用户名: 密码: 验证码:
基于响应的电力系统暂态稳定控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统的安全稳定运行对于国家经济发展和社会稳定具有重要意义,历来受到电力学术界和工业界的高度重视。近年来国内外发生了多起大停电事故,造成了巨大的经济损失和严重的社会影响,同时也暴露出传统安全稳定控制系统在应对小概率意外事故方面的不足。相对于传统的安全稳定控制系统,基于响应的安全稳定控制摆脱了电力系统元件模型和参数的影响,无需预想运行方式和故障集合,可以全面、客观的评估电网暂态安全稳定水平、制定适宜的控制措施,为电力系统构筑一道新的综合防线抵御大规模停电事故。本文从此为切入点,重点研究基于响应的电力系统暂态稳定判别与控制技术,主要做了如下工作:
     (1)在基于响应的电力系统暂态功角稳定性判别方面,提出了一种基于转速差—功角差变化趋势的判别方法。该方法根据电力系统功角失稳过程一般首先表现为两群失稳模式的特点,以其在相平面运动轨迹的变化特征为基础,判断暂态过程中电网机群间是否能够保持同步运行。为克服虚拟的等效惯量中心计算得到的运动轨迹并不平滑的缺点,采用最小二乘法曲线拟合的方式判断运动轨迹走势,进而判断系统暂态功角稳定性。该方法依赖于发电机功角和转速的响应信息,计算方便快捷,可以作为暂态功角稳定紧急控制的启动判据。最后通过算例验证了所提方法的有效性。
     (2)在基于响应的电力系统暂态功角稳定实时紧急控制方面,提出了一种基于相对动能概念的紧急控制方案。以暂态功角稳定判别结果作为启动判据,通过相对动能衡量两机系统消纳暂态冲击能量的能力,再根据等面积准则计算切机措施量,形成完整的闭环实时紧急控制方案。为了考虑控制措施执行过程中存在的时间延迟的影响,在控制决策的制定中引入延迟时间来提高准确性。该方案摆脱了电力系统的元件模型和参数的影响,无需预想运行方式和故障集合,仅利用系统的实时动态响应曲线,可以适应复杂的运行方式和故障形式。最后通过算例验证了所提方案的有效性,表明所提方案可以防止系统进一步恶化甚至造成大停电事故。
     (3)为了全面防御电力系统暂态电压稳定与暂态功角稳定问题,以暂态功角稳定实时紧急控制方案为基础,提出了一种综合实时紧急控制方案。研究了暂态电压失稳的实时判别方法,建立了集中切负荷的控制方案。考虑到两种稳定问题具有相同的时间尺度,难以从失稳过程中电压、功角的变化中区分出到底是电压失稳还是功角失稳。采用并行判断的方法,同时监测系统的电压与功角稳定性,当判断出系统可能出现失稳现象时,立即采取相应失稳模式的紧急控制措施。最后通过算例验证了所提方案的有效性,表明所提方案能够准确抓住影响系统稳定的关键因素并采取相应措施,丰富了原有的电力系统暂态稳定实时紧急控制方案,将系统电压稳定问题纳入综合防御体系中,解决电网安全运行面临的稳定问题。
     (4)针对我国互联电网仿真分析中发现的新特性,研究了区域电网远端故障引发互联系统稳定破坏现象和影响互联电网稳定特性的关键因素。指出系统的网络结构和运行方式均会影响互联电网暂态失稳表现形式。在此基础上,重点研究了区域电网内机群间摆动对互联电网暂态稳定性的影响。从区域内部发电机群摆动对等值电势的影响入手,探讨研究大区互联电网暂态稳定新特征。分析表明,扰动后区域内部机群会相互摆动,导致等效电势幅值变动,使互联系统功率特性产生变化,从而影响到系统暂态稳定能力。最后对实际算例进行了仿真研究,该研究结果有助于掌握大区互联系统暂态稳定特性,加深对大区互联电力系统运行特性的理解。
The security and stability of power system is significant to the national economic development and social stability, which attract more attentions from academics and industries in the world. In these years some serious blackouts occurred which have caused huge economic losses, and revealed that the traditional stability control system cannot handle the contingency with low probability. Compared with the traditional method, the response-based control is free from the influence of power system component models and parameters with no requirement to making planned operational mode and contingency set. It can comprehensively and objectively evaluate power system security and stability level and provide appropriate control measures to prevent blackouts. Thus, the response-based power system real-time transient stability identification and control strategy is mainly studied in this dissertation, which mainly includes:
     (1) Firstly, an identification method based on the variation trend of rotor speed difference-rotor angle difference is proposed to estimate the power system transient angle stability based on response. According to the characteristics that the power system often behaves as the two-group instability mode and based on the variation characteristics of the motion trajectory on the phase plane, whether the two machine groups can keep synchronization in the transient process will be estimated by this method. In order to overcome the defect that the trajectory of the virtual equivalent inertia center is unsmooth, the least square method is adopted to judge the trajectory tendency and the system transient angle stability. This method only needs the response information of generator's power angle and speed. It is convenient and fast, which can be used as starting criterion of transient stability emergency control. Finally the effectiveness of the proposed method is verified by simulation.
