用户名: 密码: 验证码:
条石鲷早期发育及相关酶活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
条石鲷(Oplegnathus fasciatus),隶属鲈形目(Perciformes),石鲷科(Oplegnathidae),主要分布于我国黄海、东海、台湾沿海,日本北海道以南及韩国以南沿海海域。其肉质极为细致,口感好,是一种具有较高食用价值和观赏价值的优良海产鱼类。本文运用统计学、组织学和生理学的分析方法,详细地阐述了条石鲷早期发育阶段的生长模式、组织发育及相关酶活性的变化过程。所得
     结果如下:
     1.测定了条石鲷仔稚幼鱼(0—50日龄)全长和体重随日龄的生长变化,发现全长、体重随日龄的变化均符合Cubic函数关系式,其变化曲线呈S型。全长随日龄的变化可分为三个阶段,不同阶段的全长生长率明显不同,0-17日龄的全长生长率为0.243mm/d,17-35日龄的全长生长率为0.965mm/d,35-50日龄的全长生长率为0.823mm/d,3个阶段的全长生长率具有显著性差异(P<0.05)。体重随日龄的变化也分为三个明显的阶段,不同阶段的体重生长率明显不同,0-23日龄的体重生长率为8.958*10~(-4)g/d,23-32日龄的体重生长率为0.005 g/d,32-50日龄的体重生长率为0.019 g/d,3个阶段的体重生长率具有显著性差异(P<0.05)。
     2.分析了条石鲷仔稚幼鱼头长、头高、体高、眼径、口裂、吻长、腹长、尾鳍长等外部形态参数与全长的变化关系,发现各功能器官的生长均呈现出异速生长的特点,但生长的拐点却各不相同。其结果表明,在条石鲷的早期发育过程中,有关运动、摄食、消化等的重要器官(眼、口、腹部、尾鳍等)具有优先发育的特征,且发育的时段各有差异,故在其苗种的培育过程中,应根据其生长、生态规律,为其创造最佳的环境条件,用以提高苗种的存活率。
     3.通过组织学技术(HE染色法、Mallory三色法),观察了条石鲷在胚胎期卵黄多核体的形成、胚层的分化、神经胚的形成、体节的发生、克氏囊的出现及退化、主要器官的组织发生等过程。结果表明,条石鲷的胚胎发育过程有囊胚腔的出现;神经胚以次级神经胚的方式形成;未知嗜红颗粒的渗入导致了克氏囊的退化;眼、脑、心脏、消化管、肾脏等器官均已发生。并通过结合胚胎形态学的观察确定了条石鲷胚胎发育的准确时序,进而更详细地阐述了条石鲷的胚胎发育全过程。
     4.通过组织学(HE染色法)技术,对条石鲷的主要功能器官(眼、鳃、心脏、鳔、口咽腔、食道、胃、肠、肝胰脏、肾脏、脾脏、胸腺)的组织发生、细胞分化、器官形成进行了观察,完整描述了条石鲷早期的整个组织发育过程;并辅以汞-溴酚蓝(mercury-bromophenol blue)法对仔鱼的蛋白样物质进行了定位和初步的定量,用以评估胰蛋白酶、胃蛋白酶、碱性磷酸酶、Na~+,K~+-ATP等酶原颗粒发生的时间和数量的变化,以期将条石鲷仔鱼组织器官的发育和相关酶活性的变化相联系;
     5.以生物试剂盒测定了条石鲷早期发育过程中胃蛋白酶、碱性磷酸酶、钠钾三磷酸腺苷酶(Na~+,K~+-ATPase)、超氧化物歧化酶(SOD)的活性以及仔鱼可溶总蛋白量的变化(胰蛋白酶以BAPNA法测定),进而分析了以上几种特异性酶的相对活性变化。其中胰蛋白酶、碱性磷酸酶、Na~+,K~+-ATPase与SOD的活性从胚胎期开始就可以被检测到,并随着各自相关组织器官的发育而变化,而胃蛋白酶的活性在仔鱼胃的结构发育完善后(22日龄)才被检测到。胰蛋白酶、胃蛋白酶和碱性磷酸酶属于消化酶,其活性的变化与消化系统的组织发育密切相连;Na~+,K~+-ATPase主要参与离子的交换,其活性变化由泌氯细胞(鳃)决定;SOD的活性是非特异性免疫功能的指标,也反映了仔鱼免疫系统的发育状况。通过分析各特征性酶活性的变化,并结合各相应器官的组织发育,能更好地阐述了条石鲷早期发育的特点。
The rock bream, Oplegnathus fasciatus, a subtropical and carnivorous species, is an economically important marine fish in East Asia. The high commercial and ornamental value makes it a promising aquaculture species in the future. However, to some extent, the lack of information on ontogenetic development has restricted the breeding industry of this species. In this study, the allometric growth, histogenesis and enzymatic activity in rock bream were analyzed. The results are as follows:
     1. At the general condition for fingerling-production, the total length and body weight of rock bream larvae were measured from hatching to 50 day after hatching. The increase of total length and body weight could be estimated with the Cubic function and took on the S-Curve. The curve could be divided into three phases and each phase possessed different growth rate.
     2. The head length, head height, trunk height, eye diameter, mouth width, abdomen length, tail fin length and rostrum length of rock bream were measured and the relationship between them and the total length was analyzed. The result showed the allometric growth in rock bream larvae. By analyzing the inflexion points in growth curves, in combination with morphological development of the larvae, we found that some important organs (head, mouth, eye, digestive tract and fins) had developed prior to other ones. When rearing rock bream larvae, the best environmental condition should be established by making the important organs prior development.
     3. The embryonic development of rock bream was studied from fertilization until hatching (HE & Mallory). The hatching occurred approximately at 25 h after fertilization at 23.5±0.5°C. The embryogenesis is divided into seven stages: Zygote period, Cleavage period, Morula period, Blastula period, Gastrula period, Segmentation period and Hatching period. The first cleavage furrow of rock bream fertilized eggs is vertically oriented, as is usual until horizontal cleavage occurs at the fifth cleavage. The blastocoel is observed between the blastoderm and I-YSL at blastula period. At 90%-epiboly stage, the earliest somitic furrow appears in the middle of embryo. The Kupffer’s vesicle consisting of ventrally I-YSL and dorsally columnar cells appears with the completion of epiboly. It degenerates gradually with the penetration of some eosinophilic granules and disappears completely at 20 h 30 min after fertilization. The digestive tract, a straight tubule, is differentiated into foregut, midgut and hindgut. The staging series provides a preliminary baseline reference for future studies on embryos of the rock bream.
