用户名: 密码: 验证码:
水稻基因和sRNA表达数量性状位点研究与调控网络构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体在时空条件下通过RNA转录、蛋白翻译、代谢物积累、表观调控等协同作用,维系生物体的平衡,适应多变的生存环境。在全基因组水平进行表达数量性状位点研究并构建调控网络,可以更全面地阐述基因或sRNA等在时空特异条件下的调控模式,探索基因与sRNA在表达调控中的上游调控因子与下游靶标,挖掘基因和sRNA的功能,并揭示它们在维系生物体稳态中发挥的作用。
     表达数量性状位点(eQTL)分析就是把基因或sRNA等在群体中的表达量作为数量性状(即表达性状)进行QTL定位,检测控制RNA表达变异的遗传位点。不同于传统的QTL定位,eQTL定位还可以鉴定表达性状变异的调控模式即顺式作用(cis-eQTL)或反式调控(trans-eQTL)。寻找控制表达性状遗传变异的trans-eQTL,即鉴定表达性状的上游调控因子,是eQTL研究的一个重要的任务。同时,一个调控子的表达变异也可能定位到trans-eQTL,被其它因子所调控。这种多个表达性状和其trans-eQTLs所揭示的调控子和靶标的相互关系便形成一种网状的结构,为调控网络的构建提供了最基本的元件。所以整合eQTL和共表达分析可以用来鉴定候选调控子,增加检测的力度。本研究结果如下:
     1.发芽72h苗期样品eQTL研究
     我们将珍汕97、明恢63以及由其杂种F1通过单粒传多代自交获得的重组自交系(110RILs)浸种催芽,取露白72h后的幼芽,提取RNA,与Affymetrix GeneChip Rice Genome Array杂交并获取全基因组探针组信号值。利用601个重组bins的遗传连锁图,和复合区间作图方法(CIM)进行全基因组eQTL定位。通过全基因组排列测验,获得eQTL定位的LOD阈值3.12(P=0.05)。16,372个e-traits共获得了26,051个eQTLs。其中4464个是cis-eQTLs,相对于trans-eQTLs, cis-eQTLs具有更大LOD值,并能解释更多的表达量的变异。
     eQTL并不是随机分布在各个染色体上,在第三、第五、第十染色体上出现了明显的富集,可能存在eQTL热点。我们以每1cM为区间,统计每个区间内eQTL的个数,鉴定了171个潜在的热点区,并对这些热点区进行GO功能富集分析。在所有可能的热点区中,有21个GO类在37个热点区中显著富集。其中GO:0006259(DNA代谢)在5个热点区都存在显著的富集(Chr03:401-402cM、Chr05:717-718cM、Chr10:1205-1206cM、Chr10:1243-1244cM、Chr10:1244-1245cM)。同时结合基因在群体水平的共表达分析鉴定了调控这些DNA代谢相关基因的候选调控子。
     通过计算所有定位到cis-eQTL的4464个表达性状与其置信区间内共定位的trans-eQTLs所对应e-traits的表达相关性,鉴定了99个基因与多于30个具有trans-eQTLs共定位的e-traits显著共表达。其中有24个基因与100-425个具有trans-eQTLs共定位的e-traits显著共表达,而这些最显著的候选调控子并不是转录因子,因此非转录因子基因也可以在全基因组基因表达调控中发挥重要的作用。
     通过比较苗期干重QTL定位的LOD值曲线和eQTL热点图谱,发现传统表型QTL和eQTL的热点区有重叠,而且重叠区域内大量共定位的eQTLs对应的表达性状与表型性状值显著相关,该表型可能是由大量基因的相互调控导致的。
     2.水稻见穗期剑叶eQTL的研究
     本研究利用水稻全基因组芯片获取珍汕97、明恢63以及其重组自交系群体(210RILs)的见穗期剑叶组织的表达谱,并结合1619个重组bins图谱定位控制水稻剑叶时期基因表达变异的遗传因子,即表达数量性状位点(eQTLs)。了解控制各表达性状变异的作用模式(cis-eQTL及trans-eQTL),鉴定trans-eQTLs调控热点,并构建水稻时空特异性的基因表达调控网络。
     以探针组在至少三分之一的RILs中表达为筛选阈值,获得了21,929个具有MSUV6.1注释的表达性状(e-traits)。结合1619个重组bins标记构成的高密度图谱,进行全基因组eQTL定位。10,725个e-traits共获得13,647个eQTLs,包括37.2%的顺式作用的eQTLs,以及62.8%的反式调控的eQTLs。根据物理图谱和遗传图谱的分布,有4条染色体上的eQTL数比期望的要多,可能存在eQTL分布热点。通过卡方测验检测每个bin中实际定位的trans-eQTLs和期望的trans-eQTLs以及超几何测验检测每个bin中观测到的trans-eQTLs和定位到cis-eQTL的e-traits,共获得了138个显著的trans-eQTL热点bins (P<0.01)。
     通过整合见穗期剑叶eQTL对应的e-traits的表达图谱和基因注释(功能相关的基因,如GO分类等)以及一种扩展的迭代组合分析方法可以对控制基因表达变异的候选调控子进行筛选。利用参与相同生物学功能的基因进行网络构建,可以帮助我们分析基因调控的上下游关系,并减少假阳性的产生,有助于提高网络构建的可行性。通过GO注释信息与文献中提到的水稻开花相关基因与穗发育相关基因的收集,得到177个相关e-traits,共定位到170个trans-eQTLs和109个cis-eQTLs,其中61个cis-eQTLs的置信区间与至少一个开花相关trans-eQTLs共定位,被定义为group(候选调控子),与cis-eQTL共定位的trans-eQTLs所对应的开花基因为每个group的members,是候选靶标基因。通过计算所有候选调控子和候选靶标的表达相关性,利用iGA(迭代组合分析)的方法,我们鉴定了8个调控子,并根据调控子和靶标基因之间的相互作用情况构建了见穗期开花相关基因的调控网络。为了确认该网络的真实性,我们利用珍汕97和珍汕97背景的Ghd7近等基因系NIL (mh7)的见穗期剑叶材料检测了Ghd7下游靶标的转录水平。约80%的统计结果能够得到实验的验证。
     我们同样将此策略运用到产量相关的表型QTL。phQTLs和trans-eQTLs热点的重叠说明定位到热点区的trans-eQTLs对应的表达性状或多或少都会与相应的表型相关。有些直接控制某种农艺性状,有些则通过作用于某些基因与该性状相关,而有的则是因为该性状的产生导致了基因表达的变化,存在一种反馈调节。
     3. sRNA在永久F2群体中的表达变异
     表达数量性状位点在发掘控制基因表达水平的遗传变异位点上已经取得了相当大的进展,可以在全基因组水平鉴定特异的顺式、反式调控区域,构建基因表达调控网络。eQTL定位的概念也可以扩展到sRNA的表达变异,用来检测控制群体中sRNA表达变异的遗传组分。我们利用永久F2群体分析了sRNA在该群体中的表达变异、变异方式和特征,试图解析调控sRNA表达变异的遗传调控因子。
     我们首先构建了SNP替换的亲本参考基因组。对所有的杂合材料,同时将reads比对到珍汕97参考基因组和明恢63参考基因组。最后比对的reads将分成三种类型。亲本之间保守的sRNAs;在杂合材料中等位特异表达的sRNAs;特异来源于某一亲本的sRNAs。0.71%含有SNP位点的sRNAs和17%亲本特异表达的sRNA与珍汕97和明恢63的遗传多态性相关。
     sRNA表达性状在基因组上分布非常广泛,大量的sRNA表达性状都集中在基因启动子区(基因上游2kb)和基因3’端(基因下游500bp)。24nt的sRNAs在sRNA王国中是最丰富的,充分表现了其序列多态性,而21nt的sRNA具有更高的表达丰度。总共有563,904个sRNA e-traits定位到81,096个sQTLs(eQTLs for sRNA e-traits),其中45,438个sQTLs(56.0%)表现出显著的显性效应(P<0.05,1000permutations)。其中92.3%sQTLs位点呈现出显著的负向显性效应,即调控sRNA表达变异的位点在杂合材料中的表达水平比中亲值要低。揭示了群体中sRNA表达变异的显性负调控模式,与中亲值相比,更多的sRNA在杂合基因型材料中呈现出下调的趋势。同时大约96%的具有显著超显性效应的sQTLs都是trans-sQTLs。认为在水稻永久F2群体中,负向显性的trans-sQTLs在sRNA的表达变异中发挥着主导作用。
     不同于控制基因表达变异的eQTLs, cis-sQTLs同样具有热点,这是由sRNA表达性状的富集产生的。共获得了317个cis-sQTLs的热点bins (p<0.01),最显著的5个热点区在第二、第三和第七染色体。同样有385个bins是trans-sQTLs的热点区。最显著的5个热点在第四、第五和第九染色体。大多数cis-sQTLs和trans-sQTLs的热点区都是不同的。对24nt的sQTL而言,最显著的trans-sQTL热点是Bin770(Chr05)和Bin635(Chr04),而21nt的trans-sQTL热点是Bin841(Chr06)和Bin449(Chr03)。
     通过比较OsDCLs、OsAGOs和OsRDRs的eQTLs与trans-sQTL热点共定位的情况,发现这些基因虽然在sRNA的生物合成中发挥着至关重要的作用,但却不是控制大量sRNAs表达变异的trans-sQTL(主调控子)。
     miQTLs定位结果显示miRNA的不同变体在复杂的转录过程中受到不同的遗传因子的调控。而且在遗传群体变异的水平上,miRNA对其相应的调控靶标并没有显著的负调控效应。
Expression of genes or small RNAs (sRNAs) is coordinately regulated in space and time in an organism to deliver the gene products when needed, according to the developmental programs and in response to environmental cue. The ability to reveal the regulatory architecture of the genes/sRNA at the whole genome scale by constructing the regulatory network is critical for understanding the biological processes and genome function of the organism.
     Analysis of expression QTLs (eQTLs) that treats the expression values of the genes or sRNA as a quantitative trait (e-trait) to perform QTL analysis using a genetically segregating population appears to be a useful strategy for suggesting regulatory relationships between genetical factors. Similar to QTL analysis, this analysis can detect genetic elements that regulate the expression variation of the e-trait acting in cis if the QTL is located in the vicinity of e-trait, or trans if it is located in a distant position. Such analysis could suggest the existence of a potential regulator in a genomic region for a gene (e-trait). Moreover, one regulator could be the target of another regulator. Thus connecting such regulator-target relations revealed by multiple e-traits and eQTLs of different layers would lead to a net-like structure, providing basic elements for the construction of regulatory network. More recently, an approach combining eQTL with co-expression analysis was proposed for identifying regulator candidates underlying eQTLs, which may greatly refine the resolution of the analysis.
