用户名: 密码: 验证码:
磁场电火花复合小孔加工机理及仿真实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械微型化、精密化、自动化的不断发展,小孔加工越来越困难。尤其是硬脆材料的加工,用传统的加工方法很难达到加工要求。电火花加工属于非接触式加工,避免了对硬度、尺寸、形状的约束,具有很多优点,如加工超硬金属、陶瓷、复杂型腔等,所以电火花高速小孔加工成为目前小孔加工的主要方式之一。但是电火花高速小孔加工存在加工效率较低,加工不稳定等缺点,当小孔加工的深径比较大时,由于排屑困难,这种缺点更加明显。排屑困难引起二次放电,又引起了加工的形位误差,影响产品的性能。为了改善电火花高速小孔加工的工艺,研究者都在不断探索新思路、新方法。目前,国内外学者和工程技术人员已提出了多种复合加工方法,如电火花超声波复合加工、电解电火花复合加工、磨削电火花复合加工、磁场电火花复合加工等。
     为了利用单脉冲放电装置,进一步研究磁场电火花复合加工机理,本文根据电火花加工中脉冲电源的工作原理,用protel99SE设计了单脉冲加工电源并做成PCB板。电源以PIC16F877为控制核心,采用MOSFET专用功率驱动芯片TPS2812p,通过编程可实现脉宽2μs以上的单脉冲或连续脉冲电源。
     磁场电火花复合小孔加工中,外加磁场的作用方式有加平行磁场和加垂直磁场两种。加平行磁场的复合小孔加工是基于磁场对电蚀微粒的磁化力,改善小孔加工中排屑困难,提高加工速度;而加垂直磁场的复合小孔加工是利用带电粒子在磁场中受到洛伦磁力而改变运动方向,延长运动路径来改善加工效果。本文分别对加平行磁场复合小孔加工和加垂直磁场复合小孔加工的加工速度、表面粗糙度、放电通道的振荡进行了理论分析和相应的试验研究。
     在以上理论分析和实验研究的基础上,重点用Fluent软件对平行磁场电火花复合小孔加工的间隙排屑进行了流场仿真。通过仿真得出了深小孔加工中流场的压力、速度分布,并分析了对加工屑蚀除的影响,然后进一步得出了平行磁场电火花复合前后加工屑的运动轨迹、速度及流场中滞留时间的变化。
     仿真结果与实验的结论是一致的,通过仿真与试验的对比与分析,进一步证实平行磁场电火花复合能够通过改善排屑情况来提高深小孔的加工性能。
Machining of small hole became more and more difficult by continuous development of machinery in such aspect as miniaturization, precision and automation. Especially hard,brittle metal and non-metallic materials,traditional processing methods is very difficult to achieve the requirements. EDM belongs to non-contact processing, avoiding the constraints of tools on the hardness, size, shape and have many advantages, so high-speed small hole EDM machining has become one of the main ways of processing to small hole at present. However, high-speed small hole EDM machining still has shortcomings. Such as, lower processing efficiency and processing quality of instability. The weaknesses become more pronounced because of debris being driven difficultly when the ratios became large between depth and diameter. Debris stranded in the gap causes secondary discharge, further leads to the processing of form and position errors, that affect product performance seriously. In order to improve high-speed small hole EDM machining process, the researchers are constantly exploring new ideas, new methods. At present, scholars and technicians of domestic and foreign has put forward a variety of compound machining methods, such as ultrasonic, electrolysis, grinding, magnetic combined EDM machining and so on.
     In order to research mechanism of magnetic and EDM compound machining with single-pulse discharge devices, a single pulse EDM generator is designed with protel99SE according to the working principle of pulse generator used in EDM processing and made into PCB broad. The core of generator is PIC16f877, it adopts special power amplifier driver IC TPS2812p of MOSFET and can change into any single pulse or continuous pulse generator that pulse width more than two microseconds.
     There are two external ways on small hole magnetic field and EDM compound machining: the direction of magnetic field is parallel with the direction of electric field and vertical with the direction of electric field. The former is based on magnetizing force of magnetic field imposing on electric corrosion particles, improve the processing velocity by improving the process of expelling debris. The latter improves performance by imposing Lorentz force on charged particles to change moving direction and prolong for motion tracks. In this paper, processing velocity, surface roughness, discharge channel of two machining are researched and experiments have been study correspondingly.