     4. The ontogeny of rock bream larvae was investigated by histological observation from hatching to 50 days after hatching (HE & mercury-bromophenol blue). The histogenesis of main organs (eyes, gill, brain, heart, digestive system, immune system and swim bladder) was described in detail. Overall, rock bream presented a similar pattern of histophysiological ontogeny of organs compared with other marine teleosts. The main interspecific variability encountered resides in the timing of organ development.
     5. The activity of pepsin, alkaline phosphatase, Na~+ K~+-ATPase and Superoxide Dismutase (SOD) were assayed using test kits. Trypsin activity was measured using Nα-benzoyl-DL-arginine-p-nitroanilide (BAPNA) as substrate. Protein was determined by the Bradford method. The activities of the different enzymes assayed were expressed in relation to soluble protein in the extracts (specific activity). The analysis of enzymatic activity, in combination with the observation of organogenesis, can better illuminate the early development of rock bream.
引文
敖磊.南方鲇嗅觉和视觉器官结构及发育的研究[D].西南师范大学,2002.
    秉志.鲤鱼组织[M].北京:科学出版社,1983,38-41,131-133.
    蔡文超,柳学周,马学坤,等.半滑舌鳎早期发育阶段鳔和冠状幼鳍的生长发育规律研究[J].海洋水产研究,2006,27(2):94-98.
    蔡文超,区又君,李加儿.盐度对条石鲷胚胎发育的影响[J].生态学杂志,2010, 29(5):951-956.
    蔡泽平,蔡国雄,何伟宏.真鲷早期发育观察[J].南海研究与开发,1990,3:43-48.
    常抗美,毛建平,吴剑锋,等.条石鲷胚胎及仔稚鱼的发育[J].上海水产大学学报,2005,14(4):401-405.
    柴毅,谢从新,危起伟,等.中华鲟视网膜早期发育及趋光行为观察[J].水生生物学报,2007,31:920-922.
    郭恩棉,张艳萍,王鑫.短盖巨脂鲤鳃、伪鳃和鳔胚后发育学研究[J].海洋湖沼通报,2005,(3):31-37.
    胡玲玲,李加儿,区又君等.条石鲷头肾和脾脏的显微结构观察[J].南方水产,2010,6(3):41-45.
    胡先成,赵云龙.河川沙塘鳢视觉器官的发育及其与摄食的关系[J].动物学杂志, 2007,42(5):41-48.
    刘朝阳,孙晓庆.条石鲷的生物学特性及增养殖前景[J].齐鲁渔业,2006,23(7):6.
    刘伟成,冀德伟,单乐州,等.温度和盐度对条石鲷胚胎发育的影响[J].水生态学杂志,2010,3(6):101-104.
    刘晓春,何大仁,李大勇.真鲷视网膜和视网膜运动反应的发育[J].厦门大学学报(自然科学版),1994,33(6):857-861.
    柳学周,徐永江,王妍妍,等.条石鲷的早期生长发育特征[J].动物学报,2008,54(2):332-341.
    龙祥平,王德寿,田怀军.南方鲶、大鳍鳠鳔发育的组织学研究[J].水产学报,1993,17(4):340-343.
    楼允东.组织胚胎学[M].北京:中国农业出版社,1996,347-348.
    马爱军,雷霁霖,马英杰,等.真鲷仔稚鱼鳔发育与分化研究[J].青岛海洋大学学报,1998,28(4):593-598.
    马爱军,王新安,庄志猛,等.半滑舌鳎仔、稚鱼视网膜结构与视觉特性[J].动物学报,2007,53(2):354-363.
    马境,章龙珍,庄平,等. 2007.施氏鲟仔鱼发育及异速生长模型[J].应用生态学报,18(12):2875-2882.
    门强,雷霁霖.大菱鲆鳔器官发育的形态学与组织学特征[J].中国水产科学,2003,10(2):111-114.
    门强,雷霁霖,武云飞.鳔器官的发育对人工培育鱼苗的影响[J].海洋水产研究,2003, 24.
    孟庆闻,苏锦祥,李婉端.鱼类比较解剖[M].北京:科学出版社,1987,335-344.
    全汉锋,肖治中.条石鲷人工繁育技术研究[J].台湾海峡,2007,26(2):295-300.
    单保党,何大仁.黑鲷视觉发育与摄食的关系[J].台湾海峡,1995,14(02):169-174.
    单秀娟,窦硕增.鮸鱼(Miichthys miiuy)仔、稚鱼发育生长方式及其生态学意义[J]. 海洋与湖沼,2009,40(6),714-719.
    王建鑫,石戈,李鹏,等.条石鲷消化道的形态学和组织学[J].水产学报,2006,30(5):618-626.
    魏开建,张海明.鳜鱼视网膜发育的组织学研究[J].华中农业大学学报,1996,15:263-269.
    王念民,刘建丽,王炳谦,等.施氏鲟仔鱼眼的组织学观察[J].水产学杂志,2006,19: 20-25.
    王子仁,常城,白雪涛.斑马鱼(Branchydanio rerio)视网膜正常结构的定量研究[J].兰州大学学报(自然科学版),1994,30(4):102-107.
    王小平,单保党,洪万树,等.花鲈视觉发育与摄食行为的关系[J].厦门大学学报(自然科学版),1999,38(2):323-327.
    温海深,宋海霞.养殖比目鱼生殖及其调控机理研究进展[J].中国海洋大学学报, 2004, 34:182-188.
    吴金英,林浩然.斜带石斑鱼淋巴器官个体发育的组织学[J].动物学报,2003,(6): 819-828.
    肖志忠,于道德,孙真真,徐世宏,马道远,李军.条斑星鲽免疫器官个体发生的组织学观察.海洋科学,2008,32(7).
    肖志忠,郑炯,于道德,等.条石鲷早期发育的形态特征[J].海洋科学,2008,32(3):25-30.
    辛俭,薛利建,毛国民,等.条石鲷的胚胎发育观察[J].浙江海洋学院学报(自然科学版),2005,24(1):31-36.
    殷名称.鱼类仔鱼期的摄食和生长[J].水产学报, 1995, 19: 335-342.
    殷名称.鱼类早期生活史阶段的自然死亡[J].水生生物学报,1996,20:363-372.
    张凤萍,柳敏海,彭志兰等.条石鲷卵巢发育的组织学研究[J].大连水产学院学报,2010,25(2):102-106.
