用户名: 密码: 验证码:
亚洲地区国内外大豆育成品种苗期耐淹性鉴定、种质优选和QTL关联定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洪涝灾害在世界范围内频繁发生,是世界上许多地区普遍发生的自然灾害,也是我国大豆生产主要的非生物逆境灾害之一。涝害情况分为湿/渍害和淹水,淹水也可分为全淹和半淹。研究表明大豆[Glycine max(L.)Merr.]苗期和花荚期对淹水反应较敏感,大豆不同品种之间耐淹性有差异,利用耐淹大豆品种是提高抗灾能力的有效途径,故发掘、鉴定耐淹资源及其有利基因服务大豆育种和生产实践具有重要的意义。
     长江中下游地区常有梅雨天气,大豆苗期易形成涝害。在前人研究我国大豆资源耐淹性的基础上,本文进一步研究我国和亚洲其他国家大豆育成品种苗期耐淹性的遗传变异,发掘优异资源;对耐淹性进行关联定位,寻找优异等位变异及其载体材料,并追索在后代育成品种中的累积。同时,还试探研究半淹胁迫下的遗传机制,定位QTL,筛选与之紧密连锁的分子标记。所获主要结果如下:
     1.选取来源于我国黄淮、中国南方、东亚(韩国和朝鲜)、东南亚(菲律宾、越南、泰国、印尼等)和南亚(印度、尼泊尔、巴基斯坦等)的亚洲大豆育成品种350份。采用Vo期全淹处理,相对死苗率为指标,以王芳等所定的一组对照种为参照,分析5个地区大豆育成品种耐淹性的遗传变异。结果表明:相对失绿率和相对萎蔫率与相对死苗率存在极显著相关(P<.0001),可作为耐淹性的参考指标;以相对死苗率鉴定大豆品种的苗期耐淹性,亚洲大豆育成品种的耐淹性(109.8%)与地方品种群体的耐淹性(110.3%)相当,并均高于野生大豆群体(104.5%);中国黄淮、南方地区育成品种耐淹性变异大,变幅为4.8%-212.0%,高于亚洲引种材料群体,遗传变异丰富,覆盖了整个供试群体;各区均存在耐淹品种,优选出莒选23、南农493-1、黔豆2号等15份耐淹品种。优选品种与野生和地方种质相互补充,为大豆抗涝育种提供丰富的遗传种质。
     2.对全部供试材料SSR标记的基因型数据进行遗传结构分析的结果,整个群体由两个差异明显的群体构成,这两个群体分别和国内材料及亚洲国外材料相对应,说明大豆从我国引入亚洲其它国家后育种方向的差异导致了群体遗传结构的根本性差异。因此需要分开研究。
     3.对我国黄淮和南方187份育成品种(群体1)SSR标记基因型数据进行成对位点连锁不平衡、群体结构和耐淹性3个性状与标记的关联分析,结果表明:(1)该群体按遗传结构分为7个亚群,群体存在LD(Linkage Disequilibrium),不平衡成对位点所占比例较大(48.63%),LD衰减速率较快.(2)检测到与3个耐淹性状关联位点14个(Satt681、Satt373、Satt659等),同一位点与2个或3个性状关联,表明3个耐淹性状之间确有相关性.与前人结果比较无相同位点。(3)分别筛选出耐淹3个性状OTL的6个、10个和8个优异等位变异,优选出合豆2号、黔豆3号、诱变31和南农493-1等具有较多优异等位变异的载体材料。因此可通过聚合大豆优异基因提高耐淹性。
     4.对亚洲地区国外104份材料(群体2)的耐淹性状与SSR标记关联分析发现:(1)与3个耐淹性状关联位点6个,(Sct033、Satt186、Satt269等)累计14个;存在同一位点与2个或者3个性状有关联。部分关联位点与群体定位结果一致。(2)分别筛选出耐淹3个性状QTL的8个、6个和8个优异等位变异,优选出PI208432、PI377576和PI481690等具有2个以上优异等位变异的耐淹典型载体材料。
     同时还对群体2的百粒重、蛋白质和脂肪含量进行了与SSR标记的关联分析,与百粒重、蛋白质和脂肪关联的位点有21个,点累计29个。筛选出百粒重、蛋白质和脂肪性状QTL优异等位变异6个、8个和13个,获得PI175187、PI165926和PI210351A等优异载体材料。
     5.本研究同时探索了半淹胁迫下的耐淹性遗传,选用“苏88-M21(较耐)×新沂小黑豆(高度敏感)”衍生的176个重组自交系(NJRISX)为材料,采取V2期保持土壤表层5-7cm水层淹水处理20天研究大豆耐淹性遗传规律。结果表明:(1)对8个可能和耐淹性有关性状中,确定相关性较高的3个(株高变量、叶龄和熟期株高)耐淹指数的均值评价家系耐淹性。(2)主基因+多基因混合遗传模型分析结果表明耐淹性受2对具有重叠作用的连锁主基因控制,并存在多基因互作。主基因遗传率为62.83%.(3)利用国家大豆改良中心提供的遗传图谱,采用Win QTL Cartographer 2.5开展了大豆耐淹的QTL定位研究.结果表明耐淹性存在超亲变异,家系间差异显著.利用CIM和MIM法共同检测到2个稳定位点,均位于连锁群L2上satt229-satt527和satt527-sat.286区间内,对表型变异的解释率为10.1%-25.2%。利用MIM方法还检测到1个QTL,也位于L2连锁群上。鉴于时间限制,全淹和半淹胁迫下大豆耐淹性的遗传差异及其关系有待进一步研究。
Many flooding disasters occur frequently due to the heavy rainfall and poor drainage encountered in many areas in the world, and flooding is a common production problem for soybeans [Glycine max (L.) Merr.] in China. Flooding has been recognized in two categories: waterlogging and saturation in soil, waterlogging ulteriorly recognized in small two categories: submergence and incomplete immergence. Soybean is sensitive to flooding and waterlogging stress, especially at early seedling stage as well as flowering and podding stages; On the other hand, there existed great difference in the tolerance to flooding or waterlogging in soybean germplasm, so utilizing tolerant cultivars is one of the most effective ways to improve the soybean production under flooding and waterlogging stresses condition. Identification and discovery of the tolerant germplasm and their target genes is important and basic research work for breeding purposes.
