用户名: 密码: 验证码:
基于滑模变结构控制的电压型组合式逆变器和电流源逆变器控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力电子技术的飞速发展以及用户对电能质量要求的提高,逆变器在许多领域的应用越来越广泛,对逆变器的控制性能要求也越来越高。滑模变结构控制本质上是一类特殊的非线性控制技术,其具有稳定范围宽、动态响应快、对参数变化和扰动不敏感等优点。从逆变器本身的开关工作特性来说,它正是周期性的变结构系统,滑模变结构控制策略是对它具有强适用性的控制方式。
     论文在总结、归纳现有的逆变器控制技术基础上,围绕逆变器的滑模变结构控制技术展开研究,提出了几种连续和离散时间系统的滑模变结构控制策略,并将其分别应用到Buck电压型组合式逆变器和电流源逆变器中,取得了比较好的控制效果。其中,电流源逆变器被应用于继电保护测试仪中,该测试仪是在继电保护装置投入运行或检修时,对继电保护装置的各项性能指标进行严格的测试,以保证电力系统的安全稳定运行。
     首先,论文提出了一种应用于Buck型组合式逆变器的连续三阶滑模变结构控制策略。在传统的比例微分二阶滑模的基础上,加入了输出电压偏差的积分环节,使系统本质上消除了稳态误差,同时保证相应的动态性能。文中采用李导数分别给出了二阶和三阶滑模变结构控制器详细的分析和设计,与传统的分析和设计方法相比,该方法使整个过程更加简明、更具系统性。文中采用映射法详细分析了三阶滑模变结构控制策略的滑模运动和滑模切换区,给出了其滑模面系数的具体选取方法。论文分别给出了上述两种控制策略的对比实验,实验结果证明了分析和设计的正确性。
     其次,论文详细讨论了基于三种常用的离散趋近率的滑模变结构控制策略,在此基础上设计了基于离散变速趋近率的滑模变结构控制策略,并将其应用到电流源逆变器系统中,该控制方法使系统对参数变化和外部扰动具有较好的动态响应,而且使系统能够渐近稳定于原点。基于电流源逆变器系统的动态模型,论文给出了该离散滑模变结构控制器的具体设计过程,同时详细分析设计了该控制器的离散滑模切换区,并在此基础上给出了离散滑模面系数和趋近率参数的选取范围。建立了Matlab/Simulink仿真模型以及实验样机,对基于离散等速趋近率和离散变速趋近率的滑模变结构控制器进行了仿真和实验比较。
     为了解决离散变速趋近率动态响应和系统抖振之间的相互影响,本文进一步提出了一种新颖的基于衰减变速趋近率的离散滑模变结构控制策略。该控制方法既保留了离散变速趋近率的优点,又加快了系统的渐近稳定速度,同时减小了系统的抖振。论文将该控制策略应用到电流源逆变器系统,分析设计了离散滑模切换区的范围,同时讨论了该控制器各个系数的选取范围,使系统能够渐近稳定于原点,且保证该离散滑模变结构控制策略满足滑模条件和收敛条件。仿真和实验验证了基于离散衰减变速趋近率控制的电流源逆变器系统具有良好的动态性能以及对外界扰动和参数变化良好的鲁棒性。
     然后,论文将状态预测观测器引入离散滑模变结构控制器中,基于离散时间系统能控性和能观性的基本理论,提出了基于状态预测观测器的离散滑模变结构控制策略。该方法利用状态观测器对系统的状态变量进行超前一拍预测,获得超前一拍控制量,较好地解决了数字控制一拍滞后的问题,从而更好地改善了基于离散滑模变结构控制的系统动态性能和稳定性。在电流源逆变器系统离散状态空间方程的基础上,利用状态反馈极点配置理论,文中详细给出了状态预测观测器系数矩阵的设计过程。在实验样机上对文中所提出的控制策略进行了具体的实验验证,实验结果证明了分析和设计的正确性。
     最后,论文将滑模变结构控制和无源性控制相结合,提出了一种新颖的离散无源性滑模变结构控制策略。利用无源性控制的控制方法简单、鲁棒性好等优点,较好地减小了离散滑模变结构控制系统的抖振。基于动力学能量观点,文中分析和设计了电流源逆变器系统的欧拉-拉格朗日模型,并在此模型的基础上,给出了离散无源性滑模变结构控制器的详细设计过程,利用李亚普诺夫稳定性原理证明了该系统的全局稳定性。同时,我们将无源性控制方法和滑模变结构控制方法进行对比分析,利用两种控制方法控制律的相似性,提出了一种可行的阻尼项系数的选取方法。实验验证了上述新型控制策略的正确性。
With a fast development of power electronics and the advancement of required power quality, inverters have been applied to more and more fields. And the control performance of inverters becomes much higher. Sliding mode control (SMC) strategy was introduced initially for variable structure systems (VSS) which is well-known for its several advantages such as wide stability range, robustness for disturbance of system, and good dynamic response. Characterized by switching, inverters are inherently variable structured. Therefore, it is appropriate to apply SMC to inverters.