    庄平,宋超,章龙珍等.全人工繁殖西伯利亚鲟仔稚鱼发育的异速生长[J].生态学杂志,2009,28(4):681-687.
    赵维信,贾江.鳙、团头鲂和短盖巨脂鲤早期发育阶段甲状腺素含量变化研究[J]. 水产学报,1997,21(2):120-127.
    朱元鼎.福建鱼类志(下卷)[M].福州:福建科学技术出版社,1985,254-255.
    Adoff G. R., 1986. Anatomical studies of developing eggs and larvae of the cod (Gadus morhua L.). In: Fyhn HJ, editor. Fish larval physiology and anatomy. University of Bergen; p. 51-116.
    Alderdice D. F., 1988. Osmotic and ionic regulation in teleost eggs and larvae. In: Hoar WS, Randall DJ, editors. Fish physiology. IX. The physiology of developing fish. Part A. Eggs and larvae. New York: Academic Press; p. 142-63.
    Alvarez-Gonzalez C. A., Cervantes-Trujano M., Tovar-Ram?rez D., Conklin D. E., Nolasco H., Gisbert E. & Piedrahita R., 2006. Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiology and Biochemistry 31, 83–93.
    Alvarez-Gonzalez C. A., Moyano-Lopez F. J., Civera-Cerecedo R., Carrasco-Chavez V., Ortiz-Galindo J. L. & Dumas S., 2008. Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus.1. Biochemical analysis. Fish Physiology and Biochemistry 34, 373-384.
    Applebaum S. L., Ronnestad I., 2004. Absorption, assimilation and catabolism of individual free amino acids by larval Atlantic halibut (Hippoglossushippoglossus). Aquaculture 230:313-22.
    Arezo M.J., Pereiro L. & Berois N., 2005. Early development in the annual fish Cynolebias viarius. Journal of Fish Biology 66, 1357-1370.
    Avella M., Berhaut J. & Bornancin M., 1993. Salinity tolerance of two tropical fishes, Oreochromis aureus and O. niloticus. I. Biochemical and morphological changes in the gill epithelium. Journal of Fish Biology 42, 243-254.
    Baglole, C.J., Murray, H.M., Goff, G.P. & Wright, G.M., 1997. Ontogeny of the digestive tract during larval development of yellowtail flounder: a light microscopic and mucous histochemical study. Journal of Fish Biology 51, 120–134.
    Baras E., Maxi M. Y. J., Ndao M., et al., 2000. Sibling cannibalism in dorada under experimental conditions II. Effect of initial size heterogeneity, diet and light regime on early cannibalism. Journal of Fish Biology 57: 1021-1036.
    Battaglene S. C., Talbot R. B., 1990. Initial swim bladder inflation in intensively reared Australian bass larvae, Macquaria novemaculeata (Steindachner) (Perciformes: Percichthyidae). Aquaculture 86:431-442.
    Battaglene S. C, Talbot R. B., 1993. Effect of salinity and aeration on survival of and initial swim bladder inflation in larval Australian bass. Prog Fish-Cult 55, 35-39.
    Bein R., Ribi G., 1994. Effects of larval density and salinity on the development of perch larvae (Perca fluviatilis L.). Aquatic Sciences 56: 97-105.
    Bermudes M., Ritar A. J., 1999. Effects of temperature on the embryonic development of the striped trumpeter (Latris lineata Bloch and Schneider, 1801). Aquaculture 176: 245-255.
    Blaxter J. H. S., Hempel G., 1963. The influence of egg size on herring larvae (Clupea harengus L.). J Cons Int Explor Mer 28: 211-240.
    Blaxter J. H. S., 1988. Pattern and variety in development. In: Hoar WS, Randall DJ, editors. Fish physiology XI. The physiology of developing fish. Part A. Eggs and larvae. New York: Academic Press; p.1-58.
    Boulhic M, Gabaudan J., 1992. Histological study of the organogenesis of the digestive system and swim bladder of the Dover sole, Solea solea(Linnaeus 1758). Aquaculture 102, 373-396.
    Bradford, M.M., 1976. A rapid sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
    Braid M. R., Shell E. W., 1981. Incidence of cannibalism among striped bass fry in an intensive culture system. The Progressive Fish-Culturist 43: 210-212.
    Brewster B., 1987. Eye migration and cranial development during flatfish metamorphosis: a reappraisal (Teleostei: Pleuronectiformes). Journal of Fish Biology 31: 805-833.
    Bromage N., Bruce M., Basavaraja N., et al., 1994. Egg Quality Determinants in Finfish The Role of Overripening with Special Reference to the Timing of Stripping in the Atlantic Halibut Hippoglossus hippoglossus. Journal of the World Aquaculture Society 25: 13-21.
    Bromage N., Jones J., Randall C., et al., 1992. Broodstock management, fecundity, egg quality and the timing of egg production in the rainbow trout (Oncorhynchus mykiss). Aquaculture 100: 141-166.
    Brooks S., Tyler C. R., Sumpter J. P., 1997. Egg quality in fish: what makes a good egg? Review in Fish Biology and Fisheries 7: 387-416.
    Burke J. S., Seikai T., Tanaka Y., et al., 1999. Experimental intensive culture of summer flounder, Paralichthys dentatus. Aquaculture 176: 135-144.
    Cahu, C.L. & Zambonino Infante, J.L. 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comparative Biochemistry and Physiology 109A: 213–222.
    Cahu, C.L. & Zambonino Infante, J.L., 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200, 161–180.
    Cahu C. L., Zambonino Infante J. L., Peres A., et al., 1998. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture 161: 479-489.
    Carrillo M., Bromage N., Zanuy S., et al., 1989. The effect of modifications in photoperiod on spawning time, ovarian development and egg quality in the sea bass (Dicentrarchus labrax L.). Aquaculture 81:351-365.
    Chapman D. C., Hubert W. A., Jackson U. T., 1988. Influence of access to air and of salinity on gas bladder inflation in striped bass. The Progressive Fish-culturist 50: 23-27.
    Chatain B., 1986. The swim bladder in Dicentrarchus labrax and Sparus auratus. I. Morphological aspects of development. Aquaculture 53: 303-311.
    Chatain B., Ounais-Guschemann N., 1990. Improved rate of initial swim bladder inflation in intensively reared Sparus auratus. Aquaculture 84: 345-353.
    Chen, B.N., Qin, J.G., Kumar, M.S., Hutchinson, W.G. & Clarke, S.M., 2006. Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 260, 264-271.