     Soybean seedling stage is threatened by plum rains in the lower reaches of the Yangzi region. Based on the research of submergence tolerance in soybean, the main objectives of the present study were: (1) to evaluate and identify the submergence tolerance of released cultivar populations from different Asian regions at seedling stage to reveal their genetic variation; (2) to discover the tolerant gene loci and elite alleles to submergence as well as their carriers, and to reveal the cumulative characteristics of elite alleles in the five major pedigrees of Chinese cultivars through association mapping; (3)At the same time, to establish new method system and detect QTLs and linked molecular markers for incomplete immergence tolerance by using RIL population NJRLSX at V2 stage. The main results were as follows.
     Total 350 accessions sampled from different eco-regions (Huang-Huai Valleys in China, Southern China, East Asia, southeast Asia, and south Asia) were tested for the genetic variation of submergence tolerance. A randomized block design experiment submerged at V0 stage of soybean seedling was carried by using relative death seedling rate(De), relative lost chlorophyll rate(Lo) and relative wilting rate(Wi) as indices and the germplasm which Wangfang has been ascertained as controls . The results included: (1) Lo and Wi correlated significantly with De (P<.0001) , and the indicator system involving De as major index and Lo, Wi as subsidiary indices was effective on the evaluation of submergence tolerance at seedling stage. The De value of Asia released cultivars were 109.8%, higher than that of wild soybeans (104.5%), and nearly equal to that of landrace (110.3%). Cultivars from China existed the highest variation among the different Asian regions, and the De range of Chinese cultivars covered the whole range of the sample population with the value from 4.8% to 212.0%. There existed tolerant variation in all tested regions, and 15 varieties with high tolerant to submergence were identified, i.e. Juxuan23, Nannong493-1, Qiandou2 Hao and so on. Among them, 7 from Huang-Huai, 4 from Southern China, 2 from south Asia, and 1 from East Asia and southeast Asia respectively. The selected tolerant cultivars can be new sources for tolerant breeding, and be compensatory with the tolerant accessions selected from landraces and annual wild soybean.
     According to the analyses of genetic structure of the total of soybean accessions with 64 simple-sequence repeat (SSR) markers, these experimental materials can be divided into Chinese varieties (Population 1) and exotic varieties (Population 2). This indicated the difference of introduced soybeans breeding direction led to ultimate population genetic structure diversity, so need to study respectively.
     The Population 1 contained 187 varieties from Huang-Huai valleys and southern China, and was scanned with 85 SSR markers distributed evenly the whole genome. The linkage disequilibrium (LD), population structure and association mapping of QTLs for submergence tolerance as well as the inheritance of the elite alleles in the main pedigree of Population lwere carried out by using Structure 2.2 and TASSEL software. It showed that (1) Population 1 was composed of seven subpopulations, LD was detected extensively (48.63%), and LD decays decreased quickly. (2) Total 14 SSR loci were detected to be associated with three submergence tolerance traits, and some loci associated simultaneously with two or three traits, i.e. Satt681、Satt373、Satt659 and so on, indicating the correlation among these traits. (3) Total 6, 10 and 8 Elite alleles and relative typical carriers of relative death seedling rate and other two traits (Lo and Wi) were also selected. Hedou2 Hao, Qiandou3 Hao, Youbian31 and Nannong493-1 possess more elite alleles. In the five pedigree populations, some elite alleles lost along with breeding cycle change, but others added, which imply the potentials of pyramiding different elite genes to improve the tolerance.
