343-3354.
    [6] Q. Hu, E. Marand. In situ formation of nanosized TiO2 domains within poly(amide-imide) by a sol-gel process[J]. Polym., 1999, 40(17):4833-4843.
    [7] P. Liu, Z. X. Su. Thermal stabilities of polystyrene/silica hybrid nanocomposites via microwave-assisted in situ polymerization[J]. Mater. Chem. Phys., 2005, 94(1-2):412-416.
    [8] M. D. Butterworth, S. A. Bell, S. P. Armes, A. W. Simpson. Synthesis and Characterization of Polypyrrole–Magnetite–Silica Particles[J]. J. Colloid Interface Sci., 1996, 183 (1):91-99.
    [9]邓辉,施冬梅,杜仕国.有机/无机纳米复合材料的制备方法[J].现代化工, 2000, 20(11):62-64.
    [10]王家俊,益小苏.高聚物/无机物插层型纳米复合材料[J].材料导报, 1999, 13(3):54-56.
    [11] V. Davankov, A. A. Kurganov, K. K. Unger. Reversed-phase high-performance liquid chromatography of proteins and polypeptides on polystyrene-coated silica supports[J].J. Chromatogr., 1990, 500: 519-530.
    [12] M. Hanson, K. Unger, C. T. Mant, et a1. Polymer-coated reversed-phase packings with controlled hydrophobic properties I. Effect on the selectivity of protein separations[J]. J. Chromatogr., 1992, 599: 65-75.
    [13]何涛波,陈建峰,毋伟.无机超细粒子表面聚合物包覆改性研究进展[J].高分子材料科学与工程, 2004, 20(3): 13-16.
    [14] N. Tsubokawa, Y. Shirai, H. Tsuchida, S. Handa. Photografting of Vinyl Polymers onto Ultrafine Inorganic Particles: Photopolymerization of Vinyl Monomers Initiated by Azo Group Introduced onto these Surfaces[J]. J. Polym. Sci. Part: A Polym. Chem., 1994, 32(12):2327–2332.
    [15] N. Tsubokawa, H. Ishida. Graft polymerization of vinyl monomers by peroxyester groups introduced onto the surface of inorganic ultrafine particles[J]. Polym. J., 1992, 24(8):809-816.
    [16] P. Liu, Z. X. Su. Preparation of polystyrene grafted silica nanoparticles by two-steps UV induced reaction[J]. J. Photochem. Photobiol., A: Chem., 2004, 167(2-3):237-240.
    [17]何三雄,高保娇. ATRP法在纳米硅胶粒子表面接枝聚甲基丙烯酸缩水甘油酯[J].高分子材料科学与工程, 2007, 3(23):100-104.
    [18]戚栋明,包永忠,黄志明,翁志学.纳米SiO2粒子锚固偶氮引发剂及接枝聚甲基丙烯酸甲酯[J].高分子学报, 2004, (3):415-418.
    [19] G. Carrot, S. Diamanti, M. Manuszak, B. Charleux, J. P. Vairon. Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles[J]. J. Polym. Sci: Polym Phys., 2001, 24(39):4294-4301.
    [20] N. Tsubokawa, K. Maruyama, Y. Sone, M. Shimomura. Graft polymerization of acrylamide from ultrafine silica particles by use of a redox system consisting of ceric ion and reducing groups on the surface[J]. Polym. J., 1989, 21(6):475-481.
    [21] Y. C. Ou (欧玉春), F. Yang (杨锋), Y. Zhuang (庄严) , Z. N. Qi (漆宗能).在位分散聚合聚甲基丙烯酸甲酯/二氧化硅纳米复合材料研究[J]. Acta. Polym. Sinica. (高分子学报), 1997, 4 (2):199-204.
    [22] P. Hajji, L. David, J. F. Gerard, J. P. Pascault, G. Vigier. Synthesis, structure and morphology of polymer-silica hybrid nanocomposites based on hydroxyethyl methacrylate[J]. J. Polym. Sci.: Polym. Phys., 1999, 22(37):3172-3187.