     (2) In the aspect of response-based power system transient stability real-time emergency control, an emergency control scheme based on the relative kinetic energy is proposed. The transient stability identification result estimated from (1) is used as the starting criterion; the capability of the two-machine system absorbing transient energy is evaluated by relative kinetic energy. The machine tripping amount is calculated according to the equal area criterion to form a complete closed-loop real-time emergency control scheme. In order to take into account the impact of the time delay of the emergency control, the delay time is considered in the control strategy to enhance the accuracy. This method only depends on the system dynamic response curves, is free from the influence of power system component models and parameters, and doesn't need to preset operational mode and contingency set. Thus it is suited to complex operational modes and contingency types. Finally the effectiveness of the proposed method is verified by simulation, showing that the proposed scheme can prevent the system from further deteriorating and even widespread blackout.
     (3) In order to comprehensively defend power system transient voltage instability and transient angle instability, a new comprehensive real-time emergency control scheme based on the transient angle stability real-time emergency control scheme is proposed. A transient voltage instability real-time identification method is developed, and a load shedding control scheme is proposed. These two stability problems have the same time scale, so it is difficult to identify voltage instability or angle instability from the variation of voltage and angle in the unstable process. The parallel judging method is applied to monitor both system voltage and angle stability problems. When it is detected that the system will be unstable, a corresponding emergency control measure is implemented to enhance the system stability. Finally the effectiveness of the proposed method is verified by simulation, showing that the proposed method can correctly detect the key factors influencing system stability and can implement corresponding measures. The power system transient stability real-time emergency control scheme can be enriched, and the system voltage stability can be introduced into the comprehensive defense system, solving the main problems of power systems.
     (4) Based on the new characteristics discovered in the simulation analysis of interconnected power systems in our country, the phenomenon of interconnected power system instability caused by fault occurred in the remote end of regional power grid and the key factors influencing the interconnected power system stability characteristics is studied. It shows that both the network topology and the operational mode can influence the transient instability mode of interconnected power systems. The impact of angle swing between machine groups in the regional power grid on the transient stability is mainly studied. This paper provides new transient stability characteristics of interconnected power systems through the point of the impact of machine group angle swing on the equivalent potential in the regional grid. The analysis indicates that the post-disturbance angle swing between generator groups in the regional grid can affect the amplitude of equivalent potential, which lead to variation of transient stability of interconnected systems and influence the capability of system transient stability. The conclusions are verified by the simulation to the actual power grid. The work in this paper contributes the mastery of transient stability characteristics of large-region interconnected power systems, and the mining of operation characteristics of large-region interconnected power systems.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]刘振亚.加快建设坚强国家电网促进中国能源可持续发展[J].中国电力,2006,39(9):1-3.
    [3]中国电力企业联合会.中国电力行业年度发展报告2012[R].北京:光明日报出版社,2012.
    [4]刘振亚.中国电力与能源[M].北京:中国电力出版社,2012.
    [5]王梅义.大电网事故分析与技术应用[M].北京:中国电力出版社,2008.
    [6]卢卫星,舒印彪,史连军.美国西部电力系统1996年8月10日大停电事故[J].电网技术,1996,20(9):40-42.
    [7]印永华,郭剑波,赵建军,等.美加"8.14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-11.