     Association analysis of 64 SSR markers with the phenotypic data of 3 submergence tolerance traits, 100-seed weight, protein content and fat content was conducted in Population 2 which had 104 accessions from other Asian countries. the results were: (1) Six SSR loci (i.e. Sct033、Satt186、Satt269 and so on) with a total 14 loci were found to be associated with 3 submergence tolerance traits. There also found a certain number of loci associated simultaneously with two or more relative traits. Some loci were consistent with mapped QTLs from family-based linkage mapping procedure. (2) Total 8, 6 and 8 elite alleles of QTLs for submergence tolerance were identified respectively, and three accessions, i.e. PI208432、PI377576, PI481690, with 2 or more than 2 elite alleles were selected.
     And the 21 SSR loci with a total 29 loci were found to be associated with 100-seed weight, protein content and fat content, some. For the traits of 100-seed weight, protein content and fat content, 6, 8 and 13 elite alleles were identified respectively, and three accessions, i.e. PI175187, PI165926 and PI210351A were selected.
     RIL population NJRISX from Su88-M21 (tolerant)×Xinyixiaoheidou (Highly sensitive) was evaluated to reveal the genetic base of waterlogging tolerance. The waterlogging stress was kept 5-7 cm water above soil surface for 20 days at V2 stage. It showed: (1) Among the eight traits, the values of plant height increment, the age of leaves and plant height of mature appeared relatively stable and highly correlative, so the mean of values of these traits was used as the indicator to evaluate waterlogging tolerance. (2)The results from segregation analysis under the major gene plus polygene mixed inheritance model showed that waterlogging tolerance of soybean was controlled by two linkage major genes with duplicate effect and polygene detected, the heritability of major genes was 62.83%. (3) QTL mapping for waterlogging tolerance in soybean was carried out under the methods of composite interval mapping (CIM) and multiple interval mapping (MIM) of software Win QTL Cartographer 2.5. There existed transgressive segregation and significant different of lines in the NJRISX population. Two QTLs associated with waterlogging tolerance were identified through both CIM and MIM methods, and both located on linkage group L2 within the regions of Satt229~Satt527 and Satt527~satt286, respectively, explaining 10.1%~25.2% of the total phenotypic variation. With MIM method the other locus on linkage groups L2 was detected which need to be further verified.
引文
1. Adler F R, Chase K, Cregan P B, et al. Genetics of soybean agronomic traits: I. comparison of three related recombinant inbred populations[J]. Crop Sci, 1999, 39: (6) 1642-1651.
    2. Armstong W, Brandle R, Jackson M B. Mechanisms of flood tolerance in plant[J]. Acta Bot Neel, 1994a, 43:307-358.
    3. Arnold Tim, Brownrigg E, Nathan C, et al. The Analysis Application[M].USA: SAS Institute Inc, 2003:307-315.
    4. Bacanamwo M, Harper J E. The feedback mechanism of nitrate inhibition of nitrogenase activity in soybean may involve asparagines and/or production of its metabolism[J].Plant Physiol, 1997, 100: 371-377.
    5. Bacanamwo M, Purcell L. Soybean dry matter and N accumulation response to flooding stress N source and hypoxia[J]. Exp Bot, 1999, 50:689-696.
    6. Barrick K A, Noble M G. The iron and manganese status of seven upper montane tree species in Colorado following long- term waterlogging[J]. Ecol, 1993, 81:523-531.
    7. Beer S C, Siripoonwiwat W, O'Donoughue L S, et al. Association between molecular markers and qualitative traits in an oat germplasm pool: Can we infer linkages[J]. Agric. Genomics 1998, e# 1 http://www.ncgri.org/ag/jag/Index.html.
    8. Board J E, Harville B G Growth dynamics during the vegetative period affects yield of narrow-row, late-planted soybean[J]. Agron, 1996, 88:567-572.
    9. Boru G, Ginkel M V, Kronstad W E et al. Expression and inheritance of tolerance to waterlogging stress in wheat[J]. Euphytica, 2001,117:91-98.
    10. Boru G, VanToai T T and Alves J D. Flooding injuries in soybean are caused by elevated carbon dioxide levels in the root zone[p]. 1997, 205-209. In Proceedings of the Fifth National Symposium on Stand Establishment, Columbus, OH.
    11. Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping[J]. Genetics, 1994, 138 (3):963-971.
    12. Collaku A, Harrison S A. Heritability of waterlogging tolerance in wheat[J]. Crop Sci, 2005, 45:722-727.
    13. Cornelious B, Chen P, Chen Y, et al. Identification of QTLs underlying water-logging tolerance in soybean[J]. Molecular Breeding, 2005, 16:103-112.
    14. Crawford R M M, Braendle R. Oxygen deprivation stress in a changing environment[J].Exp Bot, 1996, 47(295): 145-159.
    15. Cregan P, Randall N, Youlin Z. Sequence variation, haplotype diversity and linkage disequilibrium in cultivated and wild soybean[p]. In: First International Conference on Legume Genomics and Genetics: Translation to crop improvement, pp 2-6, Minneapolis-St. Paul,MN,2002.