    Chikara Kitajima, Takeshi Watanabe, Yasuo Tsukashima et al., 1994. Lordotic deformation and abnormal development of swimbladder in some hatchery-reared marine physoclistous fish in Japan. World Aquaculture Society 25, 64-77.
    Cho Y.S., Choi B.N., Kim K.H., Kim S.K., Kim D.S., Bang I.C. & Nam Y.K., 2006. Differential expression of Cu Zn superoxide dismutase mRNA during exposures to heavy metals in rockbream Oplegnathus fasciatus. Aquaculture 253, 667-679.
    Choi S.K., Kwon S.R., Nam Y.K., Kim S.K. & Kim K.H., 2006. Organ distribution of red sea bream iridovirus (RSIV) DNA in asymptomatic yearling and fingerling rock bream (Oplegnathus fasciatus) and effects of water temperature on transition of RSIV into acute phase. Aquaculture 256, 23-26.
    Choo C.K., L iew H.C. 2006. Morphological development and allometric growth patterns in the juvenile seahorse Hippocam puskuda Bleeker. Journal of Fish Biology, 69: 426- 445.
    De Assis J.M.F, Carvalho R.F, Barbosa L., Agostinho C.A., Pai-Silva M.D., 2004. Effects of incubation temperature on muscle morphology and growth in the pacu (Piaractus mesopotamicus). Aquaculture 237:251-67.
    Devlin R. H., Nagahama Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208: 191-364.
    Dhert P., Lavens P., Duray M., et al., 1990. Improved larval survival atmetamorphosis of Asian seabass (Lates calcarifer) using [omega] 3-HUFA-enriched live food. Aquaculture 90: 63-74.
    Diaz M., Moyano F.J., Garcia-Carreno F.L., Alarcon F.J. & Sarasquete M.C., 1997. Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquaculture International 5, 461-471.
    Dingerkus G., Uhler L. D., 1977. Enzyme clearing of Alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technology 52: 229-332.
    Dou S., Masuda R., Tanaka M., et al., 2002. Feeding resumption, morphological changes and mortality during starvation in Japanese flounder larvae. Journal of Fish Biology 60: 1363-1380.
    Ebbesson L. O. E., 2000. Temporal dynamics of brain and hormone changes during parr– smolt transformation in salmon; Lund University.
    Egloff M., 1996. Failure of swim bladder inflation of perch, Perca fluviatilis L. found in natural populations. Aquatic Sciences 58: 15-23.
    Elbal, M.T., Garc?a Hernandez, M.P., Lozano, M.T. & Agulleiro, B., 2004. Development of the digestive tract of gilthead sea bream (Sparus aurata L.). Light and electron microscopic studies. Aquaculture 234, 215–238.
    Erlanger, B., Kokowsky, N. & Cohen, W., 1961. The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysics 95, 271–278.
    Essner J.J., Amack J.D., Nyholm M.K., Harris E.B. & Yost H.J.,2005. Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132, 1247-1260.
    Essner J.J., Vogan K.J., Wagner M.K., Tabin C.J., Yost H.J. & Brueckner M., 2002. Conserved function for embryonic nodal cilia. Nature 418, 37-38.
    Falk-Petersen, I.B., 2005. Comparative organ differentiation during early life stages of marine fish. Fish Shellfish Immunol. 19, 397–412.
    Falk-Petersen I.B., Hansen T.K., 2001. Organ differentiation in newly hatched common wolffish. Journal of Fish Biology 59:1465-82.
    Falk-Petersen I.B., Hansen T.K., 2003. Early ontogeny of the spotted wolffish(Anarhichas minor Olafsen). Aquaculture Research 34:1059-67.
    Faulk, C.K., Benninghoff, A.D. & Holt, G.J., 2007. Ontogeny of the gastrointestinal tract and selected digestive enzymes in cobia Rachycentron canadum (L.). Journal of Fish Biology 70 (2), 567–583.
    Fernandez-Diaz C., Yufera M., 1997. Detecting growth in gilthead seabream, Sparus aurata L., larvae fed microcapsules. Aquaculture 153: 93-102.
    Fishelson L., 1995. Cytological and morphological ontogenesis and involution of the thymus in cichlid fishes (Cichlidae,Teleostei). Journal of Morphology, 223: 175-190.
    Folkvord A., Ottera H., 1993. Effects of initial size distribution, day length, and feeding frequency on growth, survival, and cannibalism in juvenile Atlantic cod (Gadus morhua L.). Aquaculture 114:243-260.
    Fournier-Betz V., Quentel C., Lamour F., et al., 2000. Immunocytochemical detection of Ig-positive cells in blood, lymphoid organs and the gut associated lymphoid tissue of the turbot (Scophthalmus maximus). Fish & Shellfish Immunology 10: 187-202.
    Franz L. & Pierpaolo P., 2004. Egg quality determination in the gilthead seabream, Sparus aurata, with biochemical parameters. Aquaculture 237, 443-459.
    Fujimoto, T., Kataoka, T., Sakao, S., Saito, T., Yamaha, E. & Arai, K., 2006. Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus). Zoological Science 23, 977–989.
    Furlani D.M. & Ruwald F.P., 1999. Egg and larval development of laboratory-reared striped trumpeter Latris lineatea (Forster in Bloch and Schneider 1801) (Percoidei: Latridiidae) from Tasmanian waters. New Zealand Journal of Marine and Freshwater Research 33, 153-162.
    Furne, M., Hidalgo, M.C., Lopez, A., Garcia-Gallego, M., Morales, A.E., Domezain, A., Domezaine, J. & Sanz, A., 2005. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 250, 391-398.
    Gisbert E. 1999. Early development and allometric growth patterns in Siberiansturgeon and their ecological significance. Journal of Fish B iology, 54: 852- 862.
    Gisbert E., Conklin D. B., Piedrahita R. H., 2004. Effects of delayed first feeding on the nutritional condition and mortality of California halibut larvae. Journal of Fish Biology 64: 116-132.
    Gisbert, E., Piedrahita, R.H. & Conklin, D.E., 2004. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture 232, 455–470.
    Gisbert, E., Sarasquete, M.C., Williot, P. & Castello, F., 1999. Histochemistry of the development of the digestive system of Siberian sturgeon (Acipenser baeri, Brandt) during early ontogeny. Journal of Fish Biology 55, 596–616.
    Govoni, J. J., Boehlert, G. W. & Watanabe, Y., 1986. The physiology of digestion in fish larvae. Environmental Biology of Fishes 16, 59–77.
