用户名: 密码: 验证码:
神经干细胞Ankrd17蛋白和MCMV嗜神经蛋白M122相互作用与胎脑发育异常机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】
     1.构建能表达小鼠Ankrd17基因的小发卡RNAs(shRNAs)慢病毒载体,为选择性沉默Ankrd17基因在神经干细胞(NSCs)中的表达奠定基础;
     2.研究神经干细胞Ankrd17基因沉默后MCMV感染对其增殖、分化功能和凋亡的影响,为明确MCMV致神经系统损伤机制提供新的思路和依据;
     3.研究神经干细胞Ankrd17基因沉默后MCMV感染对其Wnt信号通路相关分化基因表达的影响,以明确Ankrd17分子与MCMV嗜神经蛋白M122的相互作用与胎脑发育异常机制的关系。
     【方法】
     1.构建重组干扰序列载体质粒:将含Ankrd17基因siRNA序列的DNAoligo退火形成双链DNAoligo,再将该双链DNAoligo连接到BSAI酶切的pBSilence1.2线性化表达质粒载体上。将连接好的产物转入到制备好的细菌感受态细胞,通过对长出的克隆菌落进行提取质粒和SacI酶切和测序鉴定,即得到成功转染的菌株命名为pBSi/U6-Ankrd17;
     2.构建重组慢病毒载体质粒:将正确克隆的质粒pBSi/U6-Ankrd17用Lipofectamine2000转染至小鼠源性的视网膜血管内皮细胞,经PCR鉴定筛选有效靶点。根据筛选的有效靶点基因序列设计合成shRNA-Ankrd17片段。通过将慢病毒载体质粒pLVX-shRNA2-m用PstI和BamHI进行双酶切反应后,将shRNA-Ankrd17的稀释退火产物与之连接,构建重组慢病毒载体质粒pLVX-shRNA-Ankrd17,通过DNA测序进行鉴定;
     3.制备载体慢病毒:在慢病毒包装系统LentiviralPackingMixture的帮助下将pLVX-shRNA-Ankrd17载体共转染至293T细胞,收获并浓缩所得到的的慢病毒上清,即为最终的慢病毒颗粒(Lenti-Ankrd17shRNA)储存液,用逐孔稀释法测定病毒滴度;
     4.检测RNAi效率:用Lenti-Ankrd17shRNA慢病毒液感染胎鼠神经干细胞,通过荧光显微镜观察荧光表达情况来判断最适感染条件,并通过Real-TimePCR检测Lenti-Ankrd17shRNA对NSCs中Ankrd17基因的干扰效率;
     5.后续实验分组:①慢病毒干扰+MCMV感染组;②MCMV感染对照组;③慢病毒干扰对照组;④正常对照组;每组设3复孔;
     6.用CCK-8法检测神经干细胞Ankrd17基因沉默后MCMV感染对其增殖的影响;
     7.用流式细胞术检测神经干细胞Ankrd17基因沉默后MCMV感染对其分化的影响;
     8.用PI染色法检测神经干细胞Ankrd17基因沉默后MCMV感染对其凋亡的影响;
     9.用Real-TimePCR方法检测神经干细胞Ankrd17基因沉默后MCMV感染对其Wnt信号通路相关基因(wnt1,wnt3,wnt7a,ngn1,ngn2,c-myc和cyclinD1)表达的影响。
     【结果】
     1.重组干扰序列载体构建:测序结果表明,目的基因Ankrd17成功插入到载体质粒pBSilence1.2中,成功构建pBSi/U6-Ankrd17克隆载体,且与目的序列完全一致;
     2.重组慢病毒载体质粒构建:PCR反应显示克隆正确的3个载体质粒均可扩增出Ankrd17基因产物,通过Real-TimePCR成功筛选出有效干扰靶点pBS1.2Ankrd17-1载体质粒;酶切及测序结果表明,成功构建重组慢病毒载体质粒pLVX-shRNA-Ankrd17,与目的序列完全一致;
     3.载体慢病毒制备:成功制备出表达Ankrd17基因shRNA的慢病毒颗粒浓缩液,病毒滴度为1.0×108TU/mL;
     4.选择性沉默效率:荧光显微镜下观察发现,NSCs在转染慢病毒颗粒5d后,在MOI=5并添加5μg/ml的polybrene的转染条件下转染效率最好,Real-TimePCR结果显示,与空病毒组和正常细胞对照组相比,pLVX-shRNA-Ankrd17-1可以明显降低NSCs中Ankrd17表达水平,其沉默效率达到67.3%;
     5.细胞增殖:与MCMV感染对照组相比,慢病毒干扰+MCMV感染组的细胞增殖活性明显升高(p<0.05);
     6.细胞分化:分化培养3d后,慢病毒干扰组nestin的表达水平明显高于正常对照组(p<0.05),而GFAP和NSE的阳性比率亦明显低于正常对照组(p<0.05)。而慢病毒干扰+MCMV感染组在分化培养第3d时,其GFAP和NSE的阳性细胞率明显高于感染对照组(p<0.05);
     7.细胞凋亡:MCMV感染组NSCs的凋亡率在感染后第5d明显高于正常对照组(p<0.05),慢病毒干扰组中在第3d起凋亡率明显高于正常对照组(p<0.05),而慢病毒干扰+MCMV感染组的细胞凋亡率始终明显高于感染对照组(p<0.05)。
     8.Wnt基因表达:在慢病毒干扰组,Wnt1的表达量在第1d和第3d时明显低于正常对照组,而第5d时又显著升高(p<0.05),Wnt3和Wnt7a在分化培养第5d时高于正常对照组(p<0.05);慢病毒干扰+MCMV感染组的Wnt1表达则呈逐渐上升趋势,在感染后第3d和第5d明显高于感染对照组(p<0.05),而Wnt3和Wnt7a的表达从感染后第1d到第5d始终高于感染对照组(p<0.05)。
     9.Ngn基因表达:慢病毒干扰组的Ngn1表达始终低于正常对照组,Ngn2基因在第1d和第3d时表达水平稍低于正常对照组,第5d时则明显高于正常对照组(p<0.05);而慢病毒干扰+MCMV感染组的Ngn1表达却明显高于感染对照组(p<0.05),其Ngn2表达亦始终高于感染对照组。
     10.c-myc和cyclinD1基因表达:慢病毒干扰组c-myc基因的表达水平始终低于正常对照组,cyclinD1在第1d和第3d时表达量稍低于正常对照组,第5d时开始上升,明显高于正常对照组(p<0.05);而在慢病毒干扰+MCMV感染组的c-myc表达在感染后第3d和第5d显著高于感染对照组(p<0.05),其cyclinD1基因除在第1d时稍高于感染对照组外,在感染后第3d和第5d均低于感染对照组。
     【结论】
     1.成功构建了小鼠Ankrd17基因shRNA慢病毒载体pLVX-shRNA-Ankrd17;该慢病毒载体可以有效沉默胎鼠NSCs的Ankrd17基因;
     2.选择性沉默神经干细胞Ankrd17基因后,MCMV感染对NSCs的增殖活性和早期NSCs分化的抑制程度明显减弱,并导致NSCs的凋亡比率增高;
     3.选择性沉默神经干细胞Ankrd17基因可部分减轻MCMV诱导的NSCsWnt信号通路分化相关基因wnt1,wnt3,wnt7a,ngn1和ngn2以及c-myc的表达异常,并下调cyclinD1表达水平;
     4.MCMV嗜神经蛋白M122蛋白可通过与神经干细胞Ankrd17分子相互作用,干扰NSCs的Wnt信号通路分化相关基因表达进而抑制NSCs的增殖和分化,这可能是先天性CMV感染所致胎脑发育异常的重要机制之一。
     【目的】
     研究大蒜新素对人巨细胞病毒(HCMV)感染人胚肺成纤维(HELF)细胞后即刻早期基因、早期基因和晚期基因表达的影响,探讨和明确大蒜新素抗HCMV效应的机制。
     【方法】