    16. Csanadi G, Vollmann J, Stift G, et al. Seed quality QTLs identified in a molecular map of early maturing soybean[J]. Theor Appl Genet, 2001,103:912-919.
    17. Doerge R W, Churchill G A, Permutation tests for multiple loci affecting a quantitative character[J].Genetics, 1996,142 (1):285-294.
    18. Farnir F, Coppieters W, Arranz J J, et al. Extensive genome-wide linkage disequilibrium in cattle[J].Genome Res,2000,10:220-227.
    19.Fausey N R,VanToai T T,McDonald M B J.Responses often corn cultivars to flooding[J].Trans.ASAE,1985,28:1794-1797.
    20.Flint-Garcia S A,Thornsberry J M and Bucker E S.Structure of linkage disequilibrium in plants[J].Annu Rev Plant Biol.2003,54:357-374.
    21.Fry S C.Polysaccharide-modifying enzymes in the plant cell wall[J].Annu Rev Plant Physioloyg and Plant Mol Biol,1995,46:497-520.
    22.Gebhardt C,Ballvora A,Walkemeier B,et al.Assessing genetic potential in germplasm collections of crop plants by marker-trait association:a case study for potatoes with quantitative variation of resistance to late blight and maturity type[J].Molecular Breeding,2004,13:93-102.
    23.Githiri S M,Watanabe S,Harada K,et al.QTL analysis of flooding tolerance in soybean at an early vegetative growth stage[J].Plant Breeding,2006,125:613-618.
    24.Grable A R.Soil aeration and plant growth[J].Adv.Agron,1966,18:57-106.
    25.Griffin J L,Saxton A M.Response of solid-seeded soybean to flood irrigation Ⅱ Flood duration[J].Agron J,1988,80:885-888.
    26.Gupta P K,Rustgi S,Kulwal P L.Linkage disequilibrium and association studies in higher plants:Present status and future prospects[J].Plant Mol Biol,2005,57:461-485.
    27.Hendry G A F,Broeklebank K J.Iron-induced oxygen radical metabolism in waterlogged plants[J].New Phytologist,1985,101:199-206.
    28.Holmberg N and Bulow L.Advance on enhancing plant abiological stress tolerance by transgene[J].Trend in Plant Science,1998,3(2):61-66.
    29.Huang B,Johnson J W,NeSmith D S,et al.Growth,physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply[J].Journal Experimental Botany,1994,45:193-202.
    30.Hung K C,Zeng Z,Teasdale R D.Multiple interval mapping for quantitative trait loci[J].Genetics,1999,152:1203-1216.
    31.Hunt P W,Peacock W J,Dennis E S et al.Increased level of hemoglobin 1 enhances survival of hypoxic stress and promots early growth in Arabidopsis thaliana[J].Plant Biology,2002,99(26):17197-17202.
    32.Hyten D L,Song Q,Cregan P B.Linkage disequilibrium in four soybean populations[J].In:Plant&Animal Genomes ⅩⅡ Conference,2004,10-14 January,Town& Country Convention Center,San Diego,CA,P534.
    33.Insausti P,Grimoldi A A,Chaneton E J,et al.Flooding induces a suite of adaptive plastic responses in the grass pas2 palum dilatatum[J].New Phytologist,2001,152:291-299.
    34.Ivandic V C,Hackett A,Nevo E,et al.Analysis of simple sequence repeat(SSRs) in wild barley from the fertile crescent:associations with ecology,geography and flowering time[J].Plant Mol Biol,2002,48:511-527.
    35.Jackson M B,Drew M C,Effects of flooding on growth and metabolism of herbaceous plants[M].In:Kozlowski T T(Ed.),Flooding and Plant Growth.Academic Press,New York,NY.Orlando.Florida,USA,1984:47-128.
    36.Jackson M B.Ethylene and response of plants to excess water in their environment:a review[M].In:Roberts J A,Tucker G E.eds.Ethylene and Plant Development.London:Butterworths. 1984:241-265.
    37. Jackson M B, Fenning T M, Drew M C, et al. Stimulation of ethylene production and gas space formation in adventition roots of zeamays L by small partial pressures of oxygen[J]. Planta, 1995, (165):486-492.
    38. Kludze H K, Delaune R D, Patrick W H. Aerenchyma formation and methane and oxygen exchange in rice[J].Soil Sci Soc Am J, 1993, 57: 386-391.
    39. Kozlowski T T. Flooding and Plant Growth [M]. London: Academic Press, 1984:129-163.
    40. Kraakman A T W, Niks R E, Van den Berg P M M M, et al. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars[J].Genetics, 2004,168:435-446.