     1. eQTL mapping in rice shoots at72h after germination
     In this study, we used an Affymetrix GeneChip Rice GenomeArray to analyze eQTLs in rice shoots at72h after germination from110recombinant inbred lines (RILs) derived from a cross between Zhenshan97and Minghui63using601recombinant bins. We obtained16,372expression traits (e-traits) each with at least one eQTL, resulting in26,051eQTLs in total, including4,464cis-eQTLs. The cis-eQTLs tended to have higher LOD scores than trans-eQTLs. The distribution of the eQTLs deviated significantly (χ2=6924.86, P<2.2e-16) from random occurrence on the12chromosomes.
     We investigated the distribution of eQTLs along the genome by dividing the whole genome into1cM partitions.171potential eQTL hotspots were identified in the rice genome, each of which controls transcript variations of many e-traits. Gene ontology analysis revealed an enrichment of certain functional categories of genes in some of the eQTL hot spots. In particular, eQTLs for e-traits involving the DNA metabolic process was significantly enriched in several eQTL hot spots (Chr03:401-402cM; Chr05:717-718cM; Chr10:1205-1206cM,1243-1244cM,1244-1245cM).
     We calculated correlations of the transcript levels between4,464e-traits with cis-eQTLs and the e-traits with trans-eQTLs located in the1.5LOD-drop support intervals of corresponding cis-eQTLs.99genes showed significant correlations with30or more e-traits that had trans-eQTLs located in these gene regions, including24genes showing co-expression with100-425e-traits. These data indicated that genes other than transcript factors also play important roles as master regulators for gene expression at the whole genome level.
     We also detected correlations between QTLs for shoot dry weight and eQTLs, revealing possible candidate genes for the trait. These results provided clues for the identification and characterization of the regulatory network in the whole genome at the transcriptional level.
     2. eQTL mapping in rice flag leaf at heading stage
     The ability to reveal the regulatory architecture of the genes at the whole genome level by constructing the regulatory network is critical for understanding the biological processes and developmental programs of the organism. Here we conducted an eQTL guided function-related co-expression analysis for identifying the putative regulators and constructing gene regulatory network.
     We performed an eQTL analysis of210RILs derived from a cross between two indica rice lines, Zhenshan97and Minghui63, the parents of an elite hybrid, using data obtained by hybridizing RNA samples of flag leaves at heading stage with Affymetrix whole genome arrays. Making use of an ultra-high density SNP bin map constructed by population sequencing,13,647eQTLs for10,725e-traits were detected, including5079cis-eQTLs (37.2%) and8568trans-eQTLs (62.8%). Four chromosomes (Chr01,Chr03, Chr06, Chr09) had greater numbers of eQTLs than expected based on both physical and genetic maps. The analysis revealed138trans-eQTLs hotspots which were both significantly more than the expectations based on the sizes of the bins (P<0.01) and the numbers of e-traits with cis-eQTLs (P<0.01), each of which apparently regulates the expression variations of many genes.
     Co-expression analysis of functionally related genes within the framework of regulator-target relationships outlined by the eQTLs led to the identification of putative regulators in the system. The usefulness of the strategy was demonstrated with the genes known to be involved in flowering. We presented a simple, yet effective method for gene regulatory network reconstruction using an eQTL guided function-related co-expression analysis. We combined data of gene expression from a rice RIL population, gene functional annotation of a prior knowledge and iGA with the co-expression level to identify candidate regulators. Eight obvious regulatory groups were identified. Ghd7, Hdl and RFT1were identified as master regulators in this analysis, which were the trans-eQTLs for several flowering related genes. To confirm the network, we checked the transcript abundance of the candidate downstream targets for modulator of Ghd7using flag leaves at heading date from Zhenshan97and NIL(mh7) which have identical genetic background except the introgressed segment.80%of the candidate targets were confirmed by experiment result. These discrepancies may be due to differences of the genetic materials (RILs vs NILs) and/or environmental factors, since the cis-eQTL for Ghd7could not fully explain the expression variation of the gene in the population (LOD=67.6,R2=68.5%).