     选择HCMV在增殖周期中主要表达即刻早期基因ul123和ul122(分别编码IE72和IE86蛋白),早期基因ul54(编码UL54蛋白)和晚期基因ul83(编码pp65蛋白)作为靶序列设计特异性引物,同时用GAPDH基因作为管家基因,建立实时荧光定量PCR系统来检测HCMVul122,ul123,ul54和ul83mRNA水平的时序性动态变化。实验分组:①大蒜新素处理HCMVAD169毒株(MOI=2.5)感染HELF细胞组(大蒜新素处理组),大蒜新素剂量为9.6μg/ml(2.28倍IC50浓度);②HCMVAD169毒株(MOI=2.5)感染HELF细胞对照组(HCMV感染对照组);③更昔洛韦(GCV)处理HCMVAD169毒株(MOI=2.5)感染HELF细胞对照组(GCV处理组),GCV剂量为2.3μg/ml(2.28倍IC50浓度);正常HELF细胞为阴性对照。用实时荧光定量PCR方法检测各组细胞感染后0.5h、2h、4h、6h、12h和24h时间点HCMV的ul122、ul123、ul54和ul83基因在转录水平的动态变化。
     【结果】
     1.大蒜新素对HCMVul122基因表达的影响:HCMVAD169株ul122mRNA在感染后2h表达量已明显增高,随后逐渐增长。两种药物处理组ul122mRNA的表达量在感染后2h~24h均低于同时间点病毒感染细胞组,但GCV处理组在感染后0.5h~24h与病毒对照组水平相当(p>0.05)。大蒜新素对AD169ul122mRNA表达的抑制率在感染后0.5h~24h各时间点分别是21.3%,36.1%,40.8%,47.3%,60.2%和75.2%,抑制效应在感染后24h最强。
     2.大蒜新素对HCMVul123基因表达的影响:HCMVul123mRNA的表达规律同ul122,在感染后2h表达量明显升高,之后持续增高。大蒜新素处理组ul123的表达量始终明显低于感染对照组(p<0.01),且大蒜新素对ul123mRNA表达的抑制程度随时间延长而增强,在感染后24h抑制率达到70.4%,而GCV组则与病毒感染组比较无明显差异(p>0.05)。
     3.大蒜新素对HCMVul54基因表达的影响:ul54mRNA在感染后4h开始表达量明显增多(p<0.05),之后持续增加。两种药物处理组ul54mRNA表达量始终低于病毒对照组(p<0.05)。大蒜新素和GCV对ul54mRNA表达的抑制率在感染后24h分别为45.4%和27.2%。
     4.大蒜新素对HCMVul83基因表达的影响:ul83mRNA在HCMV感染后6h开始表达明显增多(p<0.05),感染后12h~24h表达量持续上升。在感染后12h~24h两种药物处理组ul83mRNA表达量明显低于病毒对照组(p<0.05),大蒜新素和GCV对ul83mRNA表达的抑制率在感染后24h分别为45.9%和26.2%。
     【结论】
     1.大蒜新素可显著抑制HCMVAD169毒株IE基因(ul122和ul123)的转录过程,导致其mRNA表达明显降低,抑制率在感染后24h可达到75.2%和70.4%;对E基因(ul54)和L基因(ul83)转录水平亦有所抑制,抑制率在感染后24h分别为45.4%和45.9%,表明HCMV的IE基因可能是大蒜新素抗HCMV作用的主要环节。
     2.GCV对HCMVAD169毒株IE基因没有明显的抑制作用,对ul54和ul83在感染后24h抑制率分别为27.2%和26.2%,表明GCV抗HCMV的作用机制主要在于抑制病毒DNA聚合酶。
     3.大蒜新素和GCV对HCMVAD169相关基因的抑制效应不同与其作用位点不同有关。
Objectives:
     1. To construct a lentiviral vector with shRNA targeting murine Ankrdl7gene for transfection.
     2. To study the effect of MCMV infection on the proliferation, differentiation and apoptosis of neural stem cells (NSCs) after the Ankrdl7gene silencing of NSCs.
     3. To explore the influence of MCMV infection on the expression of the differentiation related genes in the Wnt signaling pathway of NSCs after the Ankrdl7gene silencing of NSCs.
     Methods:
     1. Construct the recombinant plasmid of interference sequence:Ankrdl7gene specific DNA oligo nucleotides were annealed to form a double-stranded DNA oligo, they were connected to the pBSilencel.2linearized expression vector which digested by the BSAI. Then transferred the connection product to the prepared bacterial competent cells, the plasmids were extracted from the positive colonies, digested by Sacl and confirmed by DNA sequencing, then we obtain the successfully transfected strain which named pBSi/U6-Ankrdl7.
     2. Construct the recombinant lentiviral vector plasmid:The correct plasmid pBSi/U6-Ankrdl7was transfected into the murine-derived retinal vascular endothelial cells by Lipofectamine2000, and then screened the effective target by Real-Time PCR. Then designed and synthesized the shRNA-Ankrdl7fragment according to the effective target. After the lentivirus vector plasmid pLVX-shRNA2-m was digested by PstI and BamHI enzymes, connected the annealing products shRNA-Ankrdl7to it, then the lentivirus vector plasmid pLVX-shRNA-Ankrdl7was constructed, and verified by DNA sequencing.
     3. Preparate the lentiviral particles:In the help of the lentiviral packaging system-Lentiviral Packing Mixture, we transfected the pLVX-shRNA-Ankrdl7lentivirus vector into293T cells, then the lentivirus supermatant were harvested and concentrated, and we obtained the final lentiviral particles(Lenti-Ankrdl7shRNA). The viral titer was determined using the hole-by-hole dilution method.