    [8]U.S-Canada Power System Outage Task Force. Final report on the August 14,2003 blackout in the United State and Canada:causes and recommendations[R].2004.
    [9]葛睿,董昱,吕跃春.欧洲“11.4”大停电事故分析及对我国电网运行工作的启示[J].电网技术,2007,31(3):1-6.
    [10]林伟芳,孙华东,汤涌,等.巴西“11.10”大停电事故分析及启示[J].电力系统自动化,2010,34(7):1-5.
    [11]林伟芳,汤涌,孙华东,等.巴西“2.4”大停电事故及对电网安全稳定运行的启示[J].电力系统自动化,2011,35(9):1-5.
    [12]毛安家,张戈力,吕月春,等.2011年9月8日美墨大停电事故的分析及其对我国电力调度运行管理的启示[J].电网技术,2012,36(4):74-78.
    [13]汤涌,卜广全,易俊.印度“7.30”、“7.31”大停电事故分析及启示[J].中国电机工程学报,2012,32(25):167-174.
    [14]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4.
    [15]中华人民共和国国家经济贸易委员.DL755-2001电力系统安全稳定导则[S].北京:中国电力出版社,2001.
    [16]GB/T 26399-2011电力系统安全稳定控制技术导则[S].北京:中国标准出版社,2011.
    [17]汤涌.电力系统安全稳定综合防御体系框架[J].电网技术,2012,36(8):1-5.
    [18]Phadke A G. Synchronized phasor measurements in power systems[J]. IEEE Computer Applications in Power,1993,6(2):10-15.
    [19]Phadke A G, Pickett B, Adamiak M, et al. Synchronized sampling and phasor measurements for relaying and control[J]. IEEE Trans on Power Delivery,1994,9(1): 442-452.
    [20]Phadke A G. Synchronized phasor measurements-a historical overview[C]. IEEE/PES Transmission and Distribution Conference and Exhibition, Asia Pacific,2002,1:476-479.
    [21]Phadke A G, Thorp J S. Synchronized Phasor Measurements and Their Applications[M]. New York:Springer,2008.
    [22]Phadke A G. The wide world of wide-area measurement[J]. IEEE Power and Energy Magazine,2008,6(5):52-65.
    [23]常乃超,兰洲,甘德强,等.广域测量系统在电力系统分析及控制中的应用综述[J].电网技术,2005,29(10):46-52.
    [24]Karlsson D, Hemmingsson M, Lindahl S. Wide area system monitoring and control-terminology, phenomena, and solution implementation strategies[J]. IEEE Power and Energy Magazine,2004,2(5):68-76.
    [25]Bonneville Power Administration Technology Innovation Office. Transmission technology roadmap[R].2006.
    [26]Karlsson D(Convenor). System protection schemes in power networks[R]-CIGRE Task Force38.02.19,2001.
    [27]腾林.电力系统暂态稳定在线决策算法的研究[D].北京:华北电力大学,2003.
    [28]Corsi S. Wide area voltage regulation in Italy and related wide area protection[C]. IEEE Power Energy Society General Meeting,2011.
    [29]Taylor C W. The future in on-line security assessment and wide-area stability control[C]. IEEE Power Engineering Society Winter Meeting,2000.
    [30]Taylor C W. BPA's wide-area stability and voltage control system (WACS) for blackout prevention[C]. IEEE Power Systems Conference and Exposition,2004.
    [31]Terzija V, Valverde G, Cai D, et al. Wide-area monitoring, protection and control of future electric power networks[J]. Proceedings of the IEEE,2011,99(1):80-93.
    [32]Vittal V, Heydt G T, Meliopoulos A P. A tool for on-line stability determination and control for coordinated operations between regional entities using pmus[R]. Power Systems Engineering Research Center,2008.
    [33]宋方方.基于广域同步信息的暂态稳定评估方法和控制策略研究[D].北京:华北电力大学,2007.
    [34]Ernst D, Bettiol A, Zhang Y, et al. Real-Time Transient Stability Emergency Control of the South-Southeast Brazilian System[J]. Proceedings of the SEPOPE,1998.
    [35]张剑云.电力系统暂态安全防御中广域观测与控制的研究[D].北京:清华大学,2006.