    [23]张海燕,李保利,张绪宏,宿书芳,张敏,董襄朝.活性自由基聚合(Iniferter)法制备聚合物包覆硅胶固定相及其色谱性能评价[J].化学学报, 2008, 66(19):2151-2156.
    [24] N. Tsubokawa, S. Yoshikawa. Grafting of polymers with controlled molecular weight on to ultrafine silica surface[J]. J. Polym. Sci., Part A: Polym. Chem., 1995, 33(3):581-586.
    [25]李保利.以活性自由基聚合法制备硅球表面修饰的色谱固定相[J].中国西部科技, 2008, (31):27-28.
    [26] P. Espiard, A. Guyot. Poly(ethyl acrylate) latexes encapsulating nanoparticles of silica: 2. Grafting process onto silica[J]. Polym., 1995, 36(23):4391-4395.
    [27] H. Engelhardt, H. Low, W. Eberhardt, M. Mauβ. Polymer encapsulated staionary phases: Advantages, properties and selectivities[J]. Chromatogr., 1989, 27(11-12): 535 - 543.
    [28] R. Raible, K. Hamann. Formation of chemically bound polymer layers on oxide surfaces and their role in colloidal stability[J]. Adv. Colloid Interface Sci., 1980, 13(1-2):65-99.
    [29] P. Liu, J. Tian, W. M. Liu, Q. J. Xue. Radical graft polymerization of styrene onto nanosizedsilica[J]. China Synthetic Rubber Industry, 2002, 25(4):261.
    [30] Y. Suzuki, F. H. Quina, A. Berthod, R. W. Williams, Jr. M. Culha, I. U. Mohammadzai, W. L. Hinze. Covalently bound ionene polyelectrolyte-silica gel stationary phases for HPLC[J]. Anal. Chem., 2001, 73(8):1754-1765.
    [31] J. J. Kirkland, J. L. Glajch, R. D. Farlee. Synthesis and characterization of highly stable bonded phases for High-Performance Liquid Chromatography column packings[J]. Anal. Chem., 1989, 61(1):2-11.
    [32] S. C. Bourque, F. Maltais, W. J. Xiao, O. Tardif, H. Alper, P. Arya, L. E. Manzer. Hydroformylation reactions with Rhodium-complexed Dendrimers on silica[J]. J. Amer. Chem. Soc., 1999, 121(13):3035-3038.
    [33] F. Li, H. Q. Jiang, S. S. Zhang. An ion-imprinted silica-supported organic– inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol–gel process for selective separation of cadmium(II) from aqueous solution[J]. Talanta, 2007, 71(4):1487-1493.
    [34] D. P. Quintanilla, I. D. Hierro, M. Fajardo, I. Sierra. 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media[J]. J. Hazard. Mater., 2006, 134(1-3):245-256.
    [35] W. A. Daoud, J. H. Xin, X. M. Tao. Synthesis and characterization of hydrophobic silica nanocomposites[J]. Appl. Surf. Sci., 2006, 252(15):5368-5371.
    [36] E. Sibottier, S. Sayen, F. Gaboriaud, A. Walcarius. Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups[J]. Langmuir, 2006, 22(20):8366-8373.
    [37]牛余忠.硅胶锚合PAMAM型类树形大分子的合成及性能研究[D].鲁东大学, 2007: 1-4.
    [38]张盈.硅胶键载脂肪多胺吸附材料的设计、合成及性能研究[D].鲁东大学, 2009: 2-10.
    [39]左育民,许晓文.包覆聚合物高效液相色谱柱填料的研究进展[J].分析化学, 1998, 26(5):593-596.
    [40] D. M. Qi, Y. Z. Bao, Z. X. Weng, Z. M. Huang. Preparation of acrylate polymer/silica nanocomposite particles with high silica encapsulation efficiency via miniemulsion polymerization[J]. Polym., 2006, (47):4622–4629.
    [41] W. J. Ho, C. J. Yuan, O. Reiko. Application of SiO2–poly(dimethyl-siloxane) hybrid material in the fabrication of amperometric biosensor[J]. Anal. Chim. Acta, 2006, (572):248–252.