     4. Detect RNAi efficiency:The neural stem cells were transfected by lentiviral particles expressing Ankrd17shRNA (Lenti-Ankrd17shRNA) or negative control shRNA (Lenti-NCshRNA), and the optimum conditions of infection was determined through the observation of fluorescence microscopy. And the Ankrdl7gene RNAi efficiency was determined through measuring Ankrdl7mRNA level by Real-Time PCR.
     5. The experimental groups:①Lenti-Ankrd17shRNA and MCMV infection group;②MCMV infection control group;③Lenti-Ankrd17shRNA control group;④Normal control group; each group has three repeats.
     6. CCK-8method was used to detect MCMV infection on the proliferation of NSCs after the Ankrdl7gene silencing of NSCs.
     7. Flow cytometry was employed to test the changes of MCMV infection on NSCs and its differentiated cells after the Ankrdl7gene silencing of NSCs.
     8. PI staining was used to measure MCMV infection on apoptosis of NSCs after the Ankrdl7gene silencing of NSCs.
     9. Real-Time PCR method was used to determine the influence of MCMV infection on the expression level of related genes'in Wnt signaling pathway after the Ankrdl7gene silencing of NSCs.
     Results:
     1. The construction of recombinant plasmid of interference sequence:DNA sequencing showed that the target gene Ankrd17was successfully inserted into the plasmid vector pBSilencel.2, and the pBSi/U6-Ankrdl7cloning vector was successfully constructed.
     2. The construction the recombinant lentiviral vector plasmid:PCR results showed that all the three plasmid vectors can be amplified the Ankrdl7products, and the most effective interference target was successfully screened out by Real-Time PCR. The restriction enzyme digestion and sequencing results showed that we have successfully constructed the recombinant lentiviral plasmid vector-pLVX-shRNA-Ankrd17.
     3. The preparation of lentiviral particles:The titer of recombinant lentiviral particles of Lenti-Ankrd17shRN A was1.0×108TU/ml.
     4. Detection of RNAi efficiency:Five days after NSCs were transfected with lentiviral particles, we found the best transfection conditions were multiplicity of infection (MOI) was5, and added5μg/ml polybrene. The Real-Time PCR results suggested that when compared with the NC-shRNA group and the normal cell group, pLVX-shRNA-Ankrdl7-1can be significantly reduced the expression levels of Ankrdl7gene in NSCs, and the silencing efficiency was reached67.3%.
     5. Cell proliferation:The cell proliferative activity in Ankrdl7-shRNA group infected by MCMV was significantly higher than infected control group (p<0.05).
     6. Cell differentiation:The rate of nestin positive cells in Ankrdl7-shRNA group was significantly higher than the normal control group and the rates of GFAP and NSE positive cells were significantly lower than the control group at the third days during differentiation culture (p<0.05). But the rates of GFAP and NSE positive cells in Ankrd17-shRNA group infected by MCMV were significantly higher than the infected control group at the third days during differentiation culture (p<0.05).
     7. Cell apoptosis:The apoptosis rate in the MCMV infected group was significantly higher than the normal control group at5d post infection (p<0.05), and the apoptosis rate in Ankrdl7-shRNA group was significantly higher than the normal control group from3d to5d (p<0.05), while the apoptosis rates in Ankrdl7-shRNA group infected by MCMV were always significantly higher than the infected control group (p<0.05).
     8. The expression of Wnt genes:In the Ankrd17-shRNA group, the expression level of Wntl gene was significantly lower than normal control group from1d to3d, then obviously increased and exceeded it at5d (p<0.05); while the expression levels of Wnt3and Wnt7a were significantly higher than normal control group at5d during differentiation culture (p<0.05). But in the MCMV infected Ankrdl7-shRNA group, the level of Wntl was increased gradually, and significantly higher than the infected control group from3d to5d post infection (p<0.05); and the levels of Wnt3and Wnt7a were always significantly higher than the infected control group (p<0.05).
     9. The expression of Ngn genes:In the Ankrdl7-shRNA group, the expression level of Ngnl was always lower than normal control group; while the level of Ngn2was slightly lower than the normal control group from1d to3d, then rose and obviously higher than the normal control group at5d (p<0.05). But in the MCMV infected Ankrd17-shRNA group, the level of Ngnl was always significantly higher than the infected control group (p<0.05); and the expression level of Ngn2was also higher than the infected control group;
     10. The expression of c-myc and cyclinD1genes:In the Ankrd17-shRNA group, the expression level c-myc was always lower than normal control group; while the level cyclinD1was slightly lower than the normal control group from1d to3d, then rose and obviously higher than the normal control group at5d (p<0.05). In the MCMV infected Ankrd17-shRNA group, the level of c-myc was significantly higher than the infected control group from3d to5d post infection (p<0.05); while the level of cyclinD1was significantly lower than the infected control group from3d to5d post infection (p<0.05).
     Conclusion:
     1. Successfully constructed the lentiviral vector with shRNA targeting mouse Ankrd17gene (pLVX-shRNA-Ankrd17); and the Ankrdl7-shRNA can effectively silence the NSCs Ankrd17gene.
     2. When the Ankrd17gene of NSCs was silenced by Ankrdl7-shRNA, the inhibitory degree of MCMV against the proliferation and early differentiation of NSCs was significantly weakened, but led the apoptosis ratio of NSCs increased.
     3. The silencing of Ankrd17gene of NSCs could partly decrease the abnormal expression of the differentiation related genes of Wnt signal pathway:wnt1, wnt3, wnt7a, ngnl, ngn2and c-myc, and down-regulate the expression of cyclinD1, which were induced by MCMV.
     4. The neurotropic protein M122of MCMV could be interact with the Ankrd17protein of neural stem cells to interfere the expression of the differentiation related genes of Wnt signal pathway, and then inhibit the proliferation and differentiation of NSCs, which may be the mechnism of abnormal development of the fetal brain which caused by congenital CMV infection.
     Objective
     To discuss the expression of the immediate-early, early and late genes of human cytomegalovirus(HCMV) when infected human embryonic lung fibroblasts cell in vitro, and the effect of alltridin on HCMV related genes, to explore the mechanism of allitridin against HCMV.
     Methods
     We choose the main immediate early genes ul123and ul122(who coding IE72and IE86proteins respectively), the iconic early genes ul54(coding UL54protein) and the iconic late genes ul83(coding pp65protein) of HCMV as the target sequence to design the specific primers, to establish a real-time fluorescent quantitative PCR system to detect the dynamic change of the ul122, ul123, ul54and ul83mRNA of HCMV, and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene as a housekeeper.
     The experimental groups:①HCMV AD169strain infected HELF cells (MOI=2.5) treated with allitridin;②HCMV AD169strain infected HELF cells (MOI=2.5);③HCMV AD169strain infected HELF cells (MOI=2.5) treated with ganciclovir. All cultures were harvested at0.5h,2h,4h,6h,12h and24h post-infection separately, for SYBR Green real-time PCR analysis.