    [36]电力行业标准.《电力系统安全稳定计算技术规范》(DL/T 1234-2013).
    [37]国家电网公司.国家电网公司电力系统安全稳定计算规定[Z].北京:国家电网公司,2006.
    [38]IEEE/GIGRE Joint Task Force on Stability Terms and Definitions. Definition and classification of power system stability. IEEE Transactions on Power System,2004,19(2): 1387-1401.
    [39]孙华东,汤涌,马世英.电力系统稳定的定义和分类评述[J].电网技术,2006,30(17):31-35.
    [40]汤涌.电力系统电压稳定性分析[M].北京:科学出版社,2011.
    [41]薛禹胜,徐泰山,刘兵,等.暂态电压稳定性及电压跌落可接受性[J].电力系统自动化,1999,23(14):4-8.
    [42]傅书逷,倪以信,薛禹胜.直接法稳定分析[M].中国电力出版社,1999.
    [43]万秋兰,单渊达.对应用直接法分析电力系统暂态稳定性的再认识[J].电力系统自动化,1998,22(9):13-15.
    [44]Xue Y, Vancutsem T, Ribbenspavella M. Extended equal area criterion justifications, generalizations, applications[J]. IEEE Trans on Power Systems,1989,4(1):44-52.
    [45]Xue Y, Mania Pavella. Critical-cluster identification in transient stability[J]. IEEE Proceedings,1993,140(6):481-489.
    [46]Maria G A, Tang C, Kim J. Hybrid Transient Stability Analysis. IEEE Trans on Power System,1990,9(2):384-393.
    [47]Mansour Y, Vaahedi E, Chang A Y, et al. BC Hydro's online transient stability assessment (TSA) model development, analysis and post-processing[J]. IEEE Trans on Power Systems,1995,10(1):241-253.
    [48]Tang Yong, Ma Shiying, Zhong Wuzhi. Mechanism research of short-term large-distrbance voltage stability[C]. Power System Technology,2006.
    [49]N Yorino, H Sasaki, Y Masuda, etal. An Investigation of Voltage Stability Problems[J]. IEEE Transaction on Power Systems,1992,7(2):600-611.
    [50]Diaz de Leon J A, Taylor C W. Understanding and solving short-term voltage stability problems. IEEE Power Engineering Society Summer Meeting,2002.
    [51]Y Sekine, H Ohtsuki. Cascaded Voltage Collapse[J]. IEEE Transactions on Power Systems, 1990,5(1):250-256.
    [52]段献忠,何仰赞,陈德树.电力系统暂态电压稳定的基本概念和仿真分析[J].华中理工大学学报,1995,23(4):21-24.
    [53]段献忠,何仰赞,陈德树.仿真计算中暂态电压稳定性的判断[J].华中理工大学学报,1995,23(4):25-28.
    [54]段献忠,何仰赞,陈德树.电力系统暂态电压稳定性的快速判断[J].华中理工大学学报,1996,24(2):46-49.
    [55]徐泰山.暂态电压稳定的模型要求和快速判断[J].电力系统自动化,1995,19(12):11-15.
    [56]徐泰山.感应电动机暂态电压失稳的定量分析[J].电力系统自动化,1996,20(6):12-15.
    [57]C L DeMaco, T J Overbye. An Energy Based Security Measure for Assessing Vulnerability to Voltage Collapse[J]. IEEE Transaction on Power Systems,1990,5(2):419-427.
    [58]Praprost K L, Loparo K A. An energy function method for determining voltage collapse during a power system transient[J]. IEEE Trans on Circuits and Systems I:Fundamental Theory and Applications,1994,41(10):635-651.
    [59]林舜江,刘明波.暂态电压失稳模式的主导不稳定平衡点计算[J].华南理工大学学报,2009,37(11):88-94.
    [60]Ruiz-Vega D, Pavella M. A Comprehensive Approach to Transient Stability Control:Part I-Near Optimal Preventive Control[J]. IEEE Trans on Power Systems,2003,18(4): 1446-1453.
    [61]Ruiz-Vega D, Pavella M. A Comprehensive Approach to Transient Stability Control:Part II-Open Loop Emergency Control[J]. IEEE Trans on Power Systems,2003,18(4): 1454-1460.
