用户名: 密码: 验证码:
年龄相关性听力减退大鼠听觉神经通路形态学和相关蛋白质组学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验在3月龄、18月龄大鼠听觉神经通路形态学研究的基础上,旨在通过对不同年龄大鼠蜗核、听皮层组织蛋白质组的差异分析,初步探讨年龄相关性听力减退大鼠听觉神经通路蛋白质水平的变化,为进一步确定听觉老化相关蛋白打下基础。
     方法:①通过脑干电反应测听(ABR),乙酰胆碱酯酶染色耳蜗基底膜铺片,蜗核、听皮层石蜡切片甲苯胺兰染色等方法分别对3月及18月龄大鼠(各10只)8KHz听阈,耳蜗、蜗核、听皮层形态进行对比研究。②应用双向凝胶电泳分离技术(2—DE)、质谱技术(MS),对3月及18月龄大鼠蜗核及听皮层组织进行蛋白质组差异分析。③应用免疫组化技术验证已鉴定的差异蛋白质点。
     结果:①ABR检测显示3月龄和18月龄大鼠8KHz听阈分别为14.5±2.84dBSPL和33.5±4.12dBSPL,差异有显著性(P<0.01)。②形态学研究发现18月龄大鼠耳蜗底回传出神经末梢较3月龄大鼠减少36%,缺失以2、3排外毛细胞为主。耳蜗核神经元数量较3月龄大鼠减少24%,但听皮层神经元数量无明显差异。③蛋白质组差异分析显示:3月龄和18月龄大鼠蜗核、听皮层组织蛋白质组间存在差异,经肽质指纹图谱(PMF)分析初步鉴定了醛缩酶C、γ—氨基丁酸转氨酶、内质网蛋白29、蛋白二硫化异构酶A3、亮氨酸氨基肽酶、NAD依赖性去乙酰基转移酶、神经胶质纤维酸性蛋白、甘油醛—3—磷酸脱氢酶、NADH脱氢酶1α亚复合体10、二氢蝶啶还原酶、谷氨酸脱氢酶、confilin-1和Nipsnap1 13个蛋白质。这些蛋白质可能与听觉系统的老化相关。④通过对已鉴定蛋白质——NAD依赖性去乙酰基转移酶(SirT2)的免疫组化验证,证实该蛋白质在18月龄大鼠蜗核中表达下降。
     结论:①18月龄大鼠听觉神经通路已有明显老化。②3月龄大鼠和18月龄大鼠蜗核、听皮层组织蛋白质组间存在差异,这些差异表达蛋白质可能与年龄相关性听力减退有关。
Objective:The study was to explore the age-related hearing impairment related to morphology and proteomics in the auditory neuropathway in Wistar rats,through morphological study and proteomics in the auditory cortex and the cochlear nuclei in the three-month-old rats and the eighteen-month-old rats.
     Methods:①Auditory brainstem response(ABR)was assessed in the three-month-old rats and the eighteen-month-old rats.Cochlear acetycholinesterase staining,Cochlear nuclei and auditory cortex neurons Toluidine blue staining were used in the morphological study.②Two-dimensional gel electrophoresis(2-DE)and Mass spectrometry(MS)were used to detect the difference proteins in the auditory cortex and the cochlear nuclei between the three-month-old rats and the eighteen-month-old rats.③Immunohistochemistry was used to validate the difference proteins.
     Result:①ABR threshold in the eighteen-month-old rats (33.5±4.12dBSPL)was significantly increased,compared with that in the three-month-old rats(14.5±2.84dBSPL)(P<0.01).②Cochlear acetycholinesterase staining showed that the density of efferent nerve endings in the basal turn is less 36%in the eighteen-month-old rats relative to the three-month-old rats,and the loss of never endings was found mostly at the second and the third row of outer hair cells.③The number of neurons of the cochlear nuclei in the eighteen-month-old rats were less 24%than the three-month-old rats.However,the distribution of neuron in the auditory cortex was not markedly changed in two groups.④The differences in protein expression in the auditory cortex and the cochlear nuclei between the three-month-old rats and the eighteen-month-old rats were found,by means of identification of protein spots from 2-DE gels. 13 peptide mass fingerprints(PMF)maps were obtained by MALDI-TOF-MS,and Fructose-bisphosphate aldolase C,Gama-aminobutyrate aminotransferase,Endoplasmic reticulum protein 29,Disulfide isomerase associated 3,NAD-dependent deacetylase sirtuin-2,Leucine aminopeptidase 3,Dihydropteridine reductase(with NADH),Ndufa10 protein,glial fibrillary acidic proteins,Cofilin-1,glutamate dehydrogenase [NAD(P)],Dihydrolipoamide dehydrofenase,Nipsnap1protein(Fragment), Glyceradehyde-3-phosphate dehydrogenase were identified.⑤The immunohistochemical study demonstrated that SirT2 expression in the cochlear nuclei of the eighteen-month-old rats were decreased.