     Results
     1. The effect of allitridin on the ul122gene of HCMV:The expression level of HCMV ul122gene has been significantly increased at2h post-infection, and then gradually increased. The expression of the ul122gene both in allitridin-treated and GCV-treated groups were lower than virus infected groups during2h~24h post-infection, but there were no significant difference in virus infected groups and GCV-treated groups at0.5h~6h post-infection(P>0.05). The inhibitory rates of allitridin to ul122mRNA were21.3%,36.1%,40.8%,47.3%,60.2%and75.2%at0.5h~24h post-infection respectively, and the inhibiting effect were highest at24h post-infection.
     2. The effect of allitridin on the ul123gene of HCMV: The expression pattern of HCMV ul123gene was similar to the ul122gene; it was increased dramatically at2h post-infection, then continued to increase. The expression of ul123mRNA in allitridin-treated groups were markedly lower than virus infected groups (p<0.01), and the inhibitory rate of allitridin to ul123mRNA reached to70.4%at24h post-infection, but there were no significant difference between GCV-treated groups and virus infected groups(p>0.05).
     3. The effect of allitridin on the ul54gene of HCMV:The expression level of ul54mRNA was significantly increased from4h post-infection (p<0.05), then kept increasing. The expression of ul54mRNA in the two drugs-treated groups were lower than the virus infected groups at all time points (p<0.05). The inhibitory rates of allitridin and GCV to ul54mRNA were45.4%and27.2%at24h post-infection.
     4. The effect of allitridin on the ul83gene of HCMV: The expression of ul83mRNA started increased significantly at6h post-infection(p<0.05), and kept increasing at12h24h post-infection. The expression of ul83RNA in the two drugs-treated groups were obviously lower than virus infected groups during12h~24h post-infection (p<0.05), and the inhibitory rates of allitridin and GCV to ul83mRNA were45.9%and26.2%at24h post-infection.
     Conclusion
     1. Allitridin can effectively suppress the transcription of immediate early genes (ul122and ul123) of HCMV, lead to the expression of mRNA significantly lowered, and the inhibitory rates were up to75.2%and70.4%at24h post-infection respectively. Allitridin was able to suppress the expression of early gene (ul54) and late gene (ul83) too; the inhibitory rates were45.4%and45.9%at24h post-infection respectively. This indicated that the IE genes of HCMV may be the key target of allitridin against HCMV.
     2. There was no obvious inhibition of GCV against the IE genes of HCMV AD169strain, and the inhibitory rates of GCV to the ul54and ul83genes were27.2%and26.2%respectively. This indicated that the main mechanism of GCV against HCMV lies in the inhibiting the DNA polymerase of the virus.
     3. The different inhibitory effects of allitridin and GCV against the HCMV AD169were related to the different acting site.
引文
1. Kimberlin DW, Baley J, Committee on Infectious Diseases; Committee on Fetus and Newborn. Guidance on management of asymptomatic neonates born to women with active genital herpes lesions [J]. Pediatrics.2013;131(2):383-386.
    2. Nassetta L, Kimberlin D, Whitley R. Treatment of congenital cytomegalovirus infection: implications for future therapeutic strategies [J]. J Antimicrob Chemother.2009;63(5):862-867.
    3. Coll O, Benoist G, Ville Y, et al. Guidelines on CMV congenital infection [J]. J Perinat Med.2009;37(5):433-445.
    4. Lombardi G, Garofoli F, Stronati M. Congenital cytomegalovirus infection:treatment, sequelae and follow-up [J]. J Matern Fetal Neonatal Med.2010;23(Suppl3):45-48.
    5. Tiziana Lazzarotto. The best practices for screening, monitoring, and diagnosis of cytomegalovirus disease, Part Ⅱ [J]. Clinical Microbiology Newsletter.2010;32(2):9-15.
    6. Barbi M, Binda S, Caroppo S, et al. Multicity Italian study of congenital cytomegalovirus infection [J]. Pediatr Infect Dis J.2006;25(2):156-159.
    7. SchleissMR. Congenital cytomegalovirus infection:update on management strategies [J]. Curr Treat Options Neurol.2008;10(3):186-192.
    8. Plosa EJ, Esbenshade JC, Fuller MP, et al. Cytomegalovirus infection [J]. Pediatr Rev.2012;33(4):156-163.
    9. Karltorp E, Hellstrom S, Lewensohn-Fuchs I, et al. Congenital cytomegalovirus infection-a common cause of hearing loss of unknown aetiology [J]. Acta Paediatr.2012;101(8):357-362.
    10. Li RY, Tsutsui Y. Growth retardation and microcephaly induced in mice by placental infection with murine cytomegalovirus [J]. Teratology.2000;62(2):79-85.
    11. Zhou YF, Fang F, Zhen H, et al. The effect of MCMV infection on neural stem cells [J]. Clin J Microbiol Immunol.2006;26(2):169-173.
    12. Luo D, Shu SN, Zhou YF, et al. Influence of murine cytomegalovirus infection on the differentiation and the differentiation genes expression in neural stem cells [J]. Chinese Journal of Pathophysiology.2009;25(11):2173-2181.
    13. Li RY, Baba S, Kosugi I, et al. Activation of murine cytomegalovirus immediate-early promoter in cerebral ventricular zone and glial progenitor cells in transgenic micem [J]. Glia.2001;35(1):41-52.
    14. Wang H, Zhou YF, Shu SN, et al. Screening of proteins binding to mouse cytomegalovirus M122protein from mouse brain cDNA library by yeast two-hybrid system [J]. Chin j Mocrobiol Immunol.2010;30(10):959-964.
    15. Deng M, Li F, Ballif BA, et al. Identification and functional analysis of a novel cyclin e/cdk2substrate ankrdl7[J]. J Biol Chem.2009;284(12):8887-5787.
    16. Hou SC, Chan LW, Chou YC, et al. Ankrdl7, an ubiquitously expressed ankyrin factor, is essential for the vascular integrity during embryogenesis [J]. FEBS Lett.2009;583(17):2765-2771.
    17. Wang YT, Tong XM, Li G, et al. Ankrd17positively regulates RIG-I-like receptor (RLR)-mediated immune signaling [J]. Eur J Immunol.2012;42(5):1304-1315.
    18. Ray D, Hogarth CA, Evans EB, et al. Experimental validation of Ankrd17and Anapc10, two novel meiotic genes predicted by computational models in mice [J]. Biol Reprod.2012;86(4):102.
    19. Hassold T, Hunt P. To err (meiotically) is human:the genesis of human aneuploidy [J]. Nat Rev Genet.2001;2(4):280-291.