    [62]袁季修.防御大停电的广域保护和紧急控制[M].北京:中国电力出版社,2007.
    [63]周良松,夏成军,彭波,等.电力系统暂态稳定控制策略表的应用研究[J].电网技术,2000,24(1):13-15.
    [64]陈晟,陈昊,刘启胜.电力系统稳定控制方式探讨[J].东北电力技术,2004(7),39-41.
    [65]孙建华.一种电力系统暂态稳定性快速实时预测方法[J].中国电机工程学报,1993,13(6):60-66.
    [66]李国庆.电力系统暂态稳定预测控制的研究[J].电力系统自动化,1994,18(3):25-31.
    [67]郭强,刘晓鹏,吕世荣,等.GPS同步时钟用于电力系统暂态稳定控制的初步研究[J].电力系统及其自动化学报,1996,22(6):11-13.
    [68]吕志来,张保会,哈恒旭.基于PMU的电力系统暂态稳定实时快速预测的研究[J].继电器,2000,28(1):3-5.
    [69]宋方方,毕天姝,杨奇逊.基于WAMS的电力系统受扰轨迹预测[J].电力系统自动化,2006,30(23):27-32.
    [70]邓晖,赵晋泉,柳勇军,等.基于改进灰色Verhulst模型的受扰轨迹实时预测方法[J].电力系统保护与控制,2012,40(9):18-23.
    [71]毛安家,郭志忠,张学松.一种基于广域测量系统过程量测数据的快速暂态稳定预估方法[J].中国电机工程学报,2006,26(17):38-43.
    [72]Liu C W, Thorp J S. New methods for computing power system dynamic response for real-time transient stability prediction[J]. IEEE Transaction on Circuits and Systems,2000, 47(3):324-337.
    [73]彭疆南,孙元章,王海风.基于广域量测数据和导纳参数在线辨识的受扰轨迹预测[J].电力系统自动化,2003,27(22):6-11.
    [74]李琰,周孝信,周京阳.基于机端PMU量测的系统受扰轨迹预测[J].电网技术,2007,31(12):1-5.
    [75]李琐,周孝信,周京阳.基于新增虚拟节点的系统受扰轨迹预测[J].电力系统自动化,2007,31(12):19-22.
    [76]李琰,周孝信,周京阳.基于广域测量测点降阶的系统受扰轨迹预测[J].中国电机工程学报,2008,28(10):9-13.
    [77]Taylor C W, Erickson D C, Martin K E, et al. WACS-wide-area stability and voltage control system:R&D and online demonstration[J]. Proceedings of IEEE,2005,93(5): 892-906.
    [78]谢欢,张保会,于广亮,等.基于相轨迹凹凸性的电力系统暂态稳定性识别[J].中国电机工程学报,2006,26(5):38-42.
    [79]谢欢,张保会,于光亮,等.基于轨迹几何特征的暂态不稳定识别[J].中国电机工程学报,2008,28(4):16-22.
    [80]孙闻,房大中,薛振宇.电力系统在线暂态稳定分析方法[J].电网技术,2009,33(14):16-20.
    [81]Chow J H, Chakrabotty A, Arcak M, et al. Synchronized phasor data based energy function analysis of dominant power transfer paths in large power systems[J]. IEEE Trans on Power Systems,2007,22(2):727-734.
    [82]宋方方,毕天姝,杨奇逊.基于暂态能量变化率的电力系统多摆稳定性判别新方法[J].中国电机工程学报,2007,27(16):13-18.
    [83]卢芳,于继来.基于广域相量测量的暂态稳定快速评估方法[J].电力系统自动化,2010,34(8):24-28.
    [84]秦晓辉,毕天姝,杨奇逊,等.基于WAMS动态轨迹的电力系统功角失稳判据[J].电力系统自动化,2008,32(23):18-22.
    [85]Yan J, LIU C C, Vaidya U. PMU-Based Monitoring of Rotor Angle Dynamics[J]. IEEE Trans on Power Systems,2011,26(4):2125-2133.
    [86]刘道伟,马世英,李柏青,等.基于响应的电网暂态稳定态势在线量化评估方法[J].中国电机工程学报,2013,33(4):85-95.