    41. Labate J A, Lamke K R, Lee M, et al. Hardy-Weinberg and linkage equilibrium estimates in the BSSS and BSCB1 random mated populations[J]. Maydica, 2000,45:243-255.
    42. Linkemer G, Board J E, Musgrave M E. Water-logging effect on growth and yield components of late-planted soybean[J]. Crop Sci, 1998,38: 1576-1584.
    43. Matthew D R. Tolerance of soybean cultivars to waterlogging soils [D]. A thesis presented to the faculty of the Graduate school University of Missouri-Columbia, 2006.
    44. Matthew S, VanToai T T, Fausey N, et al. Evaluation on-farm flooding impacts on soybean[J]. Crop Sci, 2000,41:93-100.
    45. Mckevlin M R, Hook D D, Rozelle A A. A adaption of plants to flooding and soil water logging [A]. In: Messina M G and Conner W H eds [C]. Southern Foresled Welland: Ecology and Management Lew is Publishs, 1998, 173-204.
    46. Minchin F R, Pate J S. Effects of water, aeration and salt regime on nitrogen fixation in a nodulated legume-definition of an optimum root environment[J]. Exp. Bot 1975, 26: 60-69.
    47. Nathanson K, Lawn R J, DeJabrun P L M, et al. Growth, nodulation and nitrogen accumulation by soybean in saturated soil culture[J]. Field Crops Res, 1984, 8:73-92.
    48. OhMan-Ho, Romanow W G, Smith R C, et al. Soybean BRU1 encodes a functional xyloglucan endotrans glycosylase that is highly expressed in inner epicotyl tissues during brassino steroid-promoted elongation[J]. Plant Cell Physiol, 1998, 39:124-130.
    49. Okazawa K, Sato Y, Nakagawa T, et al. Molecular cloning and cDNA sequencing of endoxyloglucan transferase a novel class of glycosyl transferase that mediates molecular grafting between matrix polysaccharides in plant cellwalls[J]. Biolog Chem, 1993, 268:25364 -25368.
    50. Oosterhuis D M, Scott H D, Hampton R E, et al. Physiological response of two soybean[Glycine max(L.)Merr] cultivar to short-term flooding[J]. Environ Exp Bot, 1990, 30(1):85-92.
    51. Palaisa K A, Morgante M, Williams M et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci[J]. Plant Cell, 2003, 15:1795-1806.
    52. Parisseaux B, Bernardo R. In silico mapping of quantitative trait loci in maize[J]. Theor Appl Genet, 2004, 209:508-514.
    53. Ponnamperuma F N. The chemistry of submerged soils[M]. In N.C. Brady (ed.) Advances in agronomy. Academic Press, New York. 1972,24:29-96.
    54. Powles S B, Osnond C B. Inhibition of the capacity and efficiency of photosynthesis in bean leaflets illuminatedina CO_2 free atmosphere at low oxygen: a possible role for photorespiration[J]. Aust J Plant Physiol, 1978,5:619-629.
    55. Pritchard J K, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data[J].Genetics,2000,155:945-959.
    56.Purcell L C,Vories E D,Counce P A,et al.Soybean growth and yield response to saturated soil culture in a temperate environment[J].Field Crops Res,1997,49:205-213.
    57.Pushpendra K G,Sachin R,Pawan L K.Linkage disequilibrium and association studies in higher plants:Present status and future prospects[J].Plant Mol Biol,2005,57:461-485.
    58.Remington D L,Thornsberry J M,Matsuoka Y,et al.Structure of linkage disequilibrium and phenotypic associations in the maize genome[J].Proc.Natl.Acad.Sci.USA,2001,98:11479-11484.
    59.Reyna N,Cornelious B,Shamnon J G,et al.Evaluation of a QTL for waterlogging tolerance in southern soybean germplasm[J].Crop Sci,2003,43(6):2077-2082.
    60.Ricard B,Coue I,Raymond P,et al.Plant metabolism under hypoxia and anoxia[J].Plant Physiol.Biochem,1994,32:1-10.
    61.Roru G,Ginkel M V,Kronstad W E,et al.Expression and inheritance of tolerance to waterlogging stress in wheat[J].Euphytia,2001,117:91-98.
    62.Russell R S.Plant root systems:Their function and interaction with soil[J].McGraw-Hill,Maidenhead,Berks,UK.1977.
    63.Sallam A,Scott H D.Effects of prolonged flooding on soybeans during early vegetative growth[J].Soil Sci,1987,144:61-66.
    64.Schirmann P H D,Smith R C,Lang V,et al.Expression of XET-related genes and its relation to elongation in leaves of barley(Hordeun vulgareL.)[J].Plant Cell Envir,1997,20:1439-1450.
    65.Schmitthenner A F.Problems and progress in control of phytophthora root rot of soybean[J].Plant Dis,1985,69:362-368.
    66.Scott H D,Angulo J D,Wood L S,et al.Influlence of temporary flooding at three growth stages on soybean growth on a clayey soil[J].Plant Nutr,1990,13:1045-1071.