    20. Tang Q, Li L, Maul GG. Mouse cytomegalovirus early M112/113proteins control the repressive effect of IE3on the major immediate-early promoter [J]. J Virol.2005;79(1):257-263.
    21. Li J, Mahajan A, Tsai MD. Ankyrin repeat: a unique motif mediating protein-protein interaction [J]. Biochemistry.2006;45(51):15168-15178.
    22. Wang H, Liu XL, Shu SN, et al. Murine cytomegalovirus IE3protein interacts with Ankrd17[J]. J Huazhong Univ Sci Technol [Med Sci].2011;31(3):285-289.
    23. Fire A, Xu S, Montgomery M, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J]. Nature.1998;391(6669):806-811.
    24. Mohr S, Bakal C, Perrimon N. Genomic screening with RNAi:results and challenges [J]. Annu Rev Biochem.2010;79:37-64.
    25. Seyhan AA, Rya TE. RNAi screening for the discovery of novel modulators of human disease [J]. Curr Pharm Biotechnol.2010;11(7):735-756.
    26. Brognard J, Hunter T. Protein kinase signaling networks in cancer [J]. Curr Opin Genet Dev.2011;21(1):4-11.
    27. Mohr SE, Perrimon N. RNAi screening:new approaches, understandings, and organisms [J]. Wiley Interdiscip Rev RNA.2012;3(2):145-158.
    28. Sawh AN, Duchaine TF. Turning Dicer on its head [J]. Nat Struct Mol Biol.2012;19(4):365-366.
    29. Shao Y, Chan CY, Maliyekkel A, et al. Effect of target secondary structure on RNAi efficiency [J]. RNA.2007;13(10):1631-1640.
    30. Peralta-Zaragoza O, Bermudez-Morales VH, Madrid-Marina V. RNA interference: biogenesis molecular mechanisms and its applications in cervical cancer [J]. Rev Invest Clin.2010;62(1):63-80.
    31. Manjunath N, Dykxhoom DM. Advances in synthetic siRNA delivery [J]. Discov Med.2010;9(48):418-430.
    32. Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells [J]. Nucleic Acids Res.2003;31(2),700-707.
    33. Hall K, Blair Zajdel ME, Blair GE. Unity and diversity in the human adenoviruses: exploiting alternative entry pathways for gene therapy [J]. Biochem J.2010;431(3):321-336.
    34. Matrai J, Chuah MK, VandenDriessche T. Recent advances in lentiviral vector development and applications [J]. Mol Ther.2010;18(3):477-490.
    35. Nishitsuji H, Ikeda T, Miyoshi H, et al. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1on human cells including primary non-dividing cells [J]. Microbes Infect.2004;6(1):76-85.
    36. Li M, Rossi JJ. Lentiviral vector delivery of siRNA and shRNA encoding genes into cultured and primary hematopoietic cells [J]. Methods Mol Biol.2008;433:287-299.
    37. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [J]. Science.1996;272(5259):263-267.
    38. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors [J]. Mol Biotechno.2007;36(3):184-204.
    39. ShuklaV, CoumoulX, Deng CX. RNAi-based conditional gene knockdown in mice using a U6promoter driven vector [J]. Int J Biol Sci.2007;3(2):91-99.
    1. Zhou YF, Fang F, Zhen H, et al. The effect of MCMV infection on neural stem cells [J]. Chin J Microbiol Immunol.2006;26(2):169-173.
    2. Luo D, Zhou YF, Shu SN, et al. The experimental study of murine cytomegalovirus inhibits the differentiation and the differentiation genes expression of neural stem cells in vitro [J]. Chin J Microbiol Immunol.2009;29(6):548-554.
    3. Li J, Mahajan A, Tsai MD. Ankyrin repeat:a unique motif mediating protein-protein interaction [J]. Biochemistry.2006;45(51):15168-15178.
    4. Wang H, Liu XL, Shu SN, et al. Murine cytomegalovirus IE3protein interacts with Ankrd17[J]. J Huazhong Univ Sci Technol [Med Sci].2011;31(3):285-289.
    5. Breeden L, Nasmyth K. Similarity between cell-cycle genes of budding yeast and fission yeast and the Notch gene of Drosophila [J]. Nature.1987;329(6140):651-654.
    6. Lux SE, John KM, Bennett V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins [J]. Nature.1990;344(6261):36-42.
    7. Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response [J]. Oncogene.2006;25(51):6758-6780.
    8. Hayden MS, Ghosh S. Signaling to NF-kappaB [J]. Genes Dev.2004;18(18):2195-2224.
    9. Deng M, Li F, Ballif BA, et al. Identification and functional analysis of a novel cyclin e/cdk2substrate ankrd17[J]. J Biol Chem.2009;284(12):8887-5787.
    10. Hou SC, Chan LW, Chou YC, et al. Ankrd17, an ubiquitously expressed ankyrin factor, is essential for the vascular integrity during embryogenesis [J]. FEBS Lett.2009;583(17):2765-2771.
    11. Ray D, Hogarth CA, Evans EB, et al. Experimental validation of Ankrd17and Anapc10, two novel meiotic genes predicted by computational models in mice [J]. Biol Reprod.2012;86(4):102.
    12. Hassold T, Hunt P. To err(meiotically) is human:the genesis of human aneuploidy [J]. Nat Rev Genet.2001;2(4):280-291.
    13. Watt FM, Hogan BL. Out of Eden:stem cells and their niches [J]. Science.2000;287(5457):1427-1430.
    14. Vats A, Bielby RC, Tolley NS, et al. Stem cells [J]. Lancet.2005;366(9485):592-602.
    15. Kanatani S, Tabata H, Nakajima K. Neuronal migration in cortical development [J]. J Child Neurol.2005;20(4):274-279.
    16. Gage FH. Mammalian neural stem cells [J]. Science.2000;287(5457):1433-1438.
    17. Tang Q, Li L, Maul GG. Mouse cytomegalovirus early M112/113proteins control the repressive effect of IE3on the major immediate-early promoter [J]. J Virol.2005;79(1):257-263.
    18. Sawai H, Domae N. Discrimination between primary necrosis and apoptosis by necrostatin-1in Annexin V-positive/propidium iodide-negative cells [J]. Biochem Biophys Res Commun.2011;411(3):569-573.
    19. Chiou SH, Liu JH, Hsu Wm, Chen SS, et al. Up-regulation of Fas ligand expression by human cytomegalovirus immediate early gene product2:a novel mechanism in cytomegalovirus induced apoptosis in human retina [J]. J Immunol.2001;167(7):4098-4103.
    20. Cheeran MC, Lokensqard JR, Schleiss MR. Neuropathogenesis of congenital cytomegalovirus infection:disease mechanisms and prospects for intervention [J]. Clin Microbiol Rev.2009;22(1):99-126.