    [42] I. J. Kim, O. S. Kwon, J. B. Park, H. Joo. Synthesis and characterization of ABS/silica hybridnanocomposites[J]. Curr. Appl. Phys., 2006, (6S1):e43-e47.
    [43] G. Y. Liu, X. L. Yang, Y. M. Wang. Silica/poly(N,N’-methylene-bisacrylamide) composite materials by encapsulation based on a hydrogen-bonding interaction[J]. Polym., 2007, (48):4385-4392.
    [44] N. Leventis, S. Mulik, X..J. Wang, A. Dass, V. U. Patil, C. S.-Leventis, H. B. Lu, G. Churu, A. Capecelatro. Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties[J]. J. Non-Cryst. Solids, 2008, 354(2-9): 632–644.
    [45] G. Y. Liu, H. Zhang, X. L. Yang, Y. M. Wang. Facile synthesis of silica/polymer hybrid microspheres and hollow polymer microspheres[J]. Polym., 2007, (48):5896-5904.
    [46] S. Kazuya, Y. Takeshi, T. Yuko. Thermo-responsive release from interpenetrating porous silica-poly (N-isopropylacrylamide)hybrid gels[J]. J. Controlled Release, 2001, (75):183-189.
    [47]史铁钧,王华林,李波等. PP/SiO2杂化纳米复合材料的制备与性能研究[J].高分子通报, 2005, (2):93-96.
    [48]刘鹏,田军,刘维民,薛群基.无机纳米粒子表面引发接枝聚合[J].化学通报, 2003, (2): 73-77.
    [49] R. Bakry, W. M. St¨oggl, E. O. Hochleitner, G. Stecher, C. W. Huck, G. K. Bonn. Silica particles encapsulated poly (styrene-divinylbenzene) monolithic stationary phases forμ-high performance liquid chromatography[J]. J. Chromatogr. A, 2006, 1132(1-2):183-189.
    [50] Y. M. Zuo, B. R. Zhu, Y. Liao, M. D. Gui, Z. L. Pang, J. X. Qi. Polymer encapsulated packing material for reversed phase liquid chromatography[J]. Chromatogr., 1994, 38(11-12):756-761.
    [51] B. Li Y. S. Li, N.Y. Han, B. J. Xu. Electrochromato-graphic properties of syntheticpoly(styrene-divinylbenzene)encapsulated packing material and sulphonic cation-exchangephase based on the former[J]. Journal of peking university(Health sciences), 2003, 35(6):618-621.
    [52]尹宏瑞,马乔,冯钰铸.表面引发聚合制备苯乙烯一二乙烯基苯聚合物包覆硅胶固定相[J].分析科学学报, 2009, 25(1):17-20.
    [53]安富强,高保娇,李刚.硅胶表面铜(Ⅱ)离子印迹聚乙烯亚胺的制备及结合特性研究[J].高分子学报, 2007, (4):366-373.
    [54]安富强,高保娇,刘青. PEI/SiO2复合材料对Zn2+、Cd2+的螯合吸附性能研究[J].化学通报, 2006, (3):201-206.
    [55] B J Gao, F Q An, Y Zhu. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles[J]. Polymer, 2007, (48):2288-2297.
    [56]杜振霞,李文霞,付志峰.新型分离材料硅胶表面分子印迹聚合物的制备[J].化工新型材料,2005, 33(7):38-40.
    [57] M. Quaglia, E. D. Lorenzi, C. Sulitzky, G. Massolinia, B. Sellergren. Surface initiated molecularly imprinted polymer films: a new approach in chiral capillary electrochromatography[J]. Analyst, 2001, (126):1495–1498.
    [58]罗勇,刘岚,李丽虹,邓芹英.硅胶表面茶碱分子印迹聚合物的制备和性能研究[J].中山大学学报(自然科学版), 2005, 44(6):49-53.
    [59]何建峰,刘岚,罗勇,杨桂兰,邓芹英.硅胶键合型奎宁分子烙印聚合物的合成及性能[J].应用化学, 2005, 22(11):1161-1166.