    67.Scott H D,DeAngulo J,Daniels M B,et al.Flood duration effects on soybean growth and yield[J].Agron.1989,81:631-636.
    68.Setter T L,Ellis M,Lourance E V,et al.Physiology and genetics of submergence tolerance of rice[J].Annals of Botany.(London),1997,79(suppl.A):61-71.
    69.Shannon J G,Stevens W E,Wiebold W J,et al.2005.Breeding soybeans for improved tolerance to flooding[p].Proe 35~(th) Soybean Seed Res.Conf.Am.Seed Trade Assoc.,Chicago,Ill.7 Dec.
    70.Shimamura S,Mochizuki T,Nada Y,et al.Formation and function of secondary aerenchyma in hypocotyls,roots and nodules of soybean(Glycine max) under flooded conditions[J].Plant Soil,2003,251:351-359.
    71.Simrnoff N,Crawford R M M.Variation in the structure and response to flooding of root aerenchymia in some wetland plants[J].Ann Bot,1983,51:237-249.
    72.Skot L,Humpherys M,Heywood S,et al.The application of genecology to the discovery of associations between phenotypes and molecular markers in natural populations of perennial ryegrass[J].In:Plant &Animal Genomes ⅩⅡ Conference,2004,10-14 January,Town &Country Convention Center,San Diego,CA,W137.
    73.Sprent J I.Prolonged reduction of acetylene by detached soybean nodules[J].Planta,1969,88:372-375.
    74.Sullivan M,VanToai T,Fausey N,et al.Evaluated on-farm flooding impacts on soybean[J].Crop Sci,2001,41:93-100.
    75.Thomson C J,Atwell B J,Greenway H.Response of wheat seedlings to low O2 concentration in nutrient solution:II[J].Exp.Bot,1989,40:993-999.
    76.Thornsberry J M,Goodman M M,Doebley J,et al.Dwarf8 polymorphisms associate with variation in flowering time[J].Nature Genet,2001,28:286-289.
    77.Tolbert N E.Microbodies-peroxiscmes and glyoxyscmes[J].Annu Rev PlanLPhysiol,1971,22:4574.
    78.Trought M C T,Drew M C.The development of waterlogging damage in wheat seedlings(Triticum aestivum L.):I.Shoot and root growth in relation to changes in the concentration of dissolved gases and solutes in the soil solution[J].Plant Soil,1980,54:77-94.
    79.VanToai T T,Beuedin J E,Schmitthenner A F,et al.Genetic variability for flooding tolerance in soybeans[J].Crop Sci,1994,34:112-1115.
    80.VanToai T T,Bolles C S.Postanoxic injury in soybean(Glycine max) seedlings[J].Plant Physiol,1991,97:588-592.
    81.VanToai T T,St Martin S K,Chase K,et al.Identification of a QTL associated with tolerance of soybean to soil waterlogging[J].Crop Sci,2001,41:1247-1252.
    82.Vartapetian B B,Jackson M B.Plant adaptations to anaerobic stress[J].Ann.Bot.(London)1997,79(suppl.A):3-20.
    83.Vasellati V,Oesterheld M,Medan D,et al.Effects of flooding and drought on the anatomy of Paspalum Dilatatum[J].Annals of Botany,2001,88:355 -360.
    84.Wang S C,Basten C J,Zeng Z B.W'mdows QTL Cartographer Version 2.5,Department of Statistics,North Carolina State University,Raleigh,NC,2001-2006.
    85.Webb J,Jachson M B.A transmission and cryo-scanning electron microscopy study of the formation of aerenchyma(cortical gas-filled space)in adventitious roots of rice(Oryza sativa)[J].Exper Bot,1986,37(179):832-841.
    86.Wen Z-X,Zhao T-J,Zheng Y-Z,et al.Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China:I.Population Structure and Associated Markers[J].Acta Agron Sin,2008,(in Chinese with English abstract)
    87.Youssef T,Saenger P.Anatomical adaptive strategies to flooding and rhizosphere oxidation in mangrove seedlings[J].Aust J Bot,1996,44:297-313.
    88.Zeng Z B.Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci[J].Proceedings of the National Academy of Sciences of the United States of America,1993,90:10972-10976.
    89.Zeng Z B.Precision mapping of quantitative trait loci[J].Genetics,1994,136(4):1457-1468.
    90.Zhang N,Xu Y,Akash M,et al.Identification of candidate analysis[j].Theor Appl Genet,2005,110:721-729.
    91.Zhu Y L,Song Q J,Hyten D L,et al.Single nucleotide polymorphisms in soybean[J].Genetics,2003,163:1123-1134.
    92.蔡士宾,曹暘,方先文.小麦耐湿性变异及其配合力分析[J].江苏农业学报,1996,12(3):11-15.