     We also applied this strategy to the analysis of QTLs for yield traits, which also suggested the likely candidate genes. The eQTL-guided co-expression analysis may provide a promising solution for outlining a framework for the complex regulatory network of an organism.
     3. eQTL mapping in rice flag leaf at pre-booting stage
     Thirdly, huge efforts for the analysis of expression quantitative trait loci (eQTLs) have been exploited to discover genetic function loci that explain variation in gene expression levels and identify specific cis or trans regulatory regions at genome-wide scale. The utilization of eQTL mapping could be broadened to small RNA expression variation. In order to detect the regulatory regions that have controlled the expression divergence of sRNAs in population, small RNA-sequencing technologies could be applied to collect the sRNA expression level in flag leaf at pre-booting stage from Zhenshan97, Minghui63and their98IMF2population. These elucidations provided a sight of the genetic composition of sRNA expression variations, especially for dominance effect, and understood the expression regulatory patterns of sRNA expression diversity.
     We constructed SNPs replaced parents' reference genome. Three categories reads from heterozygous materials should be considered,(1) the sRNAs conserved between parents,(2) allele-specific expression sRNAs,(3) specifically aligned to any parent.0.71%SNPs contained sRNAs added17%parents specifically expressed sRNAs might associated with the genetic variation between Zhenshan97and Minghui63.
     81,096sQTLs were obtained for53,904sRNA e-traits, which produced27,375cis-sQTLs in the diagonal and other53,721trans-sQTLs. We identified significant hotspots for sRNA e-traits whether all e-traits and e-traits with sQTLs mapped. The most significant hotspots were Bin385and Bin969.
     Totally,45,438sQTLs (56.03%) displayed significant dominance effect, in which, the vast majority of sQTLs (92.26%) showed negative dominance effect.36.89%sQTLs exhibited negative overdominance effect of all significant negative dominance sQTLs where the performance of sRNAs present weak prospect in heterozygous genotype than parents genotypes.96%sQTLs with significant overdominance effect were trans-sQTLs either positive or negative overdominance. There were several bin abundant with the trans-sQTLs displaying positive dominance effect, but no peaks for cis-sQTLs. We also identified significant hotspots for cis-and trans-sQTLs. Most of hotspots for cis and trans-sQTL were distinct, the most significant hotspots for cis-sQTLs were on Chr02, Chr03and Chr07. However, Chr04, Chr05and Chr09for trans-sQTLs.
     We compared the eQTLs for sRNA biogenesis genes about Dicer-like (OsDCLs), Argonaute (OsAGOs) and OsRDRs with the trans-sQTL hotspots. The results showed that few eQTLs for small RNA biogenesis genes were located in the most significant trans-sQTL hotspots regions. Although these genes played vital roles in the sRNA biogenesis, but no remarkable evidences have detected that were the trans-eQTLs (regulators) for sRNA expression variations in the population.
     The expression variations for the well-known miRNAs for the different mature sequences were analyzed, and produced20cis-miQTLs and390trans-miQTLs for153miRNA with different mature sequences. Our miQTL mapping data showed that different isoforms of the miRNAs were always controlled by different genetic factors in intricate transcript processes. miRNA did not have a significantly detectable effect on corresponding mRNA targets in genetic population variations.
     All data displayed a more dynamic perspective of small RNA regulatory activities.
引文
1. 谢华安,郑家团,张受刚,林美娟.中国种植面积最大的水稻良种“汕优63”培育的理论与实践.福建省农科院学报,1996,11(4):1-6
    2. 谢华安.中国种植面积最大的水稻良种“汕优63”Ⅱ主要农艺学和生物学的特征特性.福建省农科院学报,1997,12(1):1-6
    3. 邢永忠.用分子标记剖析水稻重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆,1999
    4. 余四斌.优良杂交水稻汕优63杂种优势遗传学基础的分子标记剖析.[博士学位论文].武汉:华中农业大学图书馆,1997
    5. AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S, Dietrich RA, Mengiste T. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection. Plant J,2006,48: 28-44.
    6. Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics,2006,22: 1600-1607.
    7. Allen E, Xie Z, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell,2005,121:207-221.
    8. Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJ, Reymond M, Vreugdenhil D, Koornneef M. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell,2009,21:1877-1896.
    9. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD. Target RNA-directed trimming and tailing of small silencing RNAs. Science,2010, 328:1534-1539.
    10. An C, Saha S, Jenkins JN, Scheffler BE, Wilkins TA, Stelly DM. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton. Mol Genet Genomics,2007,278:539-553.
    11. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science,2005,309:741-745.
    12. Axtell MJ. Classification and comparison of small RNAs from plants. Annu Rev Plant Biol,2013,64:137-159.
    13. Axtell MJ, Jan C, Rajagopalan R, Bartel DP. A two-hit trigger for siRNA biogenesis in plants. Cell,2006,127:565-577.
    14. Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol,2011,21:369-376.
    15. Bandillo N, Raghavan C, Muyco PA, Sevilla MA, Lobina IT, Dilla-Ermita CJ, Tung CW, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Redona E, Leung H. Multi-parent advanced generation inter-cross (MAGIC) populations in rice:progress and potential for genetics research and breeding. Rice,2013,6:11.
    16. Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME, Moose SP. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci USA,2012,109:10444-10449.
    17. Barton NH, Keightley PD. Understanding quantitative genetic variation. Nat Rev Genet,2002,3:11-21.
    18. Barton NH, Turelli M. Evolutionary quantitative genetics:how little do we know? Annu Rev Genet,1989,23:337-370.
    19. Benfey PN, Mitchell-Olds T. From genotype to phenotype:systems biology meets natural variation. Science,2008,320:495-497.
    20. Bentley DR. Whole-genome re-sequencing. Curr Opin Genet Dev,2006,16: 545-552.
    21. Bessarabova M, Kirillov E, Shi W, Bugrim A, Nikolsky Y, Nikolskaya T. Bimodal gene expression patterns in breast cancer. BMC Genomics,2010,11 Suppl 1:S8.
    22. Bewley JD. Seed Germination and Dormancy. Plant Cell,1997,9:1055-1066.
    23. Boerjan W, Vuylsteke M. Integrative genetical genomics in Arabidopsis. Nat Genet, 2009,41:144-145.
    24. Borevitz JO, Chory J. Genomics tools for QTL analysis and gene discovery. Curr Opin Plant Biol,2004,7:132-136.
    25. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell,2005,123:1279-1291.
    26. Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants:the missing heritability is in the field. Genome Biol,2011,12:232.
    27. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet,2001,29:365-371.
    28. Breitling R, Li Y, Tesson BM, Fu J, Wu C, Wiltshire T, Gerrits A, Bystrykh LV, de Haan G, Su AI, Jansen RC. Genetical genomics:spotlight on QTL hotspots. PLoS Genet,2008,4:e1000232.
    29. Brem RB, Kruglyak L. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl A cad Sci US A,2005,102:1572-1577.
    30. Brem RB, Yvert G, Clinton R, Kruglyak L. Genetic dissection of transcriptional regulation in budding yeast. Science,2002,296:752-755.
    31. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol,2000,18:630-634.
    32. Broman KW, Speed TP. A model selection approach for the identification of quantitative trait loci in experimental crosses. J R Stat Soc Series B Stat Methodol, 2002,64:641-656.