     Based on the overview of the existing control techniques, this dissertation mainly focuses on the SMC for inverters and has presented several novel continuous- and discrete-time SMC strategies, which are applied to Buck inverter and current-source inverter (CSI) respectively. The CSI is one of the most important circuit in the relay protection testing equipment. This testing equipment is used for the performance testing of the relay protection equipment. It is a very important guarantee for the safe operation of power network.
     Firstly, a novel third-order continuous-time SMC strategy for Buck inverter is proposed in this dissertation. Based on traditional second-order SMC, integral action is introduced into the sliding surface to eliminate the steady state error and maintain the dynamic performance of Buck inverter. The proposed control strategy is discussed detailedly based on the Lie derivative method. The geometry associated with the sliding mode control is easy to understand and could be particularly exploited in circuits which are designed to exhibit a time scale separation property. To simplify the analysis, three-dimensional trajectory transforms into the two-dimensional one through mapping method. The sliding motion is described by phase trajectory vividly. And the selection of the sliding surface coefficient is presented. Experimental results of these two continuous-time SMC strategies are included to validate the analysis.
     Then, three common discrete-time SMC strategies based on reaching law are discussed in this dissertation. A discrete-time SMC strategies based on variable rate reaching law is designed and applied to the CSI system. The proposed control strategy provides excellent robustness with regard to external disturbances and great dynamic response, and ensures that the system converges to original point asymptotically. Base on the model of the CSI system, the design process of the sliding mode controller is presented. The sliding domain and sliding surface coefficient are designed in detail. To illustrate the properties of the proposed control strategy, a numerical example is studied here using Matlab/Simulink. A prototype of the DSP-based CSI system has been built in the laboratory to verify the proposed control scheme experimentally.
     In order to figure out the conflict between the dynamic response and the chatting of the variable rate reaching law, a novel discrete-time SMC is presented which is called the attenuating variable rate reaching law. It not only has the advantage of reaching the original point asymptotically, but also can force the state vectors into the sliding domain quickly and reduce the chattering of the system greatly. It is applied to the CSI system. The sliding domain and the sliding surface coefficient are analyzed to ensure that the system converges to original point asymptotically. Simulation and experiment results would be shown that the proposed controller could offer good dynamic response and insensitivity to disturbances and parameter variations.
     Furthermore, the state predictive observer is introduced into the discrete-time SMC based on the controllability and observability of system. The proposed control strategy can predict the system variables one beat advanced and solve the delay problem of digital control primely, which greatly improves the dynamic performance and stability of system. Base on the dynamic model of the CSI system, the state predictive observer matrix is designed detailedly using the pole placement theory of state feedback. Final experimental results show that the system has good steady and dynamic characteristics.
     Last, this dissertation presents a novel discrete-time passivity-based sliding-mode control (PB-SMC) strategy based on the nonlinear control theory. It reduces the chatting greatly of the discrete-time sliding mode controlled system using the advantages of the passivity-based control (PBC). The Euler-Lagrange model of the CSI system is analysed and designed. Based on the dynamic model, the proposed control strategy has been designed detailedly. The stability property is simultaneity accomplished using the Lyaponov theorem. Comparing SMC with PBC, a doable selection of the damping assignment is presented. Final experimental results are demonstrated to validate the theoretical discussion.
引文
[1]徐德鸿,马皓,汪槱生.电力电子技术.北京:科学出版社,2006.
    [2]李爱文,张承慧.现代逆变技术及其应用.北京:科学出版社,2002.
    [3]刘凤君.正弦波逆变器.北京:科学出版社,2002.
    [4]Rahman M A,Radwan T S,Osheiba A M,et al.Analysis of Current Controllers for Voltage-Source inverter.IEEE Trans.on Industrial Electronics,1997,44(4):477-485.
    [5]Levi E,Jones M,Vukosavic S N,et al.A Novel Concept of a Multiphase,Multimotor Vector Controlled Drive System Supplied From a Single Voltage Source Inverter.IEEE Trans.on Power Electronics,2004,19(2):320-335.
    [6]Urasaki N,Senjyu T,Uezato K,et al.An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives.IEEE Trans.on Power Electronics,2005,20(5):1150-1160.
    [7]Rodriguez J,Pontt J,Silva C A,et al.Predictive Current Control of a Voltage Source Inverter.IEEE Trans.on Power Electronics,2007,54(1):495-503.