    [60]汪剑,高保娇,郭浩鹏,杨莹.硅胶表面抗蚜威分子印迹聚甲基丙烯酸的制备及识别特性[J].功能高分子学报, 2008, 21(1):44-49.
    [61]刘亚,杜振霞,杨俊佼.硅胶表面替米考星分子印迹聚合物的制备[J].化学研究与应用, 2006, 18(10):1186-1188.
    [62]李永,周文辉,杨黄浩,王小如.表面分子印迹高分子膜修饰硅胶用于血清中茶碱的固相萃取[J].应用化学, 2010, 27(1):102-106.
    [63]贾静波,梁汉锋,姚传义,卢英华.硅胶表面光引发制备氨基比林分子印迹聚合物的研究[J].温州大学学报(自然科学版), 2008, 5(29):25-29.
    [64]牛庆媛,高保娇,刘苏宇,孙中军.新型表面分子印迹法制备苦参碱印迹材料及其分子识别特性[J].化学学报, 2010, 68(24): 2600-2608.
    [65] R. J. Qu, Y. Z. Niu, C. M. Sun, C. N. Ji, C. H. Wang, G. X. Cheng. Syntheses, characterization, and adsorption properties for metal ions of silica-gel functionalized by ester- and amino-terminated dendrimer-like polyamidoamine polymer[J]. Microporous Mesoporous Mater., 2006, 1016(10):58-65.
    [66]吕继平,刘再满,缪利杰,齐仲龙.硅胶表面聚酰胺-胺的合成及其对Ni2+的吸附[J].石化技术与应用, 2008, 26(1):13-17.
    [67]吕继平,刘再满,缪利杰.硅胶表面上聚酰胺胺的合成及其对Fe(Ⅲ)的吸附[J].应用化学, 2008, 25(2):229-232.
    [68] X. Z. Wu, P. Liu, Q. S. Pu, Z. X. Su. Preparation of dendrimer-like polyamidoamine immobilized silica-gel and its application to online preconcentration and separation palladium prior to FAAS determination[J]. Talanta, 2004, 62(5):918–92.
    [69]徐伟箭,宋金生,李思平,卢彦兵,莫雄,熊远钦.含PAMAM改性硅胶的分子印迹聚合物的合成[J].湖南大学学报(自然科学版), 2007, 34(12):54-57.
    [70]杨律文,刘含茂,屈贺幂,曾松军,熊远钦,徐伟箭.硅胶表面熊果酸分子印迹聚合物的制备和分子识别特性[J].应用化学, 2008, 25(2):137-141.
    [71]杨津文.硅胶表面熊果酸分子印迹聚合物的合成及其应用[D].湖南大学, 2007, 21-33.
    [72] X. L. Wei, S. M. Husson. Surface-Grafted, Molecularly Imprinted Polymers Grown from Silica Gel for Chromatographic Separations [J]. Ind. Eng. Chem. Res., 2007, 46 (7):2117-2124.
    [73]苏立强,张晓林,梁云凯.硅胶表面亮菌甲素分子印迹聚合物的制备及其性能研究[J].化学通报, 2009, (8):749-753.
    [74]刘秋叶,李文友,何锡文,陈朗星,张玉奎.硅胶修饰-表面分子印迹牛血红蛋白及其识别性能的研究[J].化学学报, 2008, 66(1):56-62.
    [75]范忠雷,李殿卿.聚烯丙基胺硅胶复合材料的合成及其吸附性能[J].应用化学, 2003, 20(9):867-870.
    [76] D. Gao, Z. P. Zhang, M. H. Wu, C. G. Xie, G. J. Guan, D. P. Wang. A Surface Functional Monomer-Directing Strategy for Highly Dense Imprinting of TNT at Surface of Silica Nanoparticles [J]. J. am. chem. soc., 2007, 129(25):7859-7866.
    [77]冀峰,赵利霞,冯钦忠,严炜,林金明.硅胶表面扑灭津分子印迹材料的制备及性能表征[J].分析化学(FENXIHUAXUE)研究报告, 2008, 36(7):920-624.