    Hall T.E., Smith P. & Johnston I.A., 2004. Stages of embryonic development in the the Atlantic Cod Gadus morhua. Journal of Morphology 259, 255-270.
    Hamlin H. J., Kling L. J., 2001. The culture and early weaning of larval haddock (Melanogrammus aeglefinus) using a microparticulate diet. Aquaculture 201: 61-72.
    Harboe T., Naess T., Naas K. E., Rabben H., Skjoldal L., 1990. Age of Atlantic halibut larvae (Hippoglossous hippoglossus L.) at first feeding. ICES CM 1990/F.53 (mimeo).
    Hecht T., Pienaar A. G., 1993. A review of cannibalism and its implications in fish larviculture. Journal of the World Aquaculture Society 24: 246-261.
    Herbing IH. 2001. Development of feeding structures in larval fish with different life histories: Winter flounder and Atlantic cod. Journal of Fish B iology, 59: 767- 782.
    Hirji, K.N., Courtney, W.A.M., 1983. Non-specific carboxylic esterase activity in the digestive tract of the perch, Perca fluviatilis. Journal of Fish Biology 22, 1–7.
    Hirose S., Kaneko T., Natio N. & Takei Y., 2003. Molecular biology of major components of chloride cells. Comparative Biochemistry and Physiology PartB136, 593-620.
    Hojo M., Takashima S. & Kobayashi D., 2007. Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer’s vesicle. Development Growth & Differentiation 49, 395-405.
    Horie N., Utoh T., Yamada Y., Okamura A., Zhang H., Mikawa N., Akazawa A., Tanaka S. & Poka H., 2002. Development of embryos and larvae in the common Japanese conger Conger myriaster. Fisheries Science 68, 972-983.
    Hubbs C., Blaxter J. H. S., 1986. Development of sense organs and behaviour in teleost larvae with special reference to feeding and predator avoidance. Transactions of the American Fisheries Society 115:98-114.
    Iwamatsu T., 2004. Stages of normal development in the medaka Oryzias latipes. Mechanisms of Development 121, 605-618.
    Izquierdo M. S, 1996. Essential fatty acid requirements of cultured marine fish larvae. Aquaculture Nutrition 2: 183-191.
    Jones A. C., 1970. Chlorella for rearing of marine fish larvae [J]. FAO Fish Culture Bulletin 2: 3.
    Josefsson S., Tatner M. F., 1993. Histogenesis of the lymphoid organs in sea bream (Sparus aurata L.). Fish & Shellfish Immunology 3: 35-49.
    Jung S.J. & Oh M.J., 2000. Iridovirus-like infection associated with high mortalities of striped beakperch, Oplegnathus fasciatus (Temminck et Schlegel), in southern coastal areas of the Korean peninsula. Journal of Fish Diseases 23, 223-226.
    Kamaci H. O., Coban D., Suzer C., Aksu B., Saka S., & Firat K., 2010. Exocrine Pancreas Development and Trypsin Expression in Cultured European Sea Bass (Dicentrarchus labrax) Larvae. Turkish Journal of Fisheries and Aquatic Sciences 10: 123-130.
    Kamaci H. O., Suzer C., Coban D., Saka S. & Firat K., 2010. Organogenesis of exocrine pancreas in sharpsnout sea bream (Diplodus puntazzo) larvae: characterization of trypsin expression. Fish Physiology and Biochemistry 36, 993–1000.
    Kanazawa A., Teshima S., Imatanaka N., 1982. Tissue uptake of radioactiveeicosapentaenoic acid in the red seabream. Bullet in of the Japanese Society of Scientific Fishery 48: 1441-1444.
    Katavic I., 1986. Diet involvement in mass mortality of sea bass (Dicentrarchus labrax) larvae. Aquaculture 58: 45-54.
    Katavic I., Jug-Dujakovic J., Glamuzina B., 1989. Cannibalism as a factor affecting the survival of intensively cultured sea bass (Dicentrarchus labrax) fingerlings. Aquaculture 77: 135-143.
    Kato, K., Ishimaru K., Sawada, Y., Mutsuro, J., Miyashita, S., Murata, O. & Kumai, H., 2004. Ontogeny of digestive and immune system organs of larval and juvenile kelp grouper Epinephelus bruneus reared in the laboratory. Fisheries Science 70, 1061–1069.
    Khodabandeh S., Khoshnood Z. & Mosafer S., 2009. Immunolocalization of Na+, K+-ATPase-rich cells in the gill and urinary system of Persian sturgeon, Acipenser persicus, fry. Aquaculture Research 40 (3): 329-336.
    Kim Y.I., Ha Y.M., Ahn S.J., Nam Y.K., Kim K.H. & Kim S.K., 2007. Production and characterization of polyclonal antibody against recombinant ORF 049L of rock bream (Oplegnathus fasciatus) iridovirus. Process Biochemistry 42, 134-140.
    Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B. & Schilling T.F., 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics 203, 253-310.
    Kinne O., Kinne E. M., 1961. Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen combinations. Canada Journal of Zoology 40: 231-253.
    Kjorsvik E., 1994. Egg quality in wild and broodstock cod Gadus morhua L. Journal of the World Aquaculture Society 25: 22-31.
    Kjorsvik, E., van der Meeren, T., Kryvi, H., Arnfinnson, J. & Kvenseth, P. G., 1991. Early development of the digestive tract of cod larvae, Gadus morhua L., during start-feeding and starvation. Journal of Fish Biology 38, 1–15.
    Kjorsvik E, Reiersen A-L., 1992. Histomorphology of the early yolk-sac larvae of the Atlantic halibut (Hippoglossus hippoglossus L.) -an indication of the timing offunctionality. Journal of Fish Biology 41:1-19.
    Kolkovski, S., 2001. Digestive enzymes in fish larvae and juveniles-implications and application to formulated diets. Aquaculture 200, 181–201.
    Koven W. M., Tandler A., Kissil G. W., et al., 1990. The effect of dietary (n-3) polyunsaturated fatty acids on growth, survival and swim bladder development in Sparus aurata larvae. Aquaculture 91:131-141.
    Kreiling J.A., Prabhat, Williams G. & Creton R., 2007. Analysis of Kupffer’s vesicle in zebrafish embryos using a cave automated virtual environment. Developmental Dynamics 236, 1963-1969.
    Lazo, J. P., Dinis, M. T., Holt, G. J., Faulk, C., Arnold, R. A., 2000. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture 188, 339-351.