    33. Broman KW, Wu H, Sen S, Churchill GA. R/qtl:QTL mapping in experimental crosses. Bioinformatics,2003,19:889-890.
    34. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, et al. The genetic architecture of maize flowering time. Science,2009,325:714-718.
    35. Bullard JH, Mostovoy Y, Dudoit S, Brem RB. Polygenic and directional regulatory evolution across pathways in Saccharomyces. Proc Natl Acad Sci USA,2010,107: 5058-5063.
    36. Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci U S A,2004,101: 15670-15675.
    37. Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell,2009,136:642-655.
    38. Cavanagh C, Morell M, Mackay I, Powell W. From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol,2008,11:215-221.
    39. Chapman EJ, Carrington JC. Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet,2007,8:884-896.
    40. Chen F, He G, He H, Chen W, Zhu X, Liang M, Chen L, Deng XW. Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids. J Integr Plant Biol,2010a,52:971-980.
    41. Chen H, Wang S, Zhang Q. New gene for bacterial blight resistance in rice located on chromosome 12 identified from minghui 63, an elite restorer line. Phytopathology,2002,92:750-754.
    42. Chen M, Meng Y, Gu H, Chen D. Functional characterization of plant small RNAs based on next-generation sequencing data. Comput Biol Chem,2010b,34:308-312.
    43. Chen X. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol, 2009,25:21-44.
    44. Chesler EJ, Lu L, Shou S, Qu Y, Gu J, Wang J, Hsu HC, Mountz JD, Baldwin NE, Langston MA, Threadgill DW, Manly KF, Williams RW. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet,2005,37:233-242.
    45. Chi XF, Lou XY, Shu QY. Combining DNA pooling with selective recombinant genotyping for increased efficiency in fine mapping. Theor Appl Genet,2010,120: 775-783.
    46. Chodavarapu RK, Feng S, Ding B, Simon SA, Lopez D, Jia Y, Wang GL, Meyers BC, Jacobsen SE, Pellegrini M. Transcriptome and methylome interactions in rice hybrids. Proc Natl A cad Sci USA,2012,109:12040-12045.
    47. Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev,2006,20:1250-1255.
    48. Civelek M, Hagopian R, Pan C, Che N, Yang WP, Kayne PS, Saleem NK, Cederberg H, Kuusisto J, Gargalovic PS, Kirchgessner TG, Laakso M, Lusis AJ. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Hum Mol Genet,2013,22:3023-3037.
    49. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol, 2009,4:265-270.
    50. Coram TE, Settles ML, Wang M, Chen X. Surveying expression level polymorphism and single-feature polymorphism in near-isogenic wheat lines differing for the Yr5 stripe rust resistance locus. Theor Appl Genet,2008,117: 401-411.
    51. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants:a systems biology perspective. BMC Plant Biol,2011,11:163.
    52. Cui KH, Peng DB, Xing YZ, Xu CG, Yu SB, Zhang Q. Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet,2002, 105:745-753.
    53. Cuperus JT, Fahlgren N, Carrington JC. Evolution and functional diversification of MIRNA genes. Plant Cell,2011,23:431-442.
    54. de Jong S, van Eijk KR, Zeegers DW, Strengman E, Janson E, Veldink JH, van den Berg LH, Cahn W, Kahn RS, Boks MP, Ophoff RA. Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes. Eur J Hum Genet,2012,20:1004-1008.
    55. DeCook R, Lall S, Nettleton D, Howell SH. Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics,2006,172:1155-1164.
    56. Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J. MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One, 2012a,7:e39578.
    57. Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl A cad Sci USA,2012b,109:2654-2659.
    58. Doerge RW. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet,2002,3:43-52.
    59. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehdl, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hdl. Genes Dev, 2004,18:926-936.
    60. Eckardt NA. The plant cell reviews aspects of microRNA and PhasiRNA regulatory function. Plant Cell,2013,25:2382.
    61. Endo-Higashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol,2011,52: 1083-1094.
    62. Falconer DS. Introduction to quantitative genetics. Burnt Mill, Harlow, Essex, England, New York:Longman Wiley.1989.
    63. Fei Q, Xia R, Meyers BC. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell,2013,25:2400-2415.
    64. Fejes-Toth K, Sotirova V, Sachidanandam R, Assaf G, Hannon GJ, Kapranov P, Foissac S, Willingham AT, Duttagupta R, Dumais E, Gingeras TR. Post-transcriptional processing generates a diversity of 5'-modified long and short RNAs. Nature,2009,457:1028-1032.
    65. Ferrara CT, Wang P, Neto EC, Stevens RD, Bain JR, Wenner BR, Ilkayeva OR, Keller MP, Blasiole DA, Kendziorski C, Yandell BS, Newgard CB, Attie AD. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet,2008,4:e1000034.
    66. Flint-Garcia SA, Thornsberry JM, Buckler ESt. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, Vol 61,2003,54:357-374.
    67. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science,1991,251:767-773.
    68. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD. fw2.2:a quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    69. Fraser HB, Babak T, Tsang J, Zhou Y, Zhang B, Mehrabian M, Schadt EE. Systematic detection of polygenic cis-regulatory evolution. PLoS Genet,2011,7: e1002023.
    70. Fu J, Keurentjes JJ, Bouwmeester H, America T, Verstappen FW, Ward JL, Beale MH, de Vos RC, Dijkstra M, Scheltema RA, Johannes F, Koornneef M, Vreugdenhil D, Breitling R, Jansen RC. System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet,2009,41:166-167.
    71. Fu J, Cheng Y, Linghu J, Yang X, Kang L, Zhang Z, Zhang J, He C, Du X, Peng Z, Wang B, Zhai L, Dai C, Xu J, Wang W, Li X, Zheng J, Chen L, Luo L, Liu J, et al. RNA sequencing reveals the complex regulatory network in the maize kernel. Nat Commun,2013,4:2832.
    72. Fukao T, Xu K, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell,2006,18:2021-2034.
    73. Gaudin V, Libault M, Pouteau S, Juul T, Zhao G, Lefebvre D, Grandjean O. Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development,2001,128:4847-4858.
    74. Gaut BS, Long AD. The lowdown on linkage disequilibrium. Plant Cell,2003,15: 1502-1506.
    75. Geldermann H. Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor Appl Genet,1975,46:319-330.
    76. Gerlai R. Phenomics:fiction or the future? Trends Neurosci,2002,25:506-509.
    77. Ghazalpour A, Doss S, Kang H, Farber C, Wen PZ, Brozell A, Castellanos R, Eskin E, Smith DJ, Drake TA, Lusis AJ. High-resolution mapping of gene expression using association in an outbred mouse stock. PLoS Genet,2008,4:e1000149.
    78. Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, Horvath S. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet,2006,2:e130.
    79. Gibson G, Weir B. The quantitative genetics of transcription. Trends Genet,2005, 21:616-623.
    80. Goff SA, Zhang Q. Heterosis in elite hybrid rice:speculation on the genetic and biochemical mechanisms. Curr Opin Plant Biol,2013,16:221-227.
    81. Groszmann M, Greaves IK, Albert N, Fujimoto R, Helliwell CA, Dennis ES, Peacock WJ. Epigenetics in plants-vernalisation and hybrid vigour. Biochim Biophys Acta,2011a,1809:427-437.
    82. Groszmann M, Greaves IK, Albertyn ZI, Scofield GN, Peacock WJ, Dennis ES. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci USA,2011b,108:2617-2622.