    [78] T. Shiomi, M. Matsui, F. Mizukami, K. Sakaguchi. A method for the molecular imprinting of hemoglobin on silica surfaces using silanes[J]. Biomater., 2005, (26): 5564-5571.
    [79]周艳梅,徐文国,童爱军.硅胶表面牛血清白蛋白分子印迹聚合物的制备及分子识别性能[J].分析化学(FENXIHUAXUE)研究报告, 2006, 34(11):1551-1554.
    [80] H. H. Yang, S. Q. Zhang, F. Tan, Z. X. Zhuang, X. R. Wang. Surface Molecularly Imprinted Nanowires for Biorecognition[J]. J. Am. Chem. Soc., 2005, 127(5):1378-1379.
    [81]徐伟箭,刘玉堂,项伟中,熊远钦,卢彦兵,刘慧君. L-苯丙氨酸分子印迹聚合物的制备及其性能研究[J].湖南大学学报(自然科学版), 2004, 31(4):1-5.
    [82] S. Vidyasankar, M. Ru, F. H. Arnold. Molecularly imprinted ligand-exchange adsorbents for the chiral separation of underivatized amino acids [J]. J. Chromatogr. A, 1997, (775):51-63.
    [83]王玲玲,闫永胜,邓月华,李春香,徐婉珍.铅离子印迹聚合物的制备、表征及其在水溶液中的吸附行为研究[J].分析化学研究报告, 2009, 37(4):537-542.
    [84]胡廷平,张宴铭,郑立辉,范国枝.硅胶表面苯并噻吩分子印迹聚合物的分子识别与吸附性能[J].燃料化学学报, 2010, 38(6): 722-729.
    [85] X. B. Zhu, Y. M. Cui, X. J. Chang, X. J. Zou, Z. H. Li. Selective solid-phase extraction of lead(II) from biological and natural water samples using surface-grafted lead(II)-imprinted polymers[J].Microchim Acta., 2009, (164):125–132.
    [86] Z. Zhao, C. H. Wang, M. J. Guo, L.Q. Shi, Y. G. Fan, Y. Long, H. F. Mi. Molecular imprinted polymer with cloned bacterial protein template enriches authentic target in cell extract [J]. FEBS Lett., 2006, (580):2750-2754.
    [87]刘淑娟,敦惠娟,周峰,赵亮,刘霞,蒋生祥.表面自由基链转移反应制备聚合物修饰的色谱固定相[J].色谱, 2002, 20(5):432-435.
    [88] Z. H. Fei, J. L. Chen, A. M. Li, F. Q. Liu, Q. X. Zhang. Adsorption Performance of Hypercrosslinked Resins for Aniline and 4-Nitroaniline[J]. Chi. J. Appl..Chem., 2003, 20(11):1062-1065[费正皓,陈金龙,李爱民,刘福强,张全兴.超高交联树脂对苯胺和对硝基苯胺的吸附行为[J].应用化学, 2003, 20(11):1062-1065.]
    [89] W. M. Zhang, J. L. Chen, Q. X. Zhang, B. C. Pan. Competitive and cooperative effect on simultaneous adsoption of phenol and aniline from aqueous solutions by hypercrosslinked polymeric adsorbents[J]. Acta Polym. Sin., 2006, (2):213-218.[张炜铭,陈金龙,张全兴,潘丙才.苯酚和苯胺在超高交联树脂上的共吸附行为[J].高分子学报, 2006, (2):213-218.]
    [90] R. Xing, F. Q. Liu, Z. H. Fei, J. L. Chen, Q. X. Zhang, A. M. Li. Mechanism of adsorption for aromatic organics onto hypercrosslinked adsorption resins[J]. Ion Exchange and Adsorption, 2006, 22(4):330-338. [刑蓉,刘福强,费正皓,陈金龙,张全兴,李爱民.超高交联吸附树脂对芳香有机物的吸附机理[J].离子交换与吸附, 2006, 22(4):330-338.]