    [87]邓晖,赵晋泉,吴小辰,等.基于受扰电压轨迹的电力系统暂态失稳判别:(一)机理与方法[J].电力系统自动化,2013,37(16):27-32.
    [88]邓晖,赵晋泉,吴小辰,等.基于受扰电压轨迹的电力系统暂态失稳判别:(二)算例分析[J].电力系统自动化,2013,37(17:58-63.
    [89]Rovnyak S, Kretsinger S, Thorp J, et al. Decision trees for real-time transient stability prediction[J]. IEEE Trans on Power Systems,1994,9(3):1417-1426.
    [90]Liu C W, Su M C Tsay S S, et al. Application of a novel fuzzy neural network to real-time transient stability swings prediction based on synchronized phasor measurements[J]. IEEE Trans on Power Systems,1999,14(2):685-692.
    [91]刘玉田,林飞.基于相量测量技术和模糊径向基网络的暂态稳定性预测[J].中国电机工程学报,2000,20(2):19-23.
    [92]苏建设,廖培金,周佃民.基于GPS同步量测量的模糊神经网络用于暂态稳定预测研究[J].继电器,2001,21(9):13-15.
    [93]张琦,韩祯祥,曹绍杰,等.用于暂态稳定评估的人工神经网络输入空间压缩方法[J].电力系统自动化,2001,25(2):32-35.
    [94]Daoud A A, Karady G G, Amin J A. A new fast-learning algorithm for predicting power system stability[C]. Proceedings of Power Engineering Society Winter Meeting,Singapore, 2001,2:594-598.
    [95]Rajapaksea D, Gomez F, Nanayakkkara K. Rotor angle instability prediction using post disturbance voltage trajectories[J]. IEEE Trans on Power Systems,2010,25(2):947-956.
    [96]许涛,贺仁睦,王鹏,等.基于统计学习理论的电力系统暂态稳定评估[J].中国电机工程学报,2003,23(11):51-55.
    [97]李大虎,曹一家.基于PMU和混合支持向量机的电力系统暂态稳定性分析[J].电网技术,2006,30(9):46-52.
    [98]吴琼,杨以涵,刘文颖.基于最小二乘支持向量机的电力系统暂态稳定在线预测[J].中国电机工程学报,2007,27(25):38-43.
    [99]叶圣永,王晓茹,刘志刚,等.基于支持向量机的暂态稳定评估双阶段特征选择[J].中国电机工程学报,2010,30(31):28-34.
    [100]叶圣永,王晓茹,刘志刚,等.基于受扰严重机组特征及机器学习方法的电力系统暂态稳定评估[J].中国电机工程学报,2011,31(1):46-51.
    [101]叶圣永,王晓茹,刘志刚,等.基于支持向量机增量学习的电力系统暂态稳定评估[J].中国电机工程学报,2011,35(11):15-19.
    [102]Gomez F, Rajapakse A D. Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Trans on Power Systems,2011,26(3):1474-1483.
    [103]Zhou D Q, Annakkage U D, Rajapakse A D. Online Monitoring of voltage stability margin using an artificial neural network[J]. IEEE Trans on Power Systems,2010,25(3): 1566-1574.
    [104]Glavic M, Van Cutsem T. Wide-area detection of voltage instability from synchronized phasor measurements part Ⅰ:principle[J]. IEEE Trans on Power Systems,2009,24(3): 1408-1416.
    [105]Glavic M, Van Cutsem T. Wide-area detection of voltage instability from synchronized phasor measurements part Ⅱ:simulation results[J]. IEEE Trans on Power Systems,2009, 24(3):1417-1425.
    [106]Vournas C D, Van Cutsem T. Local identification of voltage emergency situations[J]. IEEE Trans on Power Systems,2008,23(3):1239-1248.
    [107]Corsi S, Taranto G N. A real-time voltage instability identification algorithm based on local phasor measurements[J]. IEEE Trans on Power Systems,2008,23(3):1271-1279.
    [108]汤涌,林伟芳,孙华东,等.基于戴维南等值跟踪的电压失稳和功角失稳的判别方法[J].中国电机工程学报,2009,29(25):1-6.