    83. Groszmann M, Greaves IK, Fujimoto R, James Peacock W, Dennis ES. The role of epigenetics in hybrid vigour. Trends Genet,2013.
    84. Gupta A, Maranas CD, Albert R. Elucidation of directionality for co-expressed genes:predicting intra-operon termination sites. Bioinformatics,2006,22:209-214.
    85. Gutierrez L, Bussell JD, Pacurar DI, Schwambach J, Pacurar M, Bellini C. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell,2009,21:3119-3132.
    86. Gutierrez RA, Lejay LV, Dean A, Chiaromonte F, Shasha DE, Coruzzi GM. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol,2007, 8:R7.
    87. Haley CS, Knott SA. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity (Edinb),1992,69:315-324.
    88. Hansen BG, Halkier BA, Kliebenstein DJ. Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci,2008,13:72-77.
    89. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature,2003, 422:719-722.
    90. He G, He H, Deng XW. Epigenetic variations in plant hybrids and their potential roles in heterosis. J Genet Genomics,2013,40:205-210.
    91. He G, Zhu X, Elling AA, Chen L, Wang X, Guo L, Liang M, He H, Zhang H, Chen F, Qi Y, Chen R, Deng XW. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell,2010,22:17-33.
    92. Heap GA, Trynka G, Jansen RC, Bruinenberg M, Swertz MA, Dinesen LC, Hunt KA, Wijmenga C, Vanheel DA, Franke L. Complex nature of SNP genotype effects on gene expression in primary human leucocytes. BMC Med Genomics,2009,2:1.
    93. Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet,2006,38:721-725.
    94. Hernandez DG, Nalls MA, Moore M, Chong S, Dillman A, Trabzuni D, Gibbs JR, Ryten M, Arepalli S, Weale ME, Zonderman AB, Troncoso J, O'Brien R, Walker R, Smith C, Bandinelli S, Traynor BJ, Hardy J, Singleton AB, Cookson MR. Integration of GWAS SNPs and tissue specific expression profiling reveal discrete eQTLs for human traits in blood and brain. Neurobiol Dis,2012,47:20-28.
    95. Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K. Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. JBiol Chem,2005,280:25590-25595.
    96. Holland JB. Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161.
    97. Holloway B, Li BL. Expression QTLs:applications for crop improvement. Mol Breeding,2010,26:381-391.
    98. Howell KA, Narsai R, Carroll A, Ivanova A, Lohse M, Usadel B, Millar AH, Whelan J. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol,2009,149:961-980.
    99. Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A,2003,100: 2574-2579.
    100. Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang Q. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162:1885-1895.
    101. Huang X, Han B. A crop of maize variants. Nat Genet,2012,44:734-735.
    102. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet,2010,42:961-967.
    103. Huang Y, Zhang L, Zhang J, Yuan D, Xu C, Li X, Zhou D, Wang S, Zhang Q. Heterosis and polymorphisms of gene expression in an elite rice hybrid as revealed by a microarray analysis of 9198 unique ESTs. Plant Mol Biol,2006,62:579-591.
    104. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet,2005,37:243-253.
    105. Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science,2002,297:2056-2060.
    106. Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB. Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci USA,2006,103:16666-16671.
    107. Illig T, Gieger C, Zhai G, Romisch-Margl W, Wang-Sattler R, Prehn C, Altmaier E, Kastenmuller G, Kato BS, Mewes HW, Meitinger T, de Angelis MH, Kronenberg F, Soranzo N, Wichmann HE, Spector TD, Adamski J, Suhre K. A genome-wide perspective of genetic variation in human metabolism. Nat Genet,2010,42: 137-141.
    108. Izawa T. Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. JExp Bot,2007,58:3091-3097.
    109. Jansen RC, Nap JP. Genetical genomics:the added value from segregation. Trends Genet,2001,17:388-391.
    110. Jansen RC, Tesson BM, Fu J, Yang Y, McIntyre LM. Defining gene and QTL networks. Curr Opin Plant Biol,2009,12:241-246.
    111. Jia Z, Xu S. Mapping quantitative trait loci for expression abundance. Genetics, 2007,176:611-623.
    112. Jimenez-Gomez JM. Next generation quantitative genetics in plants. Front Plant Sci,2011,2:77.
    113. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science,2000,290:344-347.
    114. Joosen R, Cordewener J, Supena ED, Vorst O, Lammers M, Maliepaard C, Zeilmaker T, Miki B, America T, Custers J, Boutilier K. Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development. Plant Physiol, 2007,144:155-172.
    115. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC. microRNA-mediated repression of rolled leafl specifies maize leaf polarity. Nature,2004,428:84-88.
    116. Kai ZS, Pasquinelli AE. MicroRNA assassins:factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol,2010,17:5-10.
    117. Kang HP, Morgan AA, Chen R, Schadt EE, Butte AJ. Coanalysis of GWAS with eQTLs reveals disease-tissue associations. AMIA Summits Transl Sci Proc,2012, 2012:35-41.
    118. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci. Genetics,1999,152:1203-1216.
    119. Kapoor M, Arora R, Lama T, Nijhawan A, Khurana JP, Tyagi AK, Kapoor S. Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA-dependent RNA Polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics,2008,9:451.
    120. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell 1, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science,2007,316:1484-1488.
    121. Kasschau KD, Fahlgren N, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Carrington JC. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol,2007,5:e57.
    122. Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Jr., Zhu JK, Staskawicz BJ, Jin H. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A,2006,103:18002-18007.
    123. Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA. Wheat hybridization and polyploidization results in deregulation of small RNAs. Genetics,2011,188:263-272.
    124. Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M. The genetics of plant metabolism. Nat Genet,2006,38:842-849.
    125. Keurentjes JJ, Fu J, Terpstra IR, Garcia JM, van den Ackerveken G, Snoek LB, Peeters AJ, Vreugdenhil D, Koornneef M, Jansen RC. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci U S A,2007,104:1708-1713.
    126. Keurentjes JJ, Koornneef M, Vreugdenhil D. Quantitative genetics in the age of omics. Curr Opin Plant Biol,2008,11:123-128.
    127. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol,2009a,10:126-139.
    128. Kim W, Benhamed M, Servet C, Latrasse D, Zhang W, Delarue M, Zhou DX. Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res,2009b,19:899-909.
    129. Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell,2012,24:3590-3602.
    130. Kirst M, Basten CJ, Myburg AA, Zeng ZB, Sederoff RR. Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid. Genetics, 2005,169:2295-2303.
    131. Kliebenstein DJ. Quantification of variation in expression networks. Methods Mol Biol,2009a,553:227-245.
    132. Kliebenstein DJ. Quantitative genomics:analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol, Vol 61, 2009b,60:93-114.
    133. Kliebenstein DJ, West MA, van Leeuwen H, Kim K, Doerge RW, Michelmore RW, St Clair DA. Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics,2006a,172:1179-1189.
    134. Kliebenstein DJ, West MA, van Leeuwen H, Loudet O, Doerge RW, St Clair DA. Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics,2006b,7:308.
    135. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K. Hd3a and RFT1 are essential for flowering in rice. Development,2008,135:767-774.
    136. Komiya R, Yokoi S, Shimamoto K. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development,2009,136: 3443.3450.
    137. Koornneef M, Alonso-Blanco C, Vreugdenhil D. Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol, Vol 61,2004,55:141-172.
    138. Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R. A Multiparent Advanced Generation Inter-Cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet,2009,5:e1000551.