    [91]复旦大学化学系高分子教研组,高分子实验技术[M].上海:复旦大学出版社, 1983:56-60.
    [92] C.M. Sun, R. J. Qu, C. N. Ji. Preparation and adsorption properties of crosslinked polystyrene-supported low-generation diethanolamine-typed dendrimer for metal ions[J]. Talanta, 2006, (70): 14–19.
    [93]范云鸽,李燕鸿,马建标.交联聚苯乙烯型多孔吸附材料的中孔性质研究[J].高等学校化学学报, 2002, 23(8):1622–1626.
    [94] K. V. Kumar. Comparative analysis of linear and non-linear method of estimating the sorption isotherm parameters for malachite green onto activated carbon[J]. J. Hazard. Mater., 2006, 136(2):197-202.
    [95] I Langmuir. The adsorption of gases on plane surface of glass, mica and platinum [J]. J. Am. Chen. Soc., 1918, 40(9):1361-1403.
    [96] A. Ramesh, H. Hasegawa, W. Sugimoto, T. Maki, K. Ueda. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin[J]. Bioresour Technol., 2008, 99(9):3801-3809.
    [97] M. K. Sang, J. B. Dixon. Preparation and application of organo-minerals as sorbents of phenol, benzene and toluene[J]. Appl. Clay. Sci., 2001, 18(3-4):111-122.
    [98]曹明礼,张明,刘世珍.有机膨润土制备及其对水溶液中苯胺吸附作用的研究[J].非金属矿, 2003, 26(1):52-53.
    [99] E. Tütem, R. Apak, C. Fünal. Purication of water by activated carbons from apricot stones, lignites and anthracite[J]. Water Res., 1998, 32(8):2315-2139.
    [100] Y. S. Ho, G. Mckay. Pseudo-second order model for sorption process[J]. Process Biochem., 1999, 34(5): 451-465.
    [101] R. X. Wei, J. L. Chen, L. L. Chen, Z. H. Fei, A. M. Li, Q. X. Zhang. Study of adsorption of 2-thiopheneacetic acid on three adsorbent resins[J]. Acta. Polym. Sin., 2004, 8(4):471-477. [魏瑞霞,陈金龙,陈连龙,费正皓,李爱民,张全兴. 2-噻吩乙酸在3种树脂上的吸附行为研究[J].高分子学报, 2004, 8(4):471-477.]
    [102] M. L. Brusseau, P. S. C. Rao. Sorption non-ideality during organic contaminant transport in porous media [J]. Crit. CRC. Rev. En. Con., 1989, 19(1):33-99.
    [103] Y. Zhang, R. J. Qu, C. M. Sun, C. H. Wang, C. N. Ji, H. Chen, P. Yin. Chemical modification of silica-gel with diethylenetriamine via an end-group protection approach for adsorption to Hg(II)[J]. Appl. Surf. Sci., 2009, 11(255):5818-5826.
    [104] R. J. Qu, Y. Z. Niu, J. H. Liu, C. M. Sun, Y. Zhang, H. Chen, C. N. Ji. Adsorption and desorption behaviors of Pd(II) on silica-gel functionalized with ester- and amino-terminated dendrimer-like polyamidoamine polymers [J]. React. Funct. Polym., 2008, 8(68):1272-1280.
    [105] N. Kannan, M. M. Sundaram. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study[J]. Dyes and Pigm., 2001, 51(1):25240.
    [106] A. M. El-Kamash, A. A. Zaki, M. Abed-El-Geleel. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A[J]. J. Hazard. Mater., 2005, 127(1/2/3):211-220.
    [107] N. Maity, G. F. Rayne. Caffeine adsorption from aqueous solutions onto polymeric sorbents: The effect of surface chemistry on the adsorptive affinity and adsorption enthalpy[J]. React. Polym., 1992, (17):273-287.
    [108] N. Maity, G. F. Payne. Adsorption from aqueous solutions based on a combination of hydrogen bonding and hydrophobic interactions[J]. Langmuir, 1991, 7(6):1247-1254.