     Based on the above theoretical analysis and experimental studies, the gap expelling debris of the former small hole magnetic and EDM compound drilling is simulated in flow field by fluent software. Field stress, velocity distribution during the small deep-hole processing were obtained, the effect of driving debris was analyzed , then the trajectory, velocity, residence time of particles on after-hybrid and pre-hybrid of the magnetic assisted EDM were simulated.
     The simulation results is the same as the experimental conclusion, Compared the simulation results with the experimental results and analysis, further it confirms that Processing Technology can be improved during small deep-hole permanent magnetic and EDM compound machining.
引文
[1]刘晋春,陆纪培.特种加工[M].吉林:吉林科学技术出版社1979
    [2]叶树林.高速电火花小孔加工工艺和机理研究及其设备研制[D].哈尔滨:哈尔滨工业大学,1995.
    [3]Blevs Ply ,Krulh J P. Machining Complex Shapes by Numerical Controlled EDM[J], International Journal of Electrical Machining 2001(6): 61-69.
    [4]傅水根.机械制造工艺基础[M],清华出版社,2004,30-35.
    [5]Kunieda M, MiyoshiY,Takaya T,etc.High Speed 3D Milling by Dry EDM ,Annals of the CIFP 2003 ,52(1):147-50.
    [6]迟恩田,任中根,张石鹏等.超声磨料混粉电火花复合加工的研究[J]电加工与模具.2003(3):29-32.
    [7]孙爱芹.电火花微小孔加工状态分析及电源研究[D].大连:大连理工大学,2004.
    [8]王振龙,赵万生,狄十春.微细电火花加工技术的研究进展[J].中国机械工程,2002,13(10):894-898.
    [9]Dong-Yea SHEU,T Masuzawa.Development of Large-Scale Production of Micro-holes by EDM. Proceedings of the 13th International Symposium of Electro-machining ( ISEM XⅢ),2001,5:747-758.
    [10]Tohru Ishida, Seiichi Kogure, Yasuhi to Miyake, etc.Creation of long curved hole by means of electrical discharge-machining using an in-pipe movable mechanism, Journal of Materials Processing Technology, 2004,149: 157-164.
    [11]Ken’ichi Takahata, Yogesh B Gianchandani.Batch Mode Micro Electro Discharge Machining, Journal of Micro-electromechanical Systems, 2002,11(4): 102-111.
    [12]李文卓.微细电火花加工系统及其相关技术的研究[D].哈尔滨:哈尔滨工业大学, 2002.
    [13]黄河.电火花高速小孔加工点位制数控系统的研制[D].哈尔滨:哈尔滨工业大学2005.
    [14]曹明让,杨世春,杨胜强.超声电火花复合加工速度工艺试验研究[J].新技术新工艺,2007,3:22-23.
    [15]杜茂华.日本放电加工的新方法和新技术[J].机床与液压,2006,10:223-227. [l6]唐勇军,胡富强,王振龙.微细电火花加工技术的最新进展[J].电加工与模具,2005,增刊,3639
    [17]邹丽芸,杨大勇,吴洪波.复杂形状零件的微细电火花加工[J].航空制造技术,2006(1): 7881.
    [18]Uhlmann E,Piltz s,Jerze mbeck S.Micro-machining of cylindrical parts by electrical discharge grinding.14th International symposium on Electro-machining. Edinburgh. 2004: 260-270.
    [19]卢存伟.电火花加工工艺学[M].北京:国防工业出版社,1998.
    [20]李明辉.电火花加工理论基础[M].北京:国防工业出版社,1989.
    [21]刘晋春,赵家齐,赵万生.特种加工[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [22]楼乐明.电火花加工计算机仿真研究[D].上海,上海交通大学,2000.
    [23]赵万生,刘晋春.电火花加工技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [24]全勇.电火花微细加工微能脉冲电源模块的研究[D].南昌大学,2006.
    [25]况火根.高效低损耗电火花成形中精加工脉冲电源的研究[D].哈尔滨:哈尔滨工业大学,2004.
    [26]任忠辉.电火花微能脉冲电源的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [27]Se Hyun Ahn, Shi Hyoung Ryu, Deok Ki Choi.Electro-Chemical Micro Drilling Using Ultra Short Pulses, Precision Engineering,2004,28:129-134.
    [28]任忠辉,宋博岩,韩荣第.电火花微能脉冲电源研究现状[J].电加工与模具,2006(3):29-32.
    [29]蔡宗成(台湾).PIC16F877单晶片原理简介,台湾:元智大学,2001.
    [30]TPS2811,TPS2812,TPS2813,TPS2814,TPS2815 DUAL HIGH-SPEED MOSFET DRIVERS Texas Instruments Incorporated,1997.