    Lee S.J., Kim S.M., Kim S.K., Nam Y.K., Kim D.S. & Kim K.H., 2004. Modulation of zymosan- and phrbol ester-stimulated respiratory burst of rock bream (Oplegnathus fasciatus) phagocytes by staurosporine, genistein and sodium orthovanadate. Aquaculture 237, 1-7.
    Lemieux H, Blier P, Dutil J. D., 1999. Do digestive enzymes set a physiological limit on growth rate and food conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiology and Biochemistry 20:293–303
    Li, J.S., Li, J.L. & Wu, T.T., 2006. Ontogeny of protease, amylase and lipase in the alimentary tract of hybrid Juvenile tilapia (Oreochromis niloticus×Oreochromis aureus). Fish Physiology and Biochemistry 32, 295-303.
    Lim S.J. & Lee K.J., 2009. Partial replacement of fish meal by cottonseed meal and soybean meal with iron and phytase supplementation for parrot fish Oplegnathus fasciatus. Aquaculture 290, 283-289.
    Lin H.C. & Sung W.T., 2003. The distribution of mitochondria-rich cells in the gills of air-breathing fishes. Physiological and Biochemical Zoology 76, 215–228.
    Liu X.Z., Xu Y.J., Wang Y.Y., Lu Y.Q. & Qu J.Z., 2008. Characters of development and growth of early life stages of the rock bream Oplegnathus fasciatus. Acta Zoologica Sinica 54, 332-341.
    Ma L., Pan X.F., Wei Y.H., Li Z.Y., Li C.C., Yang J.X. & Mao B.Y., 2008. Embryonic stages and eye-specific gene expression of the local cyprinoid fish Anabarilius grahami in Fuxian Lake, China. Journal of Fish Biology 73, 1946-1959.
    Makino N., Uchiyama M., Iwanami S., et al., 1995. Differentiation and development of the swimbladder in larvae of the Japanese sea bass Lateolabrax japonicus. Nippon Suisan Gakkaishi 61: 143-150.
    Mai, K., Yu, H., Ma, H., Duan, Q., Gisbert, E., Zambonino Infante, J.L. & Cahu, C.L., 2005. A histological study on the development of the digestive tract of the large yellow croaker (Pseudosciaena crocea). Journal of Fish Biology 67, 1094–1106.
    Marimuthu K. & Haniffa M.A., 2007. Embryonic and larval development of the striped snakehead Channa striatus. Taiwania 52, 84-92.
    Martinez G.M. & Bolker J.A., 2003. Embryonic and larval staging of summer flounder (Paralichthys dentatus). Journal of Morphology 255, 162-176.
    McCormick S.D., 1995. Hormonal control of gill Na+, K+-ATPase and chloride cell function. In: Cellular andMolecular Approaches to Fish Ionic Regulation. Fish Physiology 14 (ed. by C.M.Wood & T.J. Shuttleworth): 285-307.
    Micale, V., Garaffo, M., Genovese, L., Spedicato, M.T. & Muglia, U., 2006. The ontogeny of the alimentary tract during larval development in common pandora Pagellus erythrinus L. Aquaculture 251, 354–365.
    Miller J. M., Burke J. S., Fitzhugh G. R., 1991. Early life history patterns of Atlantic North American flatfish: likely (and unlikely) factors controlling recruitment. Netherlands Journal of Sea Research 27: 261-275.
    Miwa S., Inui Y., 1991. Thyroid hormone stimulates the shift of erythrocyte populations during metamorphosis of the flounder. Journal of Experimental Zoology, 259: 222-228.
    Miwa S., Yamano K., Inui Y., 1992. Thyroid hormone stimulates gastric development in flounder larvae during metamorphosis. Journal of Experimental Zoology, 261: 424-430.
    Mollah M. F. A., Tan E. S. P., 1983. Viability of catfish (Clarias macrocephalus, Gunther) eggs fertilized at varying post-ovulation times. Journal of Fish Biology22: 563-566.
    Moreau N., Lautredou N., N'da E., et al., 1991. Cold-stress response in the amphibian oocyte: changes in synthesis and nucleocytoplasmic distribution of some proteins. Biology of the Cell 71: 97-103.
    Morrison C.M., Miyake T. & Wright J.R., 2001. Histological study of the development of the embryo and early larva of Oreochromis niloticus. Journal of Morphology 247, 172-195.
    Morrison M., 1993. Histology of the Atlantic cod, Gadus morhua: an atlas. Part 4. Eleutheroembryo and larva. Canadian Special Publication of Fisheries and Aquatic Sciences 119C:496.
    Moyano, F.J., Diaz, M., Alarcon, F.J. & Sarasquete, M.C., 1996. Characterisation of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiology and Biochemistry 15, 121–130.
    Mulero I., Garcia-Ayala A., Meseguer J., et al., 2007. Maternal transfer of immunity and ontogeny of autologous immunocompetence of fish: A minireview. Aquaculture 268: 244-250.
    Naess T., Lie., 1998. A sensitive period during first feeding for the determination of pigmentation pattern in Atlantic halibut, Hippoglossus hihppoglossus L., juveniles: the role of diet. Aquaculture Research 29: 925-934.
    Nakatsuji T., Kitano T., Akiyama N. & Nakatsuji N., 1997. Ice goby (Shiro-uo), Leucopsarion petersii, may be a useful material for studying teleostean e mbryogenesis. Zoological Science 14, 443-448
    Nam Y.K., Cho Y.S., Choi B.N., Kim K.H., Kim S.K. & Kim D.S., 2005. Alteration of antioxidant enzymes at the mRNA level during short-term starvation of rockbream Oplegnathus fasciatus. Fisheries Science 71, 1385-1387.
    Naviner M., Berge J. P., Durand P., et al., 1999. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture 174: 15-24.
    Niklas K. J., 1994a. Plant Allometry: the Scaling of Form and Process. University of Chicago Press, Chicago. O'connell C. P. Development of organ systems in thenorthern anchovy, Engraulis mordax, and other teleosts. American Zoology, 1981, 21: 429-446.
    Okada N., Takagi Y., Seikai T., et al., 2001. Asymmetrical development of bones and soft tissues during eye migration of metamorphosing Japanese flounder, Paralichthys olivaceus. Cell and Tissue Research 304: 59-66.
    Olla B L, Davis M W, Ryer C H, 1995. Behavioural responses of larval and juvenile walleye pollock (Theragra chalcogramma): possible mechanisms controlling distribution and recruitment. ICES Marine Science Symposia, 201: 3-15
    Onal, U., Langdon, C. & Celik, I., 2008. Ontogeny of the digestive tract of larval percula clownfish, Amphiprion percula (Lace′pe`de 1802): a histological perspective. Aquaculture research 39, 1077-1086.