    [109]Dasgupta S, Paramasivam M, Vaidya U, et al. Real-Time Monitoring of short-term voltage stability Using PMU data[J]. IEEE Trans on Power Systems,2013,28(4):3702-3711.
    [110]汤涌,易俊,孙华东,等.基于功率电流变化关系的电压失稳判别方法[J].中国电机工程学报,2010,30(28):7-11.
    [111]Corsi S. Wide area voltage protection[J]. IET Gener. Transm 2010,4(10):1164-1179.
    [112]马世英,刘道伟,汤涌,等.基于多响应信息源的电压稳定全态势量化评估与辅助决策系统[J].电网技术,2013,37(8):2151-2156.
    [113]郭强,刘晓鹏,吕世荣,等.GPS同步时钟用于电力系统暂态稳定性预测和控制[J].电力系统自动化,1998,22(6):11-13.
    [114]Zhang Y, Wehenkel L, Pavella M. A method for Real-Time Transient Stability Emergency Control[C]. Proceedings of CPSPP,1997.
    [115]滕林,刘万顺,寅志皓,等.电力系统暂态稳定实时紧急控制的研究[J].中国电机工程学报,2003,23(1):64-69.
    [116]Glavic M, Liege L, Ernst D, et al. E-SIME-A method for transient stability closed-loop emergency control:achievements and prospects[C]. Bulk Power System Dynamics and Control-VII Revitalizing Operational Reliability,2007.
    [117]谢欢,张保会,沈宇,等.基于WAMS的电力系统暂态紧急控制启动方案[J].电网技术,2009,33(20):59-64.
    [118]彭疆南,孙元章,程林.基于受扰轨迹的紧急控制新方法[J].电力系统自动化,2002,26(21):17-22.
    [119]Mei K, Rovnyak S M. Response-Based decision trees to trigger one-shot stabilizing control[J]. IEEE Trans on Power Systems,2004,19(1):531-537.
    [120]Rovnyak S M, MEI K. Synchronized phasor measurements for response-based one-shot control[C]. Second Carnegie Mellon Conference in Electric Power Systems,2006.
    [121]Qun G, Rovnyak S M. Decision Trees Using Synchronized Phasor Measurements for Wide-Area Response-Based Control[J]. IEEE Trans on Power Systems,2011,26(2): 855-861.
    [122]林飞,刘玉田,邱夕照.基于模糊神经网络的电力系统暂态稳定控制决策[J].电工技术学报,2001,16(2):83-87.
    [123]Bronzini M, Bruno S, Benedictis M D, et al. Load shedding scheme for response-based control of transient stability [C]. Bulk Power System Dynamics and Control, Italy,2004.
    [124]Milosevic B, Begovic M. Voltage-stability protection and control using a wide-area network of phasor measurements[J]. IEEE Trans on Power Systems,2003,18(1):121-127.
    [125]Rehtanz C, Bertsch J. Wide area measurement and protection system for emergency voltage stability control[C]. IEEE Power Engineering Society Winter Meeting,2002.
    [126]林舜江,刘明波,周欣.暂态电压安全紧急切负荷控制优化研究[J].电力系统保护与控制,2010,38(11):18-24.
    [127]徐泰山,牟宏,邱夕兆,等.山东电网暂态低电压切负荷紧急控制的量化分析[J].电力系统自动化,1999,23(14):4-8.
    [128]马世英,仲悟之,汤涌,等.基于多信息源的电压安全全过程预警及防控系统[J].电网技术,2013,37(9):2459-2465.
    [129]李光琦.电力系统暂态分析[M].北京:水利电力出版社,1984:218-220.
    [130]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002:181-215.
    [131]Kundur P. Power System Stability and Control[M]. New York:McGraw-Hill,1994.
    [132]Gomez Lezam Francisco Ramon. Prediction and control of transient instability using wide area phasor measurements[D]. Canada:University of Manitoba,2011.
    [133]袁季修.电力系统安全稳定控制.北京:中国电力出版社,1996.
    [134]Taylor C W, Erickson D C, Martin, Wilson R E. Reducing blackout risk by a wide-area control system(WACS):adding a new layer of defense[C].15th PSCC, Liege,2005: 22-26.