    [109] J. Fan, A. M. Li, W. B. Yang, L. C. Yang, Q. X. Zhang. Adsorption of water-soluble dye X-BR onto styrene and acrylic ester resins[J]. Sep. Purif. Technol., 2006, (51):338-344.
    [110] W. M. Zhang, J. L. Chen, B. C. Pan, Q. X. Zhang. Cooperative adsorption behaviours of 1-naphthol and 1-naphthylamine onto nonpolar macroreticular adsorbents[J]. React. Funct. Polym., 2006, 66(5): 485-493.
    [111] A. M. Li, Q. X. Zhang, J. L. Chen, Z. H. Fei, C. Long, W. X. Li. Adsorption of phenolic compounds on Amberlite XAD-4 and its acetylated derivative MX-4[J]. React. Funct. Polym., 2001, 49:225.
    [112] Q. W. Wang, Y. C. Yang, H. B. Gao. Problems on Hydrogen Bonding in Organic Chemistry[D].1993, 21-37.(王庆文,杨玉成,高鸿斌,有机化学中的氢键问题[D].天津大学出版社,天津, 1993, 21-37.)
    [113]陈志萍,高保娇,杨晓峰文.胺基化PGMA交联微球对胆红素的吸附机理[J].物理化学学报(Wuli Huaxue Xuebao), 2008, 24(8):1417-1424.
    [114]高保娇,姜鹏飞,安富强,赵书英.聚乙烯亚胺表面改性硅藻土及其对苯酚吸附特性的研究[J].高分子学报, 2006, 1(2):70-75.
    [115] X. M. Wang, J. M. Peng, C. X. Zhao, F. Xu. Adsorption of Phenol onto Macroporous Crosslinked Poly(p-vinylbenzylaniline)Resin[J]. Acta. Chim. Sinica., 2008, 66(8):990-994.(in Chinese).(王小梅,彭江鸣,赵晨曦,徐峰.大孔交联聚(对乙烯基苄基苯胺)树脂对苯酚的吸附[J].化学学报, 2008, 66(8):990-994.
    [116] M. C. Xu, C. R. Wang, M. C. Xu, Z. Q. Shi, S. Zhang, H. T. Li, R. F. Shi, Y. G. Fan, B. L. He. Adsorption of tannins from aqueous solution onto macroporous crosslinked poly(N-vinyl-acetamide) via hydrogen bonding[J]. Chin. J. React. Polym., 2000, (9):23–28.
    [117] B. C. Pan, X. Zhang, W. M. Zhang, J. Z. Zheng, B. J. Pan, J. L. Chen, Q. X. Zhang. Adsorption of phenolic compounds from aqueous solution onto a macroporous polymer and its aminated derivative: isotherm analysis[J]. J. Hazard. Mater. B., 2005, 121(1-3):233-41.
    [118] O. David. Cooney Adsorption Design for Wastewater Treatment. Boca Raton, Fl: Lewis Publishers, (c1999):29-37.
    [119] J. Q. Liu (刘家棋). Seperational Process and Technology(分离过程与技术)[D]. 2001, 20-25.
    [120] J. S. Mattson, Y. B. M Harr. Infrared internal reflectance spectroscopic determination of surface functional groups on carbon[J]. J. Colloid Interface Sci., 1969, 31(1):16.
    [121] M. W. Jung, K. H. Ahn, Y. H. Lee, K. P. Kim, I. R. Paeng, J. S. Rhee, J. T. Park, K. J. Paeng. Evaluation on the adsorption capabilities of new chemically modified polymeric adsorbents withprotoporphyrin IX[J]. J. Chromatogr. A, 2001, 917(1-2):87-89.
    [122] Y. C. Chang, D. H. Chen. Recovery of gold(III) ions by a chitosan-coated magnetic nano-adsorbent[J]. Gold Bull., 2006, 39(3):98–102.
    [123] L. Markus, J. W. Michael, N. V. Evgeny. A Novel Approach to the Molecular Imprinting of Polychlorinated Aromatic Compounds[J]. J. Am. Chem. Soc., 1998, (120):13342-13348.