     CONCLUSION:①Auditory neuropathway of the eighteen-month-old rats had been significantly degenerated.②The differences in the protein expression in the auditory cortex and the cochlear nuclei between the three-month-old rats and the eighteen-month-old rats were found,which may be related to age-related heating impairment.
引文
[1]徐绍勤,彭斌,刘佳运,等.复聪片及其拆方拮抗庆大霉素耳毒性反应的实验研究.中国中西医结合杂志,1998,6:
    [2]方耀云,杨旭春,姜泗长,等.不同年龄大鼠耳蜗核细胞的定量观察.临床耳鼻咽喉科杂志.1997,3:99-102
    [3]George Paxinos,Charles Watson.The rat brain instereotaxic coordinates.Academic press 1998
    [4]姜泗长主编 耳解剖学与颞骨组织病理学 北京 人民军区出版社出版1999
    [5]邱建华,王锦玲,黄维国,等.豚鼠耳蜗核内γ—氨基丁酸和谷氨酸免疫反应阳性结构观察.第四军医大学学报,1996,17:161-164
    [6]陈主初.绪论.见:陈主初,梁宋平主编,肿瘤蛋白质组学,湖南科学技术出版社,2002,1-7
    [7]Issaq HJ.The role of separation science in protemics research.Electrophoresis,2001,22:3629-3638
    [8]Klose J.Large-gel 2D electrophoresis.Methods Mol Biol,1999,112:147-172
    [9]Muller DR,Schindler P,Coulot M,etal.Mass spectrometric characterization of ststhmin isoforms separated by 2-D PAGE.J Mass Spectrom,1999,34:336-345
    [10]Graves PR,Haystead TA.Molecular biologist's guide to proteomics.MicrobiolMol Biol Rev,2002,66:39-63
    [11]Mann M,Hendrickson RC,Pandey A.Analysis of proteins and proteomes by mass spectrometry.Annu Rev Biochem,2001,70:437-473
    [12]Lahm HW,Langen H.Mass spectrometry:A tool for the identification of proteins separated gy gels.Electrophoresis,2002,21:2105-2114
    [13]王贤纯,梁宋平.电喷雾串联质谱图的叠合与多肽序列分析.生物化学与生物物理学报,2001,33(6):665
    [14]Vihinen M.Bilinformatics in protemics.Biomol Eng,2001,18:241-248.