    93.曹旸,蔡士宾,方先文.小麦品种间孕穗期耐湿性差异[J].江苏农业学报,1992,8(3):51-52.
    94.曹旸,蔡士宾,朱伟,等.国内外麦类作物耐湿性研究进展[J].国外农学-麦类作物,1996, 6:48-49。
    95.董建国,余叔文.细胞分裂素对渍水小麦衰老的影响[J]。植物生理学报,1984,10:55。
    96.董钻.大豆产量生理[M].北京:中国农业出版社,2000,177-179.
    97.樊寿明,张福锁.植物通气组织的形成过程和生理生态学意义[J].植物生理学通讯,2002,38(6):615-618.
    98.方先文,曹旸,蔡士宾.马卡小麦耐湿性遗传评价[J].江苏农业学报,1997,13(5):73-75.
    99.方宣钧,吴炎人,唐纪良.作物DNA标记辅助选择[M].科学出版社,2001.
    100.盖钧镒,章元明,王建康.植物数量性状遗传体系[M]。北京:科学出版社,2003.
    101.盖钧镒,赵团结,崔章林,等.中国1923-1995年育成的651个大豆品种的遗传基础[J].中国油料作物学报,1998,20(1):17-23.
    102.盖钧镒.试验统计方法[M].北京:中国农业出版社,2000。
    103.高用明,朱军。植物QTL定位方法的研究进展[J].遗传,2000,22(3):175-179.
    104.何嵩涛,刘国琴,樊卫国.银杏对水涝胁迫的生理反应(1)[J].山地农业生物学报,2000,1(94):72-74.
    105.何小红,盖钧镒.回交自交系群体数量性状遗传体系的分离分析方法[J]。作物学报,2006,32(2):210-216.
    106.胡良平。现在统计学与SAS应用[M].军事医学出版社,2008。
    107.胡田田,康绍忠.植物淹水胁迫响应的研究进展[J]。福建农林大学学报,2005,34(1):18-24.
    108.姜华武,张祖新.玉米种质的耐涝性鉴定及耐涝性遗传研究初报[J].湖北农学院学报,1999,19(2):188-189.
    109.孔繁玲.植物数量遗传学[M].北京:中国农业大学出版社,2006.6.
    110.李金才,董琦,余叔文.不同生育期根际土壤淹水对小麦品种光合作用产量的影响[J].作物学报,2001,2(74):434-442.
    111.李林,邹冬生,刘登望,等.花生等农作物耐湿、耐涝性研究进展[J].中国油料作物学报,2004,26(3):105-110。
    112.李茂松,李森,李育慧.中国近50年洪涝灾害灾情分析[J].2004,25(1):38-41.
    113.李瑞秋,高小彦,吴敦肃.淹水对玉米苗期某些生理和形态的影响[J].植物学报,1991。33:473-477.
    114.李向华,常汝镇.中国春大豆品种聚类分析及主成分分析[J].作物学报,1998,24(3):325-332。
    115.李阳生.淹水胁迫下水稻根尖细胞中Ca2+和Ca2+-ATP酶的分布[J].中国水稻科学,2001,15(3):237-240.
    116.林一波,杨晓艳.50个小麦品种耐湿性的初步鉴定[J].上海农业学报,1994,10(2):79-84.
    117.吕军.渍水对冬小麦生长的危害及其生理效应[J].植物生理学通报,1944,2(03):221.
    118.倪君蒂,李振国.淹水对大豆生长的影响[J].大豆科学,2000,19(1):42-48.
    119.钮福祥,华希新,郭小丁,等.甘薯品种抗旱性生理指标及其综合评价初探[J].作物学报,1996,22(4):392-398。
    120.沈会权,陈和,陈健,等.中澳大麦抗渍性资源的鉴定与筛选初探[J].大麦科学,2003,1:32-33。
    121.石书兵,徐文修,张强,等.旱作春小麦品种高产抗旱特性的综合评价[J].干旱地区农业研究,2001,19(2):14-20。
    122.时明芝,周保松.植物湿害和耐涝机理研究进展[J].安徽农业科学,2006,34(2):209-210.
    123.宋英淑,杜智琴,徐永华。等.大豆萌动种子及株体对渍水环境的反应[J].大豆科学,1989, 8(2):159-166.
    124.宋英淑,杜智琴,徐永华,等.低位渍水对大豆生长发育的影响与其耐涝性的研究[J].黑龙江农业科学,1990,(2):16-20.
    125.宋英淑,李学湛,杜智琴,等.大豆种子耐渍水性与子叶细胞超微结构的变化[J].大豆科学,1990,9(4):317-322.
    126.苏春华,李育明,黄迎东,等.甘薯主要亲本材料的主成分分析计聚类分析[J].杂粮作物,2007,27(6):405-409.
    127.汤章城.植物生理与分子生物学[M].北京:科学出版社,1998,PP:747.
    128.王芳,喻德跃,陈受宜,等.大豆苗期耐淹性的遗传与QTL分析[J].作物学报,2008,34(5):748-753.