    Osse J. W. M., van den Boogart J. G. M., 1995. Fish larvae, development, allometric growth, and the aquatic environment. ICES Marine Science Symposia, 201: 21-34.
    Ottesen O., Olafsen J., 1997. Ontogenetic development and composition of the mucous cells and the occurrence of saccular cells in the epidermis of Atlantic halibut, Hippoglossus hippoglossus (L.). Journal of Fish Biology, 50:620-33.
    Padros F., Crespo S., 1996. Ontogeny of the lymphoid organs in the turbot Scophtalmus maximus: a light and electron microscope study. Aquaculture, 144:1-16.
    Paller M. H., Lewis W. M., 1987. Effects of diet on growth depensation and cannibalism among intensively cultured larval striped bass. The Progressive Fish-Culturist 49: 270-275.
    Pavlov D. A., 1986. Developing the biotechnology of culturing White Sea wolffish, Anarhichas lupus marisalbi. II. Ecomorphological peculiarities of early ontogeny. Journal of Ichthyology 26(6):156-69.
    Pernet F., Tremblay R., Demers E., et al, 2003. Variation of lipid class and fatty acid composition of Chaetoceros muelleri and Isochrysis sp. grown in a semicontinuous system. Aquaculture 221:393-406.
    Peters R. H., 1983. The Ecological Implications of Body Size. Cambridge UniversityPress, Cambridge.
    Pienaar A. G., 1990. A study of coeval sibling cannibalism in larval and juvenile fishes and its control under culture conditions. Grahamstown; Rhodes University.
    Pinder A.C. & Gozlan R.E., 2004. Early ontogeny of sunbleak. Journal of Fish Biology 64, 762-775.
    Pittman K, Skiftesvik A. B., Berg L., 1990. Morphological and behavioural development of halibut, Hippoglossus hippoglossus (L.) larvae. Journal of Fish Biology 37:455-72.
    Porter M. J. R., Randall C. F., Bromage N. R., et al., 1998. The role of melatonin and the pineal gland on development and smoltification of Atlantic salmon (Salmo salar) parr. Aquaculture 168: 139-155.
    Ribeiro, L., Zambonino Infante, J.L., Cahu, C. & Dinis, M.T., 1999b. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179, 465-473.
    Ribeiro, L., Couto, A., Olmedo, M., Alvarez-Blazquez, B., Linares, F. & Valente, L.M.P., 2008. Digestive enzyme activity at different developmental stages of blackspot seabream, Pagellus bogaraveo (Brunnich 1768). Aquaculture Research 39, 339-346.
    Rieger,P.W., Summerfelt,R.C., 1997. The influence of turbidity on larval walleye, Stizostedion vitreum, behavior and development in tank culture. Aquaculture 159, 19-32.
    Robin J. H., Vincent B., 2003. Microparticulate diets as first food for gilthead sea bream larva (Sparus aurata): study of fatty acid incorporation. Aquaculture 225: 463-474.
    Rodda K.R. & Seymour R.S., 2008. Functional morphology of embryonic development in the Port Jackson shark Heterodontus portusjacksoni (Meyer). Journal of Fish Biology 72, 961-984.
    Rodriguez A & Gisbert E. 2002. Eye development and the role of vision during Siberian sturgeon early ontogeny. Journal of Applied Ichthyology, 18: 280-285.
    Rombough, P.J., 2004. Gas exchange, ionoregulation, and the functional development of the teleost gill. Am. Fish. Soc. Symp. 40, 47–83.
    Rombough, P.J., 2007. The functional ontogeny of the teleost gill: which comes first, gas or ion exchange? Comparative Biochemistry and Physiology 148A, 732-742.
    Ronnestad I., Helland S., Lie O., 1998. Feeding Artemia to larvae of Atlantic halibut (Hippoglossus hippoglossus L.) results in lower larval vitamin A content compared with feeding copepods. Aquaculture 165: 159-164.
    Saele O., Solbakken J. S., Watanabe K., et al., 2003. The effect of diet on ossification and eye migration in Atlantic halibut larvae (Hippoglossus hippoglossus L.). Aquaculture 220: 683-696.
    Santamaría, C.A., Marín de Mateo, M., Traveset, R., Sala, R., Grau, A., Pastor, E., Sarasquete, C., Crespo, S., 2004. Larval organogenesis in common dentex, Dentex dentex L. (Sparidae): histological and histochemical aspects. Aquaculture 237, 207–228.
    Sarasquete, M.C., Polo, A. & Yufera, M., 1995. Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata, L. Aquaculture 130, 79–92.
    Saunders R. L., Henderson E. B., Harmon P. R., 1985. Effects of photoperiod on juvenile growth and smolting of Atlantic salmon and subsequent survival and growth in sea cages. Aquaculture 45:55-66.
    Shan X.J., Quan H.F. & Dou S.Z., 2008. Effects of delayed first feeding on growth and survival of rock bream Oplegnathus fasciatus larvae. Aquaculture 277, 14-23.
    Shikano T. & Fujio Y., 1998. Relationships of salinity tolerance to immunolocalization of Na+, K+-ATPase in the gill epithelium during seawater and freshwater adaptation of the guppy, Poecilia reticulate. Zoological Science15, 35-41.
    Snik G. M. J., Boogaart J. G. M., Osse J. W. M., 1997. Larval growth patterns in Cyprinus carpio and Clarias gariepinus with attention to the finfold. Journal of Fish B iology, 50: 1339-1352.
    Solbakken J. S., Berntessen M. H. G., Norberg B., et al., 2002. Different iodine and thyroid hormone levels between Atlantic halibut larvae fed wild zooplankton or Artemia from first exogenous feeding until post metamorphosis. Journal of Fish Biology 61: 1345-1362.
    Solbakken J. S., Pittman K., 2004. Photoperiodic modulation of metamorphosis in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 232: 613-625. Sorgeloos P., Dhert P., Candreva P., 2001. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 200: 147-159.
    Springate J. R. C., Bromage N. R., Elliott J. A. K., et al., 1984. The timing of ovulation and stripping and their effects on the rates of fertilization and survival to eying, hatch and swim-up in the rainbow trout (Salmo gairdneri R.). Aquaculture 43: 313-322.
    Suzer, C., Firat, K. & Saka, S., 2006. Ontogenic development of the digestive enzymes in common pandora, Pagellus erythrinus, L. larvae. Aquaculture Research 37, 1565-1571.