    [15]Fenyo D.Identifying the proteome:software tools.Curr Opin Biotechnol, 2000,11:391-395
    [16]Gorg A,Obermaier C,Boguth G,et al.The current state of two-dimensional electrophoresis with immobilized pH gradients.Electrophoresis,2000,21:1037-1053
    [17]詹显全,陈主初,关勇军,等.双向凝胶电泳-飞行时间质谱法分析人肺鳞癌细胞NCI—H520蛋白质组成分.癌症,2001,20:575-582
    [18]李峰,陈主初.双向凝胶电泳图像分析与数据库的构建.见:陈主初,梁宋平主编,肿瘤蛋白质组学.湖南科学技术出版社2002,37-48
    [19]贾宇峰,林秋霞,郭尧君,等.蛋白质双向电泳图像分析.生物化学与生物物理进展,2001,28:247-250
    [20]陈平,谢锦云,梁宋平.双向凝胶电泳银染蛋白质点的肽质量指纹图谱分析.生物化学与生物物理学报,2000,32:387-391
    [21]梁宋平,陈平,王贤纯.蛋白质鉴定技术.见:陈主初,梁宋平主编,肿瘤蛋白质组学,湖南科技学术出版社,2002,49-109
    [22]詹显全,关勇军,李翠,等.人肺腺瘤细胞A—549和正常细胞HBE 的蛋白质组差异分析.生物化学与生物物理学报,2002,34:50-56
    [23]Chambers G,Lawtie L,Cash P,et al.Proteomics:a new approach to the study of disease.J Pathol,2000,192:280-288
    [24]Banks RE,Dunn MJ,Hochstrasser DF,et al.Proteomics:new perspectives,new biomedical opportunities,Lancet,2000,356:1749-1756
    [25]Rappsilber J,Mann M.What does it mean to identify a protein in proteomics?Trends Biochem Sci,2002,27:74-78
    [26]张程.老年性聋病因分子水平研究进展.国外医学耳鼻咽喉科分册,2000,4:210-212
    [27]王鲁宁,杨国锋,何思志,等.人小脑与额叶的比较蛋白质组学分析.中华内科杂志,2005,44(4)254-257
    [28]Sirover MA.Emerging new functions of the glycolytic protein,glyceraldehyde-3-phosphate dehydrogenase in mammalian cells(J)Life Sci,1996,58(25):2271-2277.
    [29]Sirover MA.New insights into an old protein:the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase(J)Biochim Biophys Acta,1999,1432(2):159-184
    [30]Hollan S,Vecsei L,Karg E,et al.Glycolytic enzyme defects and neurodegeneration(J).C R Seances Soc Biol Fil,1998,192(5):929-945
    [31]Tomohiro Nakamura,ZeZong Gu,Stuart Aet al Contribution of glutamatergic signaling to nitrosative stress-induced protein misfolding in normal brain aging and neurodegenerative diseases.Aging Cell,2007,(6)351-359
    [32]Wen Chen,Jianguo Ji,Binggen Ru et al.Proteomic Analysis of Corticobasal Degeneration:A Case Study of Corticobasal Degeneration at the Proteome Level.J Neuropsychiatry Clin Neurosci,2005,17(3):364-371
    [33]Vartiainen MK,Mustonen T,Mattila PK,et al:The three mouse actin-depolymerizing factor/cofilins evolved to fulfill cell-type-specific requirements for actin dynamics.Mol Biol Cell,2002,13(1):183-94
    [34]Surendran S,Tyring SK,Matalon R.Expression of calpastatin,minopontin,NIPSNAP1,rabaptin-5 and neuronatin in the phenylketonuria(PKU)mouse brain:possible role on cognitive defect seen in PKU.Neurochem Int.2005Jun;46(8):595-9
    [35]章波,粟永萍,艾国平,等.γ射线照射前后IEC—6细胞蛋白质组的差异分析.第三军医大学学报,2003,24:2157-2160
    [36]张喻,徐卉,张颖,等.PSI诱导PC12细胞帕金森病模型中ERp29蛋白表达.吉林大学学报(医学版)2007,2:249-252
    [37]许丹,王鲁宁,桂秋萍,等.脑老化及阿尔茨海默病患者脑中星形胶质细胞及小胶质细胞改变的观察.中华老年心脑血管病杂志,2005,7(3):181-183
    [38]金剑,李柱一,林宏.大鼠生后中枢神经系统S100B和胶质纤维酸性蛋白表达的变化.解剖学报,2007,38(3):259-264
    [39]Wang F,Nguyen M,Qin FX et al.SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction.Aging Cell.2007 Aug;6(4):505-14.Epub 2007 May 23
    [40]邱建华,王锦玲.听觉通路神经递质.见:谢鼎华,杨伟炎主编,耳聋的基础与临床,2003,75-95
    [41]Felder E,Schrott-Fischer A.Quantitative evaluation of myelinated nerve fibres and hair cells in cochleae of humans with age-related high-tone hearing loss.Hear Res.1995 Nov;91(1-2):19-32
    [42]Felix H,Pouak A,Gleeson M.Degeneration pattern of human first-order cochlear neurons.Adv otorhinolaryngol,2002,59:116-23