    [8]Gurunathan R,Bhat A K S.Zero-Voltage Switching DC Link Single-Phase Pulsewidth-Modulated Voltage Source Inverter.IEEE Trans.on Power Electronics,2007,22(5):1610-1618.
    [9]Ledwich G.Current Source Inverter Modulation.IEEE Trans.on Power Electronics,1991,6(4):618-623.
    [10]Lo Y K,Wang J M,Wu S T.ANew Commutation Method for a Full-Bridge Current-Source Inverter.in Proc.ofIEEE PEDS05,2005,224-227.
    [11]Li R T H,Chung H S,Chan T K M.An Active Modulation Technique for Single-Phase Grid-Connected CSI.IEEE Trans.on Power Electronics,2007,22(4):1373-1382.
    [12]Cancelliere P,Colli V D,Stefano R D,et al.Modeling and Control of a Zero-Current-Switching DC/AC Current-Source Inverter.IEEE Trans.on Industrial Electronics,2007,54(4):2106-2119.
    [13]Lo Y K,Wang J M,Pai K J.Improved Commutation Method for a Full-Bridge Current-Source Inverter.IEEE Trans.on Industrial Electronics,2008,55(2):961-963.
    [14]Serra J A,Kaiser W.Comparison of Fluorescent Lamp Stabilization Methods in the Current-Fed Push-Pull Inverter.IEEE Trans.on Industry Applications,2000,36(1):105-110.
    [15]Kaczmarczyk Z,Jurczak W.A Push-Pull Class-E Inverter With Improved Efficiency.IEEE Trans. on Industrial Electronics, 2008, 55(4): 1871-1874.
    [16] Gulko M, Ben-Yaakov S. Current-Sourcing Push-pull Parallel-Resonance Inverter (CS-PPRI): Theory and Application as a Discharge Lamp Driver. IEEE Trans. on Industrial Electronics, 1994, 41(3): 285-291.
    [17] Alonso J M, Garcia J, Calleja A J, et al. Analysis, Design, and Experimentation of a High-Voltage Power Supply for Ozone Generation Based on Current-Fed Parallel-Resonant Push-Pull Inverter. IEEE Trans. on Industry Applications, 2005, 41 (5):1364-1372.
    [18] Nabae A, Takahashi I, Akagi H. A New Neutral-Point-Clamped PWM Inverter. in Proc. of IEEE IAS80, 1980, 761-766.
    [19] Shukla A, Ghosh A, Joshi A. Improved Multilevel Hysteresis Current Regulation and Capacitor Voltage Balancing Schemes for Flying Capacitor Multilevel Inverter. IEEE Trans.on Power Electronics, 2008, 23(2): 518-529.
    [20] Fujita H, YamashitaN. Performance of a Diode-Clamped Linear Amplifier. IEEE Trans. on Power Electronics, 2008, 23(2): 824-831.
    [21] Gupta R , Ghosh A , Joshi A . Switching Characterization of Cascaded Multilevel-Inverter-Controlled Systems. IEEE Trans. on Industrial Electronics, 2008, 55 (3):1047-1058.
    [22] Lezana P, Rodriguez J, Oyarzun D. Cascaded Multilevel Inverter With Regeneration Capability and Reduced Number of Switches. IEEE Trans. on Industrial Electronics, 2008,55(3): 1059-1066.
    [23] Kim J H, Sul S K, Enjeti P N. A Carrier-Based PWM Method With Optimal Switching Sequence for a Multilevel Four-Leg Voltage-Source Inverter. IEEE Trans. on Industry Applications, 2008, 44(4): 1239-1248.
    [24] Busquets-Monge S, RocabertJ, Rodriguez P, et al. Multilevel Diode-Clamped Converter for Photovoltaic Generators With Independent Voltage Control of Each Solar Array. IEEE Trans. on Industrial Electronics, 2008, 55(7): 2713-2723.
    [25] Adam G P, Finney S J, Massoud A M, et al. Capacitor Balance Issues of the Diode-Clamped Multilevel Inverter Operated in a Quasi Two-State Mode. IEEE Trans. on Industrial Electronics, 2008, 55(8): 3088-3099.
    [26] Cuk S, Erickson R W. A Conceptually New High-Frequency Switched-Mode Amplifier Technique Eliminates Current Ripple. in Proc. of the 5th National Solid-state Power Conversion Conference, San Francisco, 1978, G3. 1-G3. 22.
    [27] Cuk S, Middlebrook R D. Advances in switched-mode power conversion Part II. IEEE Trans. on Industrial Electronics,1983,IE-30(1):19-29.
    [28]马皓,韩思亮.新型滑模控制功率放大器.浙江大学学报(工学版),2005,39(11):1801-1806.
    [29]Ma H,Zhang T.Sliding mode control for AC signal power amplifier,in