    Suzer, C., Kamac1, H. O., Coban, D., Saka, S., F?rat, K., Ozkara, B. & Ozkara, A., 2007. Digestive enzyme activity of the red porgy (Pagrus pagrus, L.) during larval development under culture conditions. Aquaculture Research 38, 1778–1785.
    Tachibana K., Yagi M., Hara K., et al., 1997. Effects of feeding of β-carotene-supplemented rotifers on survival and lymphocyte proliferation reaction of fish larvae Japanese parrotfish (Oplegnathus fasciatus) and Spotted parrotfish (Oplegnathus punctatus) preliminary trials. Hydrobiologia 358, 313-316.
    Tanaka M., Tanangonan J. B., Tagawa M., et al., 1995. Development of the pituitary, thyroid and interregnal glands and applications of endocrinology to the improved rearing of marine fish larvae. Aquaculture, 135: 111-126.
    Timmermans L. P. M., 1987. Early development and differentiation in fish. Sarsia 72:331-9.
    Thrush M. A., Duncan N. J., Bromage N. R., 1994. The use of photoperiod in theproduction of out-of-season Atlantic salmon (Salmo salar) smolts. Aquaculture 121: 29-44.
    Trotter A J, Battaglene S C, Pankhurst P M, et al, 2003. Effects of photoperiod and light intensity on initial swim bladder inflation, growth and post-inflation viability in cultured striped trumpeter (Latris lineata) larvae. Aquaculture 224, 141-158.
    Trotter A J, Pankhurst P M, Battaglene S C, et al., 2004. Morphology of swim bladder development in hatchery-reared striped trumpeter Latris lineata. Journal of Applied Ichthyology 20,395-401.
    Trotter A J, Pankhurst P M, Hart P R, et al., 2001. Swim bladder malformation in hatchery-reared striped trumpeter Latris lineate (Latridae). Aquaculture 198, 41-54
    Trotter A J, Pankhurst P M, Morehead D T, et al., 2003. Effects of temperature on initial swim bladder inflation and related development in cultured striped trumpeter (Latris lineata) larvae. Aquaculture 221, 141-156.
    Uchida K., Kaneko T.,Yamauchi K. & Hirano T., 1996. Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na+, K~+-ATPase activity during seawater adaptation in chum salmon fry. Journal of Experimental Zoology 276,193-200.
    van Snik G M J, van den Boogaart J G M, Osse J W M, 1997. Larval growth patterns in Cyprinus carpio and Clarias gariepinus with attention to finfold. Journal of Fish Biology, 50: 1339—1352
    Varsamos S., Nebel C. & Charmantier G., 2005. Ontogeny of osmoregulation in postembryonic fish: a review. Comparative Biochemistry and Physiology Part A141, 401-429.
    Walford J. & Lam T.J., 1993. Development of the digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109, 187-205.
    Wang X.J., Kim K.W., Bai S.C., Huh M.D. & Cho B.Y., 2003. Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture 215, 203-211.
    Watts, M., Kato, K., Munday, B.L., Burke, C.M., 2003. Ontogeny of immune system organs in northern bluefin tuna (Thunnus orientalis, Temmick and Schlegel 1844). Aquaculture. Research. 34, 13–21.
    Westerfield, M., 2000. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 4th edn. Eugene, OR: University of Oregon Press.
    Wood C.M. & Marshall W.S., 1994. Ion balance, acid-base regulation, and chloride cell function in the common killifish Fundulus heterochlitus: a euryhaline estuarine teleost. Estuaries 17, 34-52.
    Wright M. L., Jorey S. T., Myers Y. M., et al., 1988. Influence of Photoperiod, Daylength, and Feeding Schedule on Tadpole Growth and Development. Development Growth & Differentiation 30: 315-323.
    Wu Y.F., Men Q. & Kang B., 1999. A supplementary study on the morphology and ecology of two species of rare fish from Qingdao. Journal of Ocean University of Qingdao 29, 581-585.
    Yamano K., Miwa S., Obinata T., et al., 1991. Thyroid hormone regulates developmental changes in muscle during flounder metamorphosis. General and Comparative Endocrinology, 81: 464-472.
    Yamano K., Takano-Ohmuro H., Obinata T., et al., 1994. Effect of thyroid hormone on developmental transition of myosin light chains during flounder metamorphosis. General and Comparative Endocrinology 93: 321-326
    Yamashita K., 1982. Differentiation of the swimbladder structure in larvae of the red seabream Pagrus major. Japanese Journal of Ichthyology 29: 193-202.
    Yang, R.B., Xie, C.X., Fan, Q.X., Gao, C. & Fang, L.B. 2010. Ontogeny of the digestive tract in yellow catfish Pelteobagrus fulvidraco larvae. Aquaculture 302, 112–123.
    Yoshikoshi K. & Inoue K., 1990. Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck et Schlegel). Journal of Fish Diseases 13, 69-77.
    Youson J. H., 1988. First metamorphosis [M]//HOAR W S, RANDALL D J. Fish Physiology XI. San Diego; Academic Press: 135-196.
    Zaiss, M.M., Papadakis, I.E., Maingot, E., Divanach, P. & Mylonas, C.C., 2006. Ontogeny of the digestive tract in shi drum (Umbrina cirrosa L.) reared using the mesocosm larval rearing system. Aquaculture 260, 357–368.
    Zamani, A., Hajimoradloo, A., Madani, R. & Farhangi, M., 2009. Assessment of digestive enzymes activity during the fry development of the endangered Caspian brown trout Salmo caspius. Journal of Fish Biology 75, 932–937.
    Zambonino Infante, J.L. & Cahu, C.L., 2001. Ontogeny of the digestive tract of marine fish larvae. Comparative Biochemistry and Physiology 130C, 477-487.
    Zambonino-Infante, J.L. & Cahu, C.L., 2007. Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268, 98–105.
    Zambonino-Infante, J., Gisbert, E., Sarasquete, C., Navarro, I., Gutiérrez, J., Cahu, C. L., 2008. Ontogeny and physiology of the digestive system of marine ?sh larvae. In: Cyrino, J.E.O., Bureau, D., Kapoor, B.G. (Eds.), Feeding and Digestive Functions of Fish. Science Publishers, Inc, En?eld, USA, pp. 277-344.
    Zapata A, Diez B, Cejalvo T, Gutierrez-de Frias C, Cortes A., 2006. Ontogeny of the immune system of fish. Fish Shellfish Immunol 18: 126–36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700