    [43]Welsh LW,Welsh JJ,Healy MP,et al.Central presbycusis.Laryngoscope.1985 Feb;95(2):128-36
    [44]Schuknecht HF,Gacek MR.Cochlear pathology in presbyacusis.Ann Otol Rhinol Laryngol 1993;102:1-16
    [45]Hwquembourg S,Liberman MC,Spiral ligament pathology:A major aspect of age-related cochlear degeneration in C57BL/6 mic.JARO,2001,2:118-129
    [46]Frisina RD,Waltong JP.Aging of the mouse central auditory system,In;JF Willot JF,Handbook of mouse auditory research:From behavior to molecular biology,Boca raton:CRC press.2000,339-380
    [47]Koehnke JD,Besing JM.The effects of aging on binaural and spatial hearing.Semin Hear,2001,22:241-253
    [48]徐绍勤,刘佳运,彭斌等.复聪片对老年大鼠蜗神经结构影响的实验研究.中国中西医结合耳鼻咽喉杂志,2001,9(1):6-8
    [49]Arnesen AR.Presbycusis-loss of neurous in the human cochlear nuclei.J Laryngol Otol.1982;96:503,11
    [50]Seidman MD.Effects of dietary restriction and antioxidants on presbyacusis.Laryngoscope 2000,110:728-738.Review
    [51]李胜利,郑庆印,闫利英等.增龄相关听力丧失小鼠耳蜗毛细胞表型与基因突变的关系.西安交通大学学报(医学版),2004,25(6):534-537
    [52]Idrizbegovic E,Salman H,Niu X et al.Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice.Hear Res.2006Jun-Jul;216-217:198-206
    [53]Ouda L,Nwabueze-Ogbo FC,Druga R,et al.NADPH-diaphorase-positive neurons in the auditory cortex of young and old rats.Neuroreport.2003 Mar 3;14(3):363-6
    [54]Spoendlin H.Neuroanatomical basis of cochlear coding mechanisms. Audiology,1975;14:383
    [55]Hilding D,Wersall J.Cholinesterase and its relation to the nerve endings in the inner.Acta Otolaryng 1962;55:205
    [56]丁大连,郑向阳,胡博华等.耳蜗Corti氏隧道中传出神经纤维的定量观察方法.耳鼻喉学报,1998;12(2):65-68
    [57]谢鼎华,郭运凯,伍伟景等.庆大霉素对内侧橄榄耳蜗传出神经毒性作用的形态学观察.中华耳鼻咽喉科杂志,1999;34(3):157-159
    [58]Leferbvre P,Malgrange B,Van de Water T et al.Regeneration of the neurosensory structures in the mammalion inner ear,Acta otorhinolaryngolbelg,1997;51(1):1-10
    [1]Castano EM,Roher AE,Esh CL,et al.Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer's disease and non-demented elderly subjects.Neurol Res.2006 Mar;28(2):155-63.
    [2]Puchades M,Hansson SF,Nilsson CL,et al.Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease.Brain Res Mol Brain Res.2003 Oct 21;118(1-2):140-6
    [3]Davidsson P,Sjogren M The use of proteomics in biomarker discovery in neurodegenerative diseases.Dis Markers.2005;21(2):81-9
    [4]Soreghan BA,Lu BW,Thomas SN,et al.Using proteomics and network analysis to elucidate the consequences of synaptic protein oxidation in a PS1+AbetaPP mouse model of Alzheimer's disease.J Alzheimers Dis.2005 Dec;8(3):227-41.
    [5]Korolainen MA,Auriola S,Nyman TA,et al.Proteomic analysis of glial fibrillary acidic protein in Alzheimer's disease and aging brain.Neurobiol Dis.2005Dec;20(3):858-70.
    [6]Choi J,Forster MA,McDonald SR,et al.Proteomic identification of specific oxidized proteins in ApoE-knockout mice:relevance to Alzheimer's disease.Free Radic Biol Med.2004 May 1;36(9):1155-62.
    [7]Castegna A,Thongboonkerd V,Klein JB,et al.Proteomic identification of nitrated proteins in ALzheimer's disease brain.J Neurochem.2003 Jun;85(6):1394-401.
    [8]Sultana R,Poon HF,Cai J,et al.Identification of nitrated proteins in AIzheimer's disease brain using a redox proteomics approach.Neurobiol Dis.2006Apr;22(1):76-87.