    21. Benedict CA, Norris PS, Ware CF. To kill or be killed:viral evasion of apoptosis [J]. Nat Immunol.2002;3(11):1013-1018.
    22. Zhu H, Shen Y, Shenk T. Human cytomegalovirus IE1and IE2proteins block apoptosis [J]. J Virol.1995;69(12):7960-7970.
    1. Ghazal P, Messerle M, Osborn K, et al. An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis [J]. J Virol.2003;77(5):3217-3228.
    2. Tang Q, Li L, Maul GG. Mouse cytomegalovirus early M112/113proteins control the repressive effect of IE3on the major immediate-early promoter [J]. J Virol.2005;79(1):257-263.
    3. Luo D, Zhou YF, Shu SN, et al. The experimental study of murine cytomegalovirus inhibits the differentiation and the differentiation genes expression of neural stem cells in vitro [J]. Chin J Microbiol Immunol.2009;29(6):548-554.
    4. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the2(-Delta Delta CT) method [J]. Methods.2001;25(4):402-408.
    5. Li J, Mahajan A, Tsai MD. Ankyrin repeat:a unique motif mediating protein-protein interaction [J]. Biochemistry.2006;45(51):15168-15178.
    6. Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response [J]. Oncogene.2006;25(51):6758-6780.
    7. Hayden MS, Ghosh S. Signaling to NF-kappaB [J]. Genes Dev.2004;18(18):2195-2224.
    8. Hou SC, Chan LW, Chou YC, et al. Ankrd17, an ubiquitously expressed ankyrin factor, is essential for the vascular integrity during embryogenesis [J]. FEBS Lett.2009;583(17):2765-2771.
    9. Wang YT, Tong XM, Li G, et al. Ankrd17positively regulates RIG-I-like receptor (RLR)-mediated immune signaling [J]. Eur J Immunol.2012;42(5):1304-1315.
    10. Ray D, Hogarth CA, Evans EB, et al. Experimental validation of Ankrd17and Anapc10, two novel meiotic genes predicted by computational models in mice [J]. Biol Reprod.2012;86(4):102.
    11. Wang H, Liu XL, Shu SN, et al. Murine cytomegalovirus IE3protein interacts with Ankrd17[J]. J Huazhong Univ Sci Technol [Med Sci].2011;31(3):285-289.
    12. llle F, Sommer L. Wnt signaling:multiple functions in neural development [J]. Cell Mol Life Sci.2005;62(10):1100-1108.
    13. Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise [J]. Histol Histopathol.2006;21(1):103-124.
    14. Reya T, Clevers H. Wnt signalling in stem cells and cancer [J]. Nature.2005;434(7035):843-850.
    15. Kuhl M. The WNT/calcium pathway:biochemical mediators, tools and future requirements. Font Biosci.2004,9:967-974.
    16. Bryan TM, Keiko T, He X. Wnt/β-catenin signaling:components, mechanisms, and diseases [J]. Dev Cell.2009;17(1):9-26.
    17. Kim W, Kim M, Jho EH. Wnt/β-catenin signalling:from plasma membrane to nucleus [J]. Biochem J.2013;450(1):9-21.
    18. Zhou YF, Fang F, Dong YS, et al. Inhibitory effect of murine cytomegalovirus infection on neural stem cells'differentiation and its mechanisms [J]. Chin J Pediatr.2006;44(7):505-508.
    19. Angulo A, Ghazal P, Messerle M. The major immediate-early gene ie3of mouse cytomegalovirus is essential for viral growth [J]. J Virol.2000;74(23):11129-11136.
    20. Martinez FP, Cosme RS, Tang Q. Murine cytomegalovirus major immediate-early protein3interacts with celluar and viral proteins in viral DNA replication compartments and is important for early gene activation [J]. J Gen Virol.2010;91(Ptll):2664-2676.
    21. Li RY, Baba S, Kosugi I, et al. Activation of murine cytomegalovirus immediate-early promoter in cerebral ventricular zone and glial progenitor cells in transgenic mice. Glia,2001,35:41-52.
    22. Kageyama R, Ohtsuka T, Hatakeyama J, et al. Roles of bHLH genes in neural stem cell differentiation [J]. Exp Cell Res.2005;306(2):343-348.
    23. Tonchev AB, Yamashima T, Sawamoto K, et al. Transcription factor protein expression patterns by neural or neuronal progenitor cells of adult monkey subventricular zone [J]. Neuroscience.2006;139(4):1355-1367.
    24. Ma Q, Fode C, Guillemot F, et al. Neurogeninl and neurogenin2control two distinct waves of neurogenesis in developing dorsal root ganglia [J]. Genes Dev.1999;13(13):1717-1728.
    25. Snyder EY, Deitcher DL, Walsh C, et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum [J]. Cell.1992;68(1):33-51.
    26. Vlach J, Hennecke S, Alevizopoulos K, et al. Growth arrest by the cyclin-dependent kinase inhibitor p27Kip1is abrogated by c-Myc [J]. EMBO J.1996;15(23):6595-6604.
    27. Perez-Roger I, Solomon DL, Sewing A, et al. Myc activation of cyclin E/Cdk2kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes [J]. Oncogene.1997;14(20):2373-2381.
    28. Donato R, Miljan EA, Hines SJ, et al. Differential development of neuronal physiological responsiveness in two human neural stem cell lines [J]. BMC Neurosci.2007;25:36.
    29. Honeycutt KA, Roop DR. c-Myc and epidermal stem cell fate determination [J]. J Dermatol.2004;31(5):368-375.
    30. Sun Y, Luo D, Liao DJ. CyclinD1protein plays different roles in modulating chemoresponses in MCF7and MDA-MB231cells [J]. J Carcinog.2012;11:12.
    1. Cannon MJ, Schmid DS and Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection [J]. Rev Med Virol.2010;20(4):202-213.
    2.方峰,董永绥.巨细胞病毒和巨细胞病毒感染的诊断[J].中华儿科杂志.1999;37(7):397-399.
    3. Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection [J]. Rev Med Virol.2007;17(4):253-276.
    4. Coll O, Benoist G, Ville Y, et al. Guidelines on CMV congenital infection [J]. J Perinat Med.2009;37(5):433-445.
    5. Lombardi G, Garofoli F, Stronati M. Congenital cytomegalovirus infection:treatment, sequelae and follow-up [J]. J Matern Fetal Neonatal Med.2010;23(Suppl3):45-48.
    6. Srinivasjois RM, Kava MP, Thomas A, et al. Cytomegalovirus-associated ileal stricture in a preterm neonate[J]. J Paediatr Child Health.2008;44(1-2):80-82.
    7.方峰.新生儿巨细胞病毒感染及疾病的诊治[J].中国实用儿科杂志.2011;26(1):6-8.