    [135]Begovic M M, Novosel D, Karlsson, D, et al. Wide-Area Protection and Emergency Control[J]. Proceedings of the IEEE,2005,93(5):876-891.
    [136]中华人民共和国国家经济贸易委员会.DL/T 723-2000电力系统安全稳定控制技术导则[S].北京:中国电力出版社,2000.
    [137]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示[J].电力系统自动化,2003,27(18):1-5.
    [138]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8-16.
    [139]韩文,韩祯祥.电压崩溃和功角不稳的关系[J].电力系统系自动化,1996,20(12),16-19.
    [140]Oberbye T J, Pai M A, Sauer P W. Some aspects of the energy function approach to angle and voltage stability analysis in power systems[J]. Proceedings of the 31th Conference on Decision and Control. Tucson(Artzons):1992,2941-2946.
    [141]Oberbye T J, Klump R P. Determination of emergency power system voltage control actions[J]. IEEE Trans on Power Systems,1998,13(1):205-210.
    [142]吴浩,韩祯祥.电压稳定和功角稳定关系的平衡点分析[J].电力系统系自动化,2003,27(12),28-31.
    [143]范强,彭志炜.功角稳定与电压稳定的关联性研究现状与展望[J].电力系统保护与控制,2012,40(12),41-48.
    [144]Liu C Q. A discussion of the WSCC 2 July 1996 outages[J]. Power Engineering Review, 1998,18(10):60-61.
    [145]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [146]仲悟之.受端系统暂态电压稳定机理研究[D].北京:中国电力科学研究院,2008.
    [147]Van Cutsem T, Vournas C. Voltage Stability of Electric Power Systems, Boston, Springer, 1998.
    [148]Taylor C W. Power System Voltage Stability[M]. New York:McGraw-Hill,1994.
    [149]Van Cutsem T, Vournas C D. Emergency Voltage Stability Controls:an Overview[C]. IEEE Power Engineering Society General Meeting, Tampa,2007.
    [150]Glavic M, Van Cutsem T. Adaptive wide-area closed-loop undervoltage load shedding using synchronized measurements[C]. IEEE Power and Energy Society General Meeting, 2010,1-8.
    [151]Nikolaidis V C, Vournas C D. Design strategies for load-shedding Schemes Against Voltage Collapse in the Hellenic System[J]. IEEE Trans on Power Systems,2008,23(2):582-591.
    [152]Taylor C W. Concepts of Undervoltage Load Shedding for Voltage Stability[J]. IEEE Trans on Power Delivery,1992,7(2):480-488.
    [153]Arnborg S, Andersson G, Hill D J, et al. On influence of load modeling for undervoltage load shedding studies[J]. IEEE Trans on Power Systems,1998,13(2):395-400.
    [154]Otomega B, Glavic M, Van Cutsem T, et al. Distributed undervoltage load shedding[J]. IEEE Trans on Power Systems,2007,22(4):2283-2284.
    [155]丁道奇.深入研究复杂电网动态行为特征构建中国特高压电网安全保障[J].中国电力,2008,41(8):1-7.
    [156]舒印彪,张文亮,周孝信,等.特高压同步电网安全性评估[J].中国电机工程学报,2007,27(34):1-6.
    [157]郭剑波,周俊,郭强,等.华北—华中—华东交直流输电系统数模混合仿真[J].电网技术,2011(9):55-59.
    [158]张文亮,周孝信,印永华,等.华北-华中-华东特高压同步电网构建和安全性分析[J].中国电机工程学报,2010,30(16):1-5.
    [159]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [160]梁志峰,葛睿,董昱,等.印度7.30、7.31大停电事故分析及对我国电网调度运行工作的启示[J].电网技术,2013,37(7):1841-1848.
    [161]邱关源.电路[M].北京:高等教育出版社,1999.
    [162]王芝茗,王漪,徐敬友,等.关键负荷节点集合电网侧戴维南参数预估[J].中国电机工程学报,2002,22(2):16-20.
    [163]段俊东,郭志忠.一种可在线确定电压稳定运行范围的方法[J].中国电机工程学报,2006,26(4):113-117.
    [164]李来福,于继来,柳焯.戴维南等值跟踪的参数漂移问题研究[J].中国电机工程学报,2005,25(20):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700