    139. Krieger U, Lippman ZB, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet,2010,42:459-463.
    140. Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA,2003,100 Suppl 2:14587-14592.
    141. Krueger F, Andrews SR. Bismark:a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics,2011,27:1571-1572.
    142. Krueger F, Kreck B, Franke A, Andrews SR. DNA methylome analysis using short bisulfite sequencing data. Nat Methods,2012,9:145-151.
    143. Lan H, Chen M, Flowers JB, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Manly KF, Williams RW, Kendziorski C, Attie AD. Combined expression trait correlations and expression quantitative trait locus mapping. PLoS Genet,2006,2:e6.
    144. Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    145. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181.
    146. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol,2009,10: R25.
    147. Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet,2010,11:204-220.
    148. Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot,2010,61:2247-2254.
    149. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A. Expanding the genetic map of maize with the intermated B73 x Mo 17 (IBM) population. Plant Mol Biol,2002,48:453-461.
    150. Lee SI, Pe'er D, Dudley AM, Church GM, Koller D. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci USA,2006,103:14062-14067.
    151. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J,2004,23:4051-4060.
    152. Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y, Chai Y, Guo T, Yang N, Liu J, Warburton ML, Cheng Y, Hao X, Zhang P, Zhao J, Liu Y, Wang G, Li J, Yan J. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet,2013,45:43-50.
    153. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet,2011,43:1266-1269.
    154. Li Y, Varala K, Moose SP, Hudson ME. The inheritance pattern of 24 nt siRNA clusters in arabidopsis hybrids is influenced by proximity to transposable elements. PLoS One,2012,7:e47043.
    155. Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell MJ, Zhang W, Sunkar R. Transcriptome-wide identification of microRNA targets in rice. Plant J,2010,62:742-759.
    156. Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka-Wall H, Fiehn O, Torjek O, Selbig J, Altmann T, Willmitzer L. Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J,2008,53:960-972.
    157. Liu B-H. Statistical genomics:linkage, mapping, and QTL analysis. Boca Raton: CRC Press.1998.
    158. Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X. Loss of function of OsDCLl affects microRNA accumulation and causes developmental defects in rice. Plant Physiol, 2005,139:296-305.
    159. Logsdon BA, Mezey J. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations. PLoS Comput Biol,2010,6: e1001014.
    160. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. RobiNA:a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res,2012,40:W622-627.
    161. Lowry DB, Logan TL, Santuari L, Hardtke CS, Richards JH, DeRose-Wilson LJ, McKay JK, Sen S, Juenger TE. Expression quantitative trait locus mapping across water availability environments reveals contrasting associations with genomic features in Arabidopsis. Plant Cell,2013,25:3266-3279.
    162. Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J,2008, 55:131-151.
    163. Lu S, Sun YH, Chiang VL. Adenylation of plant miRNAs. Nucleic Acids Res,2009, 37:1878-1885.
    164. Luo ZW, Potokina E, Druka A, Wise R, Waugh R, Kearsey MJ. SFP genotyping from affymetrix arrays is robust but largely detects cis-acting expression regulators. Genetics,2007,176:789-800.
    165. Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland, Mass.: Sinauer.1998.
    166. Mackay TF. The genetic basis of quantitative variation:numbers of sensory bristles of Drosophila melanogaster as a model system. Trends Genet,1995,11:464-470.
    167. Mackay TF. The genetic architecture of quantitative traits. Annu Rev Genet,2001, 35:303-339.
    168. Majewski J, Pastinen T. The study of eQTL variations by RNA-seq:from SNPs to phenotypes. Trends Genet,2011,27:72-79.
    169. Maloof JN. Genomic approaches to analyzing natural variation in Arabidopsis thaliana. Curr Opin Genet Dev,2003,13:576-582.
    170. Manichaikul A, Moon JY, Sen S, Yandell BS, Broman KW. A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics,2009,181:1077-1086.
    171. Manly KF, Cudmore RH, Jr., Meer JM. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome,2001,12:930-932.
    172. Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM. The evolution and diversification of Dicers in plants. FEBS Lett,2006,580: 2442-2450.
    173. Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ. RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol,2009,21:367-376.
    174. Maxam AM, Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A,1977,74:560-564.
    175. McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics,2009,25:765-771.
    176. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, et al. Genetic properties of the maize nested association mapping population. Science,2009,325: 737-740.
    177. Meng Y, Shao C, Wang H, Chen M. The regulatory activities of plant microRNAs: a more dynamic perspective. Plant Physiol,2011,157:1583-1595.
    178. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs:insights into functions. Nat Rev Genet,2009,10:155-159.
    179. Metzker ML. Sequencing technologies-the next generation. Nat Rev Genet,2010, 11:31-46.
    180. Michalak P. Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity (Edinb),2009,102:45-50.
    181. Mitchell-Olds T, Schmitt J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature,2006,441:947-952.
    182. Molnar A, Melnyk C, Baulcombe DC. Silencing signals in plants:a long journey for small RNAs. Genome Biol,2011,12:215.
    183. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL. Structure and activity of putative intronic miRNA promoters. RNA,2010,16: 495-505.
    184. Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature,2010,464:773-777.
    185. Morgan TH. Chromosomes and Associative Inheritance. Science,1911a,34: 636-638.
    186. Morgan TH. The Origin of Five Mutations in Eye Color in Drosophila and Their Modes of Inheritance. Science,1911b,33:534-537.
    187. Morgan TH. The Origin of Nine Wing Mutations in Drosophila. Science,1911c,33: 496-499.
    188. Morgan TH. Random Segregation Versus Coupling in Mendelian Inheritance. Science,1911d,34:384.
    189. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG. Genetic analysis of genome-wide variation in human gene expression. Nature, 2004,430:743-747.
    190. Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics,2008,92:255-264.
    191. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 2008,320:1344-1349.
    192. Navarro C, Abelenda JA, Cruz-Oro E, Cuellar CA, Tamaki S, Silva J, Shimamoto K, Prat S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature,2011,478:119-122.
    193. Nica AC, Dermitzakis ET. Expression quantitative trait loci:present and future. Philos Trans R Soc Lond B Biol Sci,2013,368:20120362.
    194. Nobuta K, Venu RC, Lu C, Belo A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang GL, Meyers BC. An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol,2007,25:473-477.
    195. Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell,2007,19:2583-2594.
    196. Nordborg M, Weigel D. Next-generation genetics in plants. Nature,2008,456: 720-723.
    197. Okano Y, Miki D, Shimamoto K. Small interfering RNA (siRNA) targeting of endogenous promoters induces DNA methylation, but not necessarily gene silencing, in rice. Plant J,2008,53:65-77.
    198. Onodera Y, Haag JR, Ream T, Costa Nunes P, Pontes O, Pikaard CS. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell,2005,120:613-622.
    199. Overgaard M, Johansen J, Moller-Jensen J, Valentin-Hansen P. Switching off small RNA regulation with trap-mRNA. Mol Microbiol,2009,73:790-800.
    200. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, Zhang X, Song JS, Fisher DE. Chromatin structure analyses identify miRNA promoters. Genes Dev, 2008,22:3172-3183.
    201. Palaisa KA, Morgante M, Williams M, Rafalski A. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell,2003,15:1795-1806.