    [31]马仕龙.基于单脉冲电火花加工的材料蚀除机理研究[D].哈尔滨:哈尔滨工业大学,2006.
    [32]谢维成,杨加国.单片机原理与应用及C51程序设计[M].北京:清华大学出版社,2001.
    [33]V.C.Venkatesh,G.Kuppuswamy,R.Chandran.Effect of Magnetic Field on ElectroChemical lapping,Proc 21th MTDR,1980.
    [34]M.Kunieda,H. Xia,N. Nishiwaki,N. Kinoshita,Observation of Arc Column Movement -durig Monopulse Discharge in EDM,CIRP Annals Manufacturing Technology,1992, 41(1),227-230.
    [35]Y-C.Lin,H.-S.Lee,Machining characteristics of magnetic force-assisted EDM,Internation- al Journal of Machine Tools Manufacture,2008,48,1179-1186.
    [36]袁永全.磁场电火花复合加工的机理研究与实验分析[D].太原:太原理工大学,2007.
    [37]徐游.电磁学[M].北京:科学出版社,2004.
    [38]日.井上源.放电加工的原理[M].北京:国防工业出版社,1983.
    [39]林志媛,杨铨让,沙钰钧.电磁场工程基础[M].北京:高等教育出版社,1984.
    [40]Daryl D.DiBtonto,Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model,J.Appl.Phys.1989,66(9),115-126.
    [41]C. Van. Osenbrugge, High precision spark machining, Philip. Tech. Rev., 1969,30,195.
    [42]K.D.Chattopadhyay&P.S.Satsangi&S.Verma.P.C.Sharma Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system,Int J Adv Manuf Technol,2008,38:925-937.
    [43]Daalder,J.E.,Erosion Structures on Cathodes Arcedin Vacuum ,J.Phys.D: Appl.Phys., 19 79,12, 1769-1779.
    [44]Mackeoun,S.S.,1929, The Cathode Drop in an Electric Arc, Phys. Rev., Vo1.34, 611-614.
    [45]赵伟.电火花加工中电极蚀除及理论基础的研究[D].西安:西北工业大学,2002.
    [46]T.Masuzawa,X.Cui, Improved Jet Flushing For EDM, Annalsof the CIRP,1992, 14(1):239-241.
    [47]B.BichseI,M.Kocher,Contamination Evolutionin EDM 12th International Symposium for Electronic (ISEM-XII),April,1998,351-357.
    [48]E.G.Tulapurlcara,Turulence Models for Comoutational of Flaw Past Airpanes. Progress in Aerospace Science,1997,33(2)71-165.
    [49]J.A.Roberson.C.T.Crowe,Engineering Fluid Mechanics,Houghton Mifflin.1996,731-771.
    [50]F. H. Harlow. J. E. Welsh. J. P. Shannon. B. J. Daly. The MAC Method,Los Alamos Scie -ntific Laboratory Rept,1966,2: 33-37.
    [51]刘沛清,冬俊瑞,余常召.用二维瞬态变分方程求解脉动压力传播规律[J].水利学报,1996.
    [52]刘霞,葛新锋.FLUENT软件及其在我国的应用[J].能源研究与利用,2003(2):36-38.
    [53]张也影.流体力学[M].北京:高等教育出版社,1998.
    [54]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [55]S. A. Morsi and A. J.Alexander,An Investigation of Particle Trajectories in Two-Phase Flow Systems J. Fluid Mech. 197255(2),193-208.
    [56]周力行.多相湍流反应流体力学[M].北京:国防工业出版社,2002.
    [57]FLUENT 6.2 User's Guide 23 Discrete Phase Models ,2005.
    [58]彭会清,陈志新.稀土永磁磁场分布研究方法的评述[J].稀土,2005,26(4):73-78.
    [59]Tan Han-Shue, Bougler B. Experimental studies on high speed vehicle steering control with magneticmarker referencing system[R], P19 California PATH Working Paper, UCB-ITS-PWP-2000-6, 2000,5.
    [60]彭魁.利用冲击电流计测量水磁导率的研究[J].辽宁大学学报自然科学版1999(4),2-3.
    [61]H. Ounis, G.Ahmadi, and J. B.McLaughlin,Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer Journal of Colloid and Interface Science, 1991,43(1):266-277.
    [62]曹辉,吴超仲,白智慧.磁道钉的磁场计算与仿真研究[J].交通科技,2007,5:75-79.
    [63]钟云波.电磁力作用下液态金属中非金属颗粒迁移规律及其应用研究上海[D].上海大学,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700