    [124] M. Tada, T. Sasaki, Y. Iwasawa. Design of a Novel Molecular-Imprinted Rh-Amine Complex on SiO2 and Its Shape-Selective Catalysis forα-Methylstyrene Hydrogenation[J]. J. Phys. Chem. B., 2004, (108): 2918-2930.
    [125]宋金生.含PMMA改性硅胶的分子印迹聚合物微球的合成与表征[D].湖南大学, 2007, 1-2.
    [126] F. H. Dickey. The Preparation of Specific Adsorbents[J]. Proc. Natl. Acad. Sci., 1949, 35(5):227-229.
    [127] H. Bartels. On the order in silica gels with specific adsorption power[J]. J. Chromatogr. A, 1967, (30):113-116.
    [128] H. Bartels.über spezifisch adsorbierende Kieselgele[J]. VI. Z. Anorg. Allg. Chem., 1967, 350(3-4): 143-147.
    [129] A. H. Beckett, P. Anderson. The determination of the relative configuration of morphine, levorphanol , and L-phenazocine by stereoselective adsorbents[J]. J. Pharm. Pharmacol., 1960, (12):228T-236T .
    [130] A. H. Beckett, H. Z. Youssef. Active sites in stereoselective adsorbents as models of drug receptors and enzyme active sites[J]. J. Pharm. Pharmacol., 1963, (15):253T-266T.
    [131] K. Morihara, S. Kurihara, J. Suzuki. Footprint Catalysis. I. A New Method for Designing“Tailor-Made”Catalysts with Substrate Specificity: Silica (Alumina) Catalysts for Butanolysis of Benzoic Anhydride[J]. Bull. Chem Soc Jpn., 1988, ( 61):3991-3998.
    [132] K. Morihara, M. Kurokawa, Y. Kamata, T. Shimada. Enzyme-like enantioselective catalysis over chiral“molecular footprint”cavities on a silica (alumina) gel surface [J]. J. Chem. Soc. Chem. Comm., 1992:358-360.
    [133] K. Morihara, S. Kawasaki. Footprint Catalysis.VI.Chiral“Molecular Footprint”Catalytic Cavities Imprinted by a Chiral Template, Bis(N-benzyloxycarbonyl-L-alanyl)amine, and Their Stereoselective Catalyses[J]. Bull. Chem. Soc. Jpn., 1993, 66(3):906-913.
    [134]徐伟箭,项伟中,周晓,徐丰.基于硅胶表面修饰的分子印迹技术研究进展[J].应用化学, 2003, 20(10):919-923.
    [135]邴乃慈,李庆华,许振良.硅材料表面印迹技术研究进展[J].化学世界, 2007, (12):754-757.
    [136] O. Norrlow, M. Glad, K. Mosach. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates[J]. J. Chromatogr. A, 1984, 299(1):29-41.
    [137] T. H. Kim, C. D. Ki, H. Cho, T. Chang, J. Y. Chang. Facile Preparation of Core-Shell Type Molecularly Imprinted Particles: Molecular Imprinting into Aromatic Polyimide Coated on Silica Spheres[J]. Macromol., 2005, (38):6423-6428.
    [138] B. Prasad, S. Banerjee. Preparation, characterization and performance of a silica gel bonded molecularly imprinted polymer for selective recognition and enrichment ofβ-lactam antibiotics[J]. React. Funct. Polym., 2003, 55(2):159-169.
    [139] T. Matsui, T. Osawa, K. Shiraka, M. Katayama, T. Hishiya, H. Asanuma, M. Komiyama. Improved Method of Molecular Imprinting of Cyclodextrin on Silica-gel Surface for the Preparation of Stable Stationary HPLC Phase[J]. J. Inclusion Phenom. Mol. Recognit. Chem., 2006, (56):39-44.
    [140] S. A. Piletsky, S. Alcock, A. P. F.Turner. Molecular imprinting: at the edge of the third millennium[J]. Trends Biochem. Sci, 2001, 19(1):9-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700