    8. Chan G, Nogalski MT, StevensonEV et al. Human cytomegalovirus induction of a unique signalsome during viral entry into monocytes mediates distinct functional changes:a strategy for viral dissemination [J]. J Leukoc Biol.2012;92(4):743-752.
    9. Crough T, Khanna R. Immunobiology of Human Cytomegalovirus:from bench to bedside [J]. Clin Microbiol Rev.2009;22(1):76-98.
    10. Nassetta L, Kimberlin D, Whitley R. Treatment of congenital cytomegalovirus infection: implications for future therapeutic strategies [J]. J Antimicrob Chemother.2009;63(5):862-867.
    11. Schleiss MR. Congenital cytomegalovirus infection:update on management strategies [J]. Curr treat options neurol.2008;10(3):186-192.
    12. Mocarski Jr ES. Cytomegalovirus:general features (human)[M]//Webster RG, Granoff A. Encyclopedia of virology. San Diego:Academic Press.1994:292-298.
    13.方峰.抗巨细胞病毒药物的研究进展和临床应用[J].临床儿科杂志.2007;25(7):528-531.
    14. Marshall BC, Koch WC. Antivirals for cytomegalovirus infection in neonates and infants:focus on pharmacokinetics, formulations, dosing, and adverse events [J]. Paediatr Drugs.2009;11(5):309-321.
    15. Razonable RR, Emery VC. Management of CMV infection and disease in transplant patients [J]. Herpes.2004;11(3):77-86.
    16. Razonable RR. Strategies for managing cytomegalovirus in transplant recipients [J]. Expert Opin Pharmacother.2010;11(12):1983-1997.
    17. Biron KK. Antiviral drugs for cytomegalovirus diseases [J]. Antiviral Res.2006;71(2-3):154-163.
    18. Marty FM, Boeckh M. Marib avir and human cytomegalovirus-what happened in the clinical trials and why might the drug have failed [J]? Curr Opin Virol.2011;1(6):555-562.
    19. Santo L, Marisa G, Giorgio G, et al. The human cytomegalovirus [J]. Pharmacology&Therapeutics.2003;98(3):269-297.
    20. Bai Z, Li L, Wang B, et al. Effect of inducible expressed human cytomegalovirus immediate early86protein on cell apoptosis [J]. Biosci Biotechnol Biochem.2009;73(6):1268-1273.
    21. Xu L, Guo N, Ren H. Cytomegalovirus enteritis in recipients of allogeneic peripheral blood stem cell transplantation[J]. Chin J Intern Med.2001;40(8):546-549.
    22.舒赛男,方峰,董永绥,等.大蒜新素抑制人巨细胞病毒即刻早期抗原表达的实验研究[J].中国中药杂志.2003;28(10):967-970.
    23. Liu ZF, Fang F, Dong YS, et al. Experimental study on the prevention and treatment of murine cytomegalovirus hepatitis by using allitridin [J]. Antiviral Res.2004;61(2):125-128.
    24. Liu XL, Wang H, Li YN, et al. Effects of allitridin on acute and chronic mouse cytomegalovirus infection [J]. Arch Virol.2011;156(10):1841-1846.
    25.甄宏,方峰,舒赛男,等.大蒜新素抑制人巨细胞病毒即刻早期基因表达在抗人巨细胞病毒机制中的作用[J].中国循证儿科杂志.2006;1(1):26-32.
    26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the2-△△CT method [J]. Methods.2001;25(4):402-408.
    27. Shenk TE, Stinski MF. Human Cytomegalovirus. Springer, New York, pp.1-19,2008.
    28. Shirakata M, Terauchi M, Ablikim M, et al. Novel immediate-early protein IE19of human cytomegalovirus activates the origin recognition complex I promoter in a cooperative manner with IE72[J]. Virol.2002;76(7):3158-3167.
    29. Bergallo M, Costa C, Terlizzi M E, et al. Evaluation of two set of primers for detection of immediate early gene UL123of human cytomegalovirus(HCMV)[J]. Molecular Biotechnology.2008;38(1):65-70.
    30. Mocarski ES, Courcelle CT. Cytomegalovirus and their replication [J]. Fields Virology.2001;2629-2673.
    31. Cristea IM, Moorman NJ, Terhune SS, et al. Human cytomegalovirus pUL83stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16protein [J]. J Virol.2010;84(15):7803-7814.
    32. Nevels M, Brune W, Shenk T. SUMOylation of the human cytomegalovirus72-kilodalton IE1protein facilitates expression of the86-kilodalton IE2protein and promotes viral replation [J]. J Virol.2004;78(14):7803-7812.
    33. Yee LF, Lin PL, Stinski MF, et al. Ectopic expression of HCMV IE72and IE86proteins is sufficient to induce early gene expression but not production of infectious virus in undifferentiated promonocytic THP-1cells [J]. Virology.2007;363(1):174-188.
    34. Fortunato EA, Spector DH. Regulation of human cytomegalovirus gene expression [J]. Adv Virus Res.1999;54:61-128.
    35. De Clercq E, Neyts J. Antiviral agents acting as DNA or RNA chain terminators [J]. Handb Exp Pharmacol.2009;(189):53-84.
    36. Harter G, Michel D. Antiviral treatment of cytomegalovirus infection:an update [J]. Expert Opin Pharmacother.2012;13(5):623-627.
    1. Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection [J]. Rev Med Virol.2007;17(4):253-276.
    2. Lombardi G, Garofoli F, Stronati M. Congenital cytomegalovirus infection:treatment, sequelae and follow-up [J]. J Matern Fetal Neonatal Med.2010;23(Suppl3):45-48.
    3.李莉,米荣,李铁耕,等.北京地区新生儿先天巨细胞病毒感染状况研究[J].中国新生儿杂志.2012;27(1):5-9.
    4. Nassetta L, Kimberlin D, Whitley R. Treatment of congenital cytomegalovirus infection: implications for future therapeutic strategies [J]. J Antimicrob Chemother.2009;63(5):862-867.
    5. Schleiss MR. Congenital cytomegalovirus infection:update on management strategies [J]. Curr treat options neurol.2008;10(3):186-192.
    6. Cannon MJ, Westbrook K, Levis D, et al. Awareness of and behaviors related to child-to-mother transmission of cytomegalovirus [J]. Prev Med.2012;54(5):351-357.
    7. Cannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection [J]. Rev Med Virol.2010;20(4):202-213.
    8.方峰,董永绥.巨细胞病毒和巨细胞病毒感染的诊断[J].中华儿科杂志.1999;37(7):397-399.
    9. Chen MH, Chen PC, Jeng SF, et al. High perinatal seroprevalence of cytomegalovirus in northern Taiwan [J]. J Paediatr Child Health.2008;44(4):166-169.
    10. Hyde TB, Schmid DS, Cannon MJ. Cytomegalovirus seroconversion rates and risk factors:implications for congenital CMV [J]. Rev Med Virol.2010;20(5):311-326.