    202. Parts L, Hedman AK, Keildson S, Knights AJ, Abreu-Goodger C, van de Bunt M, Guerra-Assuncao JA, Bartonicek N, van Dongen S, Magi R, Nisbet J, Barrett A, Rantalainen M, Nica AC, Quail MA, Small KS, Glass D, Enright AJ, Winn J, Mu TC, et al. Extent, causes, and consequences of small RNA expression variation in human adipose tissue. PLoS Genet,2012,8:e1002704.
    203. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, Veyrieras JB, Stephens M, Gilad Y, Pritchard JK. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature,2010,464: 768-772.
    204. Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M. Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J,2008,53:90-101.
    205. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics,2000,155:945-959.
    206. Provine WB. The origins of theoretical population genetics. Chicago,:University of Chicago Press.1971.
    207. Rafalski A, Morgante M. Corn and humans:recombination and linkage disequilibrium in two genomes of similar size. Trends Genet,2004,20:103-111.
    208. Rafalski JA. Association genetics in crop improvement. Curr Opin Plant Biol,2010, 13:174-180.
    209. Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. Annu Rev Plant Biol,2012,63:507-533.
    210. Reif JC, Hamrit S, Heckenberger M, Schipprack W, Maurer HP, Bohn M, Melchinger AE. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet,2005,111: 838-845.
    211. Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B. PlnTFDB:an integrative plant transcription factor database. BMC Bioinformatics,2007,8:42.
    212. Richardson K, Lai CQ, Parnell LD, Lee YC, Ordovas JM. A genome-wide survey for SNPs altering micro RNA seed sites identifies functional candidates in GWAS. BMC Genomics,2011,12:504.
    213. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, Boucher G, Ripke S, Ellinghaus D, Burtt N, Fennell T, Kirby A, Latiano A, Goyette P, Green T, Halfvarson J, Haritunians T, Korn JM, Kuruvilla F, Lagace C, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet,2011,43:1066-1073.
    214. Ron M, Alandete Saez M, Eshed Williams L, Fletcher JC, McCormick S. Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev,2010,24:1010-1021.
    215. Ronald J, Brem RB, Whittle J, Kruglyak L. Local regulatory variation in Saccharomyces cerevisiae. PLoS Genet,2005,1:e25.
    216. Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, Morris J, Cardle L, Marshall DF, Waugh R. Single-feature polymorphism discovery in the barley transcriptome. Genome Biol,2005,6:R54.
    217. Royston P. An extension of Shapiro and Wilk's W test for normality to large samples. Applied Statistics,1982,31:115-124.
    218. Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res,2006,16:457-465.
    219. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, Jones CG, Zaitlen NA, Varilo T, Kaakinen M, Sovio U, Ruokonen A, Laitinen J, Jakkula E, Coin L, Hoggart C, Collins A, Turunen H, Gabriel S, Elliot P, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet,2009,41:35-46.
    220. Saito K, Hirai MY, Yonekura-Sakakibara K. Decoding genes with coexpression networks and metabolomics-'majority report by precogs'. Trends Plant Sci,2008, 13:36-43.
    221. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci US A,2007,104:11376-11381.
    222. Salvi S, Tuberosa R. To clone or not to clone plant QTLs:present and future challenges. Trends Plant Sci,2005,10:297-304.
    223. Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. JMol Biol,1975,94:441-448.
    224. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA,1977,74:5463-5467.
    225. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270: 467-470.
    226. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU. A gene expression map of Arabidopsis thaliana development. Nat Genet,2005,37:501-506.
    227. Shen H, He H, Li J, Chen W, Wang X, Guo L, Peng Z, He G, Zhong S, Qi Y, Terzaghi W, Deng XW. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell,2012,24:875-892.
    228. Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol,2008,26: 1135-1145.
    229. Shrimpton AE, Robertson A. The Isolation of Polygenic Factors Controlling Bristle Score in Drosophila Melanogaster. II. Distribution of Third Chromosome Bristle Effects within Chromosome Sections. Genetics,1988,118:445-459.
    230. Shukla LI, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta,2008,1779:743-748.
    231. Silva Lda C, Wang S, Zeng ZB. Composite interval mapping and multiple interval mapping:procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol,2012,871:75-119.
    232. Slate J. Quantitative trait locus mapping in natural populations:progress, caveats and future directions. Mol Ecol,2005,14:363-379.
    233. Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, Thorsteindottir U, Shin SY, Richards HB, Consortium G, Investigators M, Consortium D, Soranzo N, Ahmadi KR, Lindgren CM, Stefansson K, Dermitzakis ET, Deloukas P, Spector TD, McCarthy MI, et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet,2011,43:561-564.
    234. Smith LM, Weigel D. On epigenetics and epistasis:hybrids and their non-additive interactions. EMBO J,2012,31:249-250.
    235. Smith RM, Alachkar H, Papp AC, Wang D, Mash DC, Wang JC, Bierut LJ, Sadee W. Nicotinic alpha5 receptor subunit mRNA expression is associated with distant 5' upstream polymorphisms. Eur J Hum Genet,2011,19:76-83.
    236. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol,2004,3:Article3.
    237. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
    238. Song Y, Gao Z, Luan W. Interaction between temperature and photoperiod in regulation of flowering time in rice. Sci China Life Sci,2012,55:241-249.
    239. Stumpf MP. Haplotype diversity and the block structure of linkage disequilibrium. Trends Genet,2002,18:226-228.
    240. Stylianou IM, Affourtit JP, Shockley KR, Wilpan RY, Abdi FA, Bhardwaj S, Rollins J, Churchill GA, Paigen B. Applying gene expression, proteomics and single-nucleotide polymorphism analysis for complex trait gene identification. Genetics,2008,178:1795-1805.
    241. Sun W. A statistical framework for eQTL mapping using RNA-seq data. Biometrics, 2012,68:1-11.
    242. Sun W, Yu T, Li KC. Detection of eQTL modules mediated by activity levels of transcription factors. Bioinformatics,2007,23:2290-2297.
    243. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J,2004,37:517-527.
    244. Sun Y, Wang J, Crouch JH, Xu Y, Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed,2010,26:493-511
    245. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T. Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet,2007,39:792-796.
    246. Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K. Variations in Hdl proteins, Hd3a promoters, and Ehdl expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci USA,2009,106:4555-4560.
    247. Takeda S, Matsuoka M. Genetic approaches to crop improvement:responding to environmental and population changes. Nat Rev Genet,2008,9:444-457.
    248. Tan C, Weng XY, Yan WH, Bai XF, Xing YZ. [Ghd7, a pleiotropic gene controlling flag leaf area in rice]. Yi Chuan,2012,34:901-906.
    249. Tan YF, Li JX, Yu SB, Xing YZ, Xu CG, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet,1999,99:642-648.
    250. Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K.14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature,2011,476:332-335.
    251. Tesson BM, Jansen RC. eQTL analysis in mice and rats. Methods Mol Biol,2009, 573:285-309.
    252. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES. Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet,2011, 43:159-162.
    253. Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet,2010,6:e1001031.
    254. Tong YA, Peng H, Zhan C, Fan L, Ai T, Wang S. Genome-wide analysis reveals diversity of rice intronic miRNAs in sequence structure, biogenesis and function. PLoS One,2013,8:e63938.
    255. Toubiana D, Fernie AR, Nikoloski Z, Fait A. Network analysis:tackling complex data to study plant metabolism. Trends Biotechnol,2013,31:29-36.
    256. Trapnell C, Pachter L, Salzberg SL. TopHat:discovering splice junctions with RNA-Seq. Bioinformatics,2009,25:1105-1111.