    [9]Butterfield DA,Poon HF,St Clair D,et al.Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment:insights into the development of AIzheimer's disease.Neurobiol Dis.2006 May;22(2):223-32.
    [10]Poon HF,Farr SA,Banks WA,et al.Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the Abeta region of amyloid precursor protein.Brain Res Mol Brain Res.2005 Jul 29;138(1):8-16.
    [11]Poon HF,Farr SA,Thongboonkerd V,et al.Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid:implications for aging and age-related neurodegenerative disorders.Neurochem Int.2005Jan;46(2):159-68.
    [12]Calabrese V,Scapagnini G,Colombrita C,et al.Redox regulation of heat shock protein expression in aging and neurodegenerative disorders associated with oxidative stress:a nutritional approach.Amino Acids.2003 Dec;25(3-4):437-44.
    [13]Sultana R,Peduigi M,Butterfield DA.Redox proteomics identification of oxidatively modified proteins in Alzheimer's disease brain and in vivo and in vitro models of AD centered around Abeta(1-42).J Chromatogr B Analyt Technol Biomed Life Sci.2006 Mar 20;833(1):3-11.
    [14]Sultana R,Boyd-Kimball D,Poon HF,et al.Oxidative modification and down-regulation of Pinl in AIzheimer's disease hippocarnpus:A redox proteomics analysis.Neurobiol Aging.2006 Jul;27(7):918-25.
    [15]Bibl M,Mollenhauer B,Esselmann H,et al.CSF amyloid- beta-peptides in Alzheimer's disease,dementia with Lewy bodies and Parkinson's disease dementia.Brain.2006 May;129(Pt 5):1177-87.
    [16]Mollenhauer B,Bibl M,Wiltfang J,et al.Total tau protein,phosphorylated tau(181p)protein,beta-amyloid(1-42),and beta-amyloid(1-40)in cerebrospinal fluid of patients with dementia with Lewy bodies.Clin Chem Lab Med.2006;44(2):192-5.
    [17]Jin J,Li GJ,Davis J,et al.Identification of novel proteins interacting with both a-synuclein and DJ-1.Mol Cell Proteomics.2006 Jul 18.
    [18]Conn KJ,Gao W,McKee A,et al.Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology.Brain Res.2004 Oct 1;1022(1-2):164-72.
    [19]Jin J,Hulette C,Wang Y,et al.Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics. 2006 Jul;5(7): 1193-204.
    [20] Periquet M, Corti O, Jacquier S,et al. Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function. J Neurochem. 2005 Dec;95(5): 1259-76.
    [21] Palacino JJ, Sagi D, Goldberg MS,et al. Mitochondrial dysfunction and oxidative damage in Parkin-deficient mice. J Biol Chem. 2004 30;279(18)18614-22.
    [22] De Iuliis A, Grigoletto J, Recchia A,et al. A proteomic approach in the study of an animal model of Parkinson's disease. Clin Chim Acta. 2005 Jul 24;357(2):202-9.
    [23] Holtz WA, Turetzky JM, O'Malley KL.et al. Microarray expression profiling identifies early signaling transcripts associated with 6-OHDA-induced dopaminergic cell death. Antioxid Redox Signal. 2005 May-Jun;7(5-6):639-48.
    [24] Poon HF, Frasier M, Shreve N,et al. Mitochondrial associated metabolic proteins are selectively oxidized intransgenic mice—a model of familial Parkinson's disease. Neurobiol Dis. 2005 Apr;18(3):492-8.
    [25] Choi J, Levey AI, Weintraub ST,et al. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal-hydrolase L1 associated with idiopathic Parkinson'and Alzheimer's diseases. J Biol Chem. 2004 Mar 26; 279(13):13256-64.
    [26]Choi J, Rees HD, Weintraub ST, etal. Oxidative modifications and aggregation of Cu,Zn-superoxide dismutase associated with Alzheimer and Parkison diseases J Biol Chem. 2005 Mar 25;280(12):11648-55.
    [27] Poon HF, Vaishnav RA, Getchell TV,et al. Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brain of old mice. Neurobiol Aging. 2006 Jul;27(7):1010-9.