    129.王芳,赵团结,盖钧镒.大豆野生与栽培资源苗期耐淹性的鉴定、生态区特征和优异种质发掘[J].大豆科学,2007,26(6):828-834.
    130.王芳.大豆耐淹性鉴定及其形态解剖特征、遗传与QTL定位[D]。南京农业大学博士学位论文,2007。
    131.王洪春,罗宗雅,方健雄.小麦淹水死亡的研究[J].植株生理学通讯,1963,2:15-21.
    132.王建康,盖钧镒.利用杂种F2世代鉴定数量性状主基因-多基因混合模型遗传模型并估计其遗传效应[J]。遗传学报,1997,24(5):432-440。
    133.王建康,盖钧镒.数量性状主-多基因混合遗传的P_1、P_2、F_1、F_2和F_(2:3)联合分析方法[J].作物学报,1998,24(6):651-659.
    134.王军,周美学,许如根,等.大麦耐湿性鉴定指标和评价方法研究[J].中国农业科学,2007,40(10):2145-2152.
    135.王淑俭,高远志,彭文博,等.小麦不同品种抗热性综合评价[J].河南农业大学学报,1994,28(4):339-343.
    136.韦朝领,袁家明.植物抗逆境的分子生物学研究进展[J].安徽农业大学学报,2000,2(72):204-208.
    137.魏凤珍,李金才,董琦.孕穗期至抽穗期湿害对耐湿性不同品种冬小麦光合特性的影响[J]。植物生理学通讯,2000,3(62):199.
    138.魏和平,利容千,王建波.淹水对玉米叶片细胞超微结构的影响[J].植物学报,2000,(428):811-817.
    139.魏和平,利容千.淹水对玉米不定根形态结构和ATP酶活性的影响[J].植物生态学报。2000,2(43):293-297.
    140.吴林,黄玉龙,李亚东,等.越桔对淹水的耐受性及形态生理反应[J].吉林农业大学学报,2002,2(44):64-69.
    141.夏江东,夏平.高等植物启动子功能和结构研究进展[J].楚雄师范学院学报,2005,12(3):41-48.
    142.许如根,吕超,黄祖六,等.大麦耐湿性鉴定[J].大麦科学,2005,2:11-15.
    143.晏斌,戴秋杰,刘晓忠,等.玉米叶片涝渍上海过程中超氧自由基的积累[J].植物学报,1995,3(79):73 8-744.
    144.杨建明,沈秋泉,汪军妹,等。大麦苗期耐湿性的鉴定筛选[J]。浙江农业学报,2003,15(5):280-284.
    145.杨平华,聂杨梅,汪祥红,等.棉花蕾期受涝后的生育特点及抢管措施[J].江西棉花,2004,26(2):36-37.
    146.杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展[J].作物学报,2007,33(4):523-530.
    147.叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较研究[J].生态学报,2001,1(210):1654.
    148.于永涛.玉米核心自交系群体结构及耐早相关的候选基因rabl7的等位基因多样性分析[D].中国农业科学研究院博士学位论文。2006。
    149.余家林.农业多元试验统计[M]。北京:北京农业大学出版社,1993:141-192.
    150.余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998.
    151.曾建军,时明芝.植物涝害生理研究进展[J].聊城大学学报,2004,17(3):54-56.
    152.张军,赵团结,盖钧镒.大豆于成品种农艺性状QTL与SSR标记的关联分析。2008(已投稿).
    153.张锁福.环境胁迫与植物营养[M]。北京:北京农业大学出版社,1993。
    154.张秀荣,冯祥运,肖唐华.国家芝麻种质资源耐渍性鉴定研究[J].作物杂志,1992,3:20-21.
    155.章元明,盖钧镒.利用DH或RIL群体检测QTL体系并估计其遗传效应[J].遗传学报,2000,27(7):634-640.
    156.章元明,盖钧镒,王永军。利用P1、P2和DH或RIL群体联合分离分析的拓展[J]。遗传,2001,23(5):467-470.
    157.赵可夫.植物对水涝胁迫的适应[J].生物学通报,2003,38(12):11-14.
    158.钟雪花,杨万年,吕应堂.淹水胁迫下对烟草、油菜某些生理指标的比较研究[J].武汉植物学研究,2002,2(5):395-398.
    159.周广生,周竹青,朱旭彤.用隶属函数法评价小麦的耐湿性[J].麦类作物学报,2001,21(4):34-37.
    160.周广生,梅芳竹,周竹青,等.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学,2003,361(1):1378-1382.
    161.朱建强,张文英,欧光华,等.夏大豆花荚期受渍胁迫对农艺性状、产量与品质的影响[J].大豆科学.2001.20(1):73-74.
    162.朱军,季道藩,徐馥华.作物品种间杂种优势遗传分析的新方法[J].遗传学报,1993,20(3):266-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700