    257. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol,2010,28:511-515.
    258. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet,2012,13:36-46.
    259. Vazquez-Ramos JM, Sanchez MdlP. The cell cycle and seed germination. Seed Sci. Res.,2003,13:113-130.
    260. Van Landeghem S, De Bodt S, Drebert ZJ, Inze D, Van de Peer Y. The potential of text mining in data integration and network biology for plant research:a case study on Arabidopsis. Plant Cell,2013,25:794-807.
    261. van Leeuwen H, Kliebenstein DJ, West MA, Kim K, van Poecke R, Katagiri F, Michelmore RW, Doerge RW, St Clair DA. Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell,2007,19:2099-2110.
    262. Varshney RK, Nayak SN, May GD, Jackson SA. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol,2009,27:522-530.
    263. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science,1995,270:484-487.
    264. Verbeke LP, Cloots L, Demeester P, Fostier J, Marchal K. EPSILON:an eQTL prioritization framework using similarity measures derived from local networks. Bioinformatics,2013,29:1308-1316.
    265. Verlaan DJ, Ge B, Grundberg E, Hoberman R, Lam KC, Koka V, Dias J, Gurd S, Martin NW, Mallmin H, Nilsson O, Harmsen E, Dewar K, Kwan T, Pastinen T. Targeted screening of cis-regulatory variation in human haplotypes. Genome Res, 2009,19:118-127.
    266. Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell,2009,136: 669-687.
    267. Wagner A. The role of population size, pleiotropy and fitness effects of mutations in the evolution of overlapping gene functions. Genetics,2000,154:1389-1401.
    268. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF. The origin of the naked grains of maize. Nature,2005,436: 714-719.
    269. Wang J, Yu H, Weng X, Xie W, Xu C, Li X, Xiao J, Zhang Q. An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population. J Exp Bot,2014,65: 1069-1079.
    270. Wang J, Yu H, Xie W, Xing Y, Yu S, Xu C, Li X, Xiao J, Zhang Q. A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J, 2010a,63:1063-1074.
    271. Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q. A dynamic gene expression atlas covering the entire life cycle of rice. Plant J, 2010b,61:752-766.
    272. Wang S, Zheng T, Wang Y. Transcription activity hot spot, is it real or an artifact? BMC Proc,2007,1 Suppl 1:S94.
    273. Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nat Rev Genet,2009,10:57-63.
    274. Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP, Somerville C, Loraine A. Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol,2006,142:162-774.
    275. Wentzell AM, Kliebenstein DJ. Genotype, age, tissue, and environment regulate the structural outcome of glucosinolate activation. Plant Physiol,2008,147:415-428.
    276. Wentzell AM, Rowe HC, Hansen BG, Ticconi C, Halkier BA, Kliebenstein DJ. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet,2007,3:1687-1701.
    277. Wen W, Li D, Li X, Gao Y, Li W, Li H, Liu J, Liu H, Chen W, Luo J, Yan J. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat Commun,2014,5:3438.
    278. Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci U S A, 2005,102:2460-2465.
    279. West MA, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, St Clair DA. Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics,2007,175:1441-1450.
    280. Wright S. Evolution and the genetics of populations. Vol.1. Genetic and biometrie foundations. Evolution and the genetics of populations. Vol.1. Genetic and biometrie foundations.1968.
    281. Wu C, Delano DL, Mitro N, Su SV, Janes J, McClurg P, Batalov S, Welch GL, Zhang J, Orth AP, Walker JR, Glynne RJ, Cooke MP, Takahashi JS, Shimomura K, Kohsaka A, Bass J, Saez E, Wiltshire T, Su AI. Gene set enrichment in eQTL data identifies novel annotations and pathway regulators. PLoS Genet,2008,4: e1000070.
    282. Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y. Rice MicroRNA effector complexes and targets. Plant Cell,2009,21:3421-3435.
    283. Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development,2006,133:4211-4218.
    284. Wyrick JJ, Young RA. Deciphering gene expression regulatory networks. Curr Opin Genet Dev,2002,12:130-136.
    285. Xie W, Feng Q, Yu H, Huang X, Zhao Q, Xing Y, Yu S, Han B, Zhang Q. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci U S A,2010,107: 10578-10583.
    286. Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annu Rev Plant Biol, Vol 61,2010,61:421-442.
    287. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. Sub1 A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature,2006,442:705-708.
    288. Xu YB, Lu YL, Xie CX, Gao SB, Wan JM, Prasanna BM. Whole-genome strategies for marker-assisted plant breeding. Mol Breeding,2012,29:833-854.
    289. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet,2008,40:761-767.
    290. Yan W, Liu H, Zhou X, Li Q, Zhang J, Lu L, Liu T, Zhang C, Zhang Z, Shen G, Yao W, Chen H, Yu S, Xie W, Xing Y. Natural variation in Ghd7.1 plays an important role in grain yield and adaptation in rice. Cell Res,2013.
    291. Yan WH, Wang P, Chen HX, Zhou HJ, Li QP, Wang CR, Ding ZH, Zhang YS, Yu SB, Xing YZ, Zhang QF. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant,2011,4: 319-330.
    292. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000,12:2473-2484.
    293. Yonemaru J-i, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M. Q-TARO:QTL Annotation Rice Online Database. Rice,2010,3:194-203.
    294. Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS ONE,2011,6:e17595.
    295. Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol,2006,17:155-160.
    296. Yu J, Holland JB, McMullen MD, Buckler ES. Genetic design and statistical power of nested association mapping in maize. Genetics,2008,178:539-551.
    297. Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang Q. Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice. Theor Appl Genet,2002,104:619-625.
    298. Yvert G, Brem RB, Whittle J, Akey JM, Foss E, Smith EN, Mackelprang R, Kruglyak L. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nat Genet,2003,35:57-64.
    299. Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A,1993,90:10972-10976.
    300. Zeng ZB. Precision mapping of quantitative trait loci. Genetics,1994,136: 1457-1468.
    301. Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol,2005,4:1128.
    302. Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res,2010,20:646-654.
    303. Zhang K, Qin ZS, Liu JS, Chen T, Waterman MS, Sun F. Haplotype block partitioning and tag SNP selection using genotype data and their applications to association studies. Genome Res,2004,14:908-916.
    304. Zhang L, Kim S. Learning Gene Networks under SNP Perturbations Using eQTL Datasets. PLoS Comput Biol,2014,10:e1003420.
    305. Zhang YC, Yu Y, Wang CY, Li ZY, Liu Q, Xu J, Liao JY, Wang XJ, Qu LH, Chen F, Xin P, Yan C, Chu J, Li HQ, Chen YQ. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol,2013,31:848-852.
    306. Zhou G, Chen Y, Yao W, Zhang C, Xie W, Hua J, Xing Y, Xiao J, Zhang Q. Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci U S A, 2012,109:15847-15852.
    307. Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X. Arabidopsis ArgonautelO specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell,2011,145:242-256.
    308. Zhu J, Wiener MC, Zhang C, Fridman A, Minch E, Lum PY, Sachs JR, Schadt EE. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol,2007,3:e69.
    309. Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. JExp Bot,2011,62:487-495.
    310. Zou Y, Su Z, Yang J, Zeng Y, Gu X. Uncovering genetic regulatory network divergence between duplicate genes using yeast eQTL landscape. J Exp Zool B Mol Dev Evol,2009,312:722-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700