    [28] Poon HF, Shepherd HM, Reed TT,et al.Proteomics analysis provides insight into caloric restriction mediated oxidation and expression of brain protein associated with age-related impaired cellular processes: Mitochondrial dysfunction, glutamate dysregulation and impaired protein synthesis. Neurobiol Aging. 2006 Jul;27(7): 1020-34.
    [29] Poon HF, Calabrese V, Calvani M,et al. Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by L-acetylcarnitine :insight into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):381-94.
    [30]Sacksteder CA, Qian WJ, Knyushko TV,et al. Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry. 2006 Jul 4;45(26):8009-22.
    [1]FDA consumer magazine,May-June 2005 Issue.
    [2]Espmark AK,Rosenhall U,Erlandsson S,The two faces of presbyacusis:hearing impairment and psychosocial consequences.Int J Audiol.2002 Mar;41(2):125-35
    [3]Gates GA,Feeney MP,Higdon RJ.Word recognition and the articulation index in older listeners with probable age-related auditory neuropathy.J Am Acad Audiol.2003 Dec;14(10):574-81.
    [4]张守知,等.老年前期与老年期听觉脑干反应的观察。中华医学杂志,1986,66:614。
    [5]Dai P,Yang W,Jiang S et al.The effects of aging and hearing loss on distortion product otoacoustic emissions.Acta otolaryngol.2004 Mar;124(2):130-6.
    [6]Namyslowski G,Morawski K,Urbaniec P et al.The 2f1-f2 DPOAE amplitudes and latencies in the groups of older people with presbyacusis and young people with normal hearing.Otolaryngol Pol.2000;54(4)423-9.
    [7]Chandler JR.Partial occlusion of the external auditory meatus:its effect upon air and bone conduction hearing acuity.Laryngoscope 1964;74:22-45.
    [8]Rosenwasser H.Otic problems in the aged.Geriatrics.1964;19:11-17
    [9]Feeney MP,Sanford CA.Age effects in the human middle ear:wideband acoustical measures.J Acoust Soc Am.2004,Dec;116(6):3546-58.
    [10]Schuknecht HF,Gacek MR.Cochlear pathology in presbyacusis.Ann Otol Rhinol Laryngol 1993;102:1-16.
    [11]Hwquembourg S,Liberman MC,Spiral ligament pathology:A major aspect of age-related cochlear degeneration in C57BL/6 mic.JARO,2001,2:118-129.
    [12]Frisina RD,Waltong JP.Aging of the mouse central auditory system,In;JF Willot JF,Handbook of mouse auditory research:From behavior to molecular biology,Boca raton:CRC press.2000,339-380.
    [13]Amesen AR.Presbycusis-loss of neurous in the human cochlear nuclei.J Laryngol Otol.1982;96:503-11
    [14]方耀云,杨旭春,姜泗长等.不同年龄大鼠耳蜗核细胞的定量观察.临床耳鼻咽喉科杂志.1997;11(3):99-102.
    [15]Welsh LW,Welsh JJ,Healy MP,et al.Central presbycusis.Laryngoscope.1985 Feb;95(2):128-36.
    [16]Chisolm TH,Willott JF,Lister JL.The aging auditory system:anatomic and physiologic changes and implications for rehabilitation.Int J Audiol 2003;42:2S3-10.
    [17]潘曦.谷氨酸及其受体与耳蜗神经元死亡的关系.听力学及言语疾病杂志.2005,13:64.
    [18]杨卫平,方耀云,武方明,等.成年与老年大鼠耳蜗核胆碱乙酰化酶免疫组织化学研究.中国组织化学与细胞化学杂志.1998,7:475-478.
    [19]杨卫平,武方明,方耀云,等.老年大鼠耳蜗核γ-氨基丁酸免疫反应的变化.中华医学杂志,1998,78:30-32.
    [20]蒋学范,董雪蕾,蒋月星.老年大鼠听性脑干核团谷氨酸脱羧酶免疫反 应的变化.临床医学,2005,25(1):10-12.
    [21]杨卫平,姜泗长,杨伟炎等.老年大鼠耳蜗核钾离子通道在爪蟾卵母细胞中的表达.Chin J Geriar,1998,17:370-372.