    11. Van Rijckevorsel GG, Bovee LP, Damen M, et al. Increased seroprevalence of IgG-class antibodies against cytomegalovirus, parvovirus B19, and varicella-zoster virus in women working in child day care [J]. BMC Public Health.2012;12:475(1-8).
    12. Yinon Y, Farine D, Yudin MH, et al. Cytomegalovirus infection in pregnancy [J]. J Obstet Gynaecol Can.2010;32(4):348-354.
    13. Mussi-Pinhata MM, Yamamoto AY, Moura Brito RM, et al. Birth prevalence and natural history of congenital cytomegalovirus infection in a highly seroimmune population [J]. Clin Infect Dis.2009;49(4):522-528.
    14. Enders G, Daiminger A, Bader U, et al. Intrauteine transmission and clinical outcome of248pregnancies with primary cytomegalovirus infection in relation to gestational age [J]. J Clin Virol.2011;52(3):244-246.
    15. Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of neurological and sensory sequelae and mortality associated with congenital cytomegalovirus infection [J]. Rev Med Virol.2007;17(5):355-363.
    16. Ross SA, Boppana SB. Congenital cytomegalovirus infection:outcome and diagnosis [J]. Semin Pediatr Infect Dis.2005;16(1):44-49.
    17. Lanari M, Capretti MG, Lazzarotto T, et al. Neuroimaging in CMV congenital infected neonates:how and when [J]. Early Hum Dev.2012;88(Suppl2):S3-5.
    18. Caliendo AM, Shahbazian MD, Schaper C, et al. A commutable cytomegalovirus calibrator is required to improve the agreement of viral load values between laboratories [J]. Clin. Chem.2009;55(9):1701-1710
    19. Pass R, Fowler KB, Boppana SB, et al. Congenital cytomegalovirus infection following first trimester maternal infection:symptoms at birth and outcome [J]. J Clin Virol.2006; 35(2):216-220.
    20. Foulon I, Naessens A, Foulon W, et al. Hearing loss in children with congenital cytomegalovirus infection in relation to the maternal trimester in which the maternal primary infection occurred [J]. Pediatrics.2008;122(6):e1123-1127..
    21. Cheeran MC, Lokensqard JR, Schleiss MR. Neuropathogenesis of congenital cytomegalovirus infection:disease mechanisms and prospects for intervention [J]. Clin Microbiol Rev.2009;22(1):99-126.
    22. Ghekiere S, Allegaert K, Cossey V, et al. Ophthalmological findings in congenital cytomegalovirus infection:when to screen, when to treat [J]? J Pediatr Ophthalmol Strabismus.2012;49(5):274-282.
    23. Oliver SE, Cloud GA, Sanchez PJ, et al. Neurodevelopmental outcomes following ganciclovir therapy in symptomatic congenital cytomegalovirus infections involving the central nervous system [J]. J Clin Virol.2009;46(Suppl4):S22-26.
    24. Lackner A, Acham A, Alborno T, et al. Effect on hearing of ganciclovir therapy for asymptomatic congenital cytomegalovirus infection:four to10year follow up [J]. J Laryngol Otol.2009;123(4):391-396.
    25. Yilmaz Ciftdogan D, Vardar F. Effect on Hearing of Oral Valganciclovir for Asymptomatic Congenital Cytomegalovirus Infection [J]. J Trop Pediatr.2011;57(2):132-134.
    26. Marshall BC, Koch WC. Antivirals for cytomegalovirus infection in neonates and infants:focus on pharmacokinetics, formulations, dosing, and adverse events [J]. Paediatr Drugs.2009;11(5):309-321.
    27. Kimberlin DW, Acosta EP, Sanchez PJ, et al. Pharmacokinetic and Pharmacodynamic assessment of oral Valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease [J]. J Infect Dis.2008;197(6):836-845.
    28. Lombardi G, Garofoli F, Villani P, et al. Oral Valganciclovir treatment in newborns with symptomatic congenital cytomegalovirus infection [J]. Eur J Clin Microbiol Infect Dis. 2009;28(12):1465-1470.
    29. Amir J, Wolf DG, Levy I. Treatment of symptomatic congenital cytomegalovirus infection with intravenous ganciclovir followed by long-term oral valganciclovir [J]. Eur J Pediatr.2010;169(9):1061-1067.
    30. del Rosal T, Baquero-Artigao F, Blazquez D, et al. Treatment of symptomatic congenital cytomegalovirus infection beyond the neonatal period [J]. J Clin Virol.2012;55(1):72-74.
    31.Chou S, Marousek GI. Maribavir antagonizes the antiviral action of ganciclovir on human cytomegalovirus [J]. Antimicrob Agents Chemother.2006;50(10):3470-3472.
    32. Marty FM, Boeckh M. Maribavir and human cytomegalovirus-what happened in the clinical trials and why might the drug have failed [J]? Curr Opin Virol.2011;1(6):555-562.
    33. James SH, Kimberlin DW, Whitley RJ. Antiviral therapy for herpesvirus central nervous system infections neonatal herpes simplex virus infection, herpes simplex encephalitis, and congenital cytomegalovirus infection [J]. Antiviral Res.2009;83(3):207-213.
    34.方峰.儿童巨细胞病毒性疾病的诊断和防治[J].实用儿科临床杂志.2010;25(10):701-703.
    35. Adler SP, Starr SE, Plotkin SA, et al. Immunity induced by primary human cytomegalovirus infection protects against secondary infection among women of childbearing age [J]. J Infect Dis.1995;171(1):26-32.
    36. Bernstein DI. Vaccines for cytomegalovirus [J]. Infect Disord Drug Targets.2011;11(5):514-525.
    37. Pass RF, Zhang C, Evans A, et al. Vaccine prevention of maternal cytomegalovirus infection [J]. N Engl J Med.2009;360(12):1191-1199.
    38. Griffiths PD, Stanton A, McCarrell E, et al. Cytomegalovirus glycoprotein-B vaccine with MF59adjuvant in transplant recipients:a phase2randomised placebo-controlled trial [J]. Lancet.2011;377(9773):1256-1263.
    39. Adler SP, Nigro G. Findings and conclusions from CMV hyperimmune globulin treatment trials [J]. J Clin Virol.2009;46(Suppl4):S54-57.
    40. Buxmann H, Stackelberg OM, Schloβer RL, et al. Use of cytomegalovirus hyper-immunoglobulin for prevention of congenital cytomegalovirus disease:a retrospective analysis [J]. J Perinat Med.2012;40(4):439-446.
    41. Visentin S, Manara R, Milanese L, et al. Early primary cytomegalovirus infection in pregnancy:maternal hyperimmunoglobulin therapy improves outcomes among infants at1year of age [J]. Clin Infect Dis.2012;55(4):497-503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700