    [22]Johnson KR,Erway LC,Cook SA,et al.A major gene affecting age-related hearing loss in C57BL/6J mice.Hear Res,1997,114(1-2):83-92.
    [23]Johnson KR,Zheng QY,Erway LC.A major gene affecting age-related hearing loss is common to at least ten inbred stains of mice.Genomics,2000,70(2):171-180.
    [24]Zheng QY,Johnson KR.Hearing loss associated with the modifier of deaf waddle(mdfw)locus corresponds with age-related hearing loss in 12 inbred strains of mice.Hear Res,2001,15 4(1-2):45-53.
    [25]Noben-Trauth K,Zheng QY,Johnson KR.Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss.Nat Genet,2003,35(1):21-23.
    [26]Di Palma F,Holme RH,Bryds EC,et al.Mutations in Cdh23,encoding a new type of cadherin,cause stereocilia disorganization in waltzer,the mouse model for Usher syndrome type 1D.Nat Genet,2001,27(1):103-107.
    [27]Davia RR,Kozel P,Erway LC.Genetic influences in individual susceptibility to noise:a review.Noise Health,2003,5(20):19-28.
    [28]Johnson KR,Zheng QY.Ahl2,a second locus affecting age-related hearing loss in mice.Genomics,2002,80(5):461-464.
    [29]Nemoto M,Modta Y,Mishima Y,et al.Ahl3,a third locus on mouse chromosome 17 affecting age-related hearing loss.Biochem Bilphys Res Commun,2004,324(4):1283-1288.
    [30]Stern RE,Lalwani AK,Audiologic evidence for further genetic heterogeneity at DFNA2.Acta Otolaryngol,2002,122(7):730-735.
    [31]Zhu M,Yang T,Wei S,et al.Mutations in the γ-actin gene(ACTG1)are associated with dominant progressive deafness(DFNA20/26).Am J Hum Genet,2003,73(5):1082-1091.
    [33]Bai U,Seidman M.D,Hinojosa R,et al.Mitochondrial DNA deletions associated with aging and possibly presbycusis.a human archival temporal bone study,Am J Otol,1997,18:449-453.
    [34]韩维举,韩东一,姜泗长,等.人听觉器官线粒体DNA~(4977)缺失与老年性聋的关系.中华耳鼻咽喉科杂志,2000,35:416-419.
    [35]韩维举,韩东一,杨伟炎,等.听觉器官线粒体DNA缺失在老年聋发病中的意义.Chinese Journal Of Otology,2003,1,14-18.
    [36]Schroder R,Vielhaber S,Wiedemann FR,et al.New insights into the metabolic consequences of large-scale mtDNA deletions:a quantitative analysis of biochemical,morphological,and genetic findings in human skeletal muscle.J Neuropathol Exper Neurol,2000,59:353-360.
    [37]Seidman MD,Bai U,Khan MJ,et al.Association of mitochondrial DNA deletions and cochlear pathology:a molecular biologic tool.Laryngo-scope,1996,106(6):777-783.
    [38]Kong WJ,Hu YJ,Wang Q,et al.The effect of the mtDNA4834 deletion on hearing.Biochem Biophys Res Commun.2006 May 26;344(1):425-30.
    [39]Seidman MD,Khan MJ,Dolan DF,et al.Age-related difference in cochlear microcirculation and auditory brainstem response.Arch otolaryngol Head Neck Surg,1996,122:1221-1226.
    [40]Toru Suzuki.Age-related changes in cochlear blood flow response to occlusion of anterior inferior cerebellar artery in mice.Ann otol rhinol laryngol,1998,107:648-653.
    [41]Lautermann J,Crann SA,Mclaren J,et al.Glutathione-dependent antioxidant systems in the mammalian inner ear:effects of aging,ototoxic drugs and noise.Hear Res.1997,114(1-2):75-82.
    [42]张向阳,钱欣梅.自由基代谢与老年性聋关系研究.中国老年学杂志,1998,18:366-367.
    [43]Seidman MD.Effects of dietary restriction and antioxidants on presbyacusis[J].Laryngoscope,2000,110:727-738.
    [44]Seidman MD,Khan MJ,Bai U,et al.Biologica activity of mitochon-drial metabolites on aging and age-related hearing loss.Am JOtol,2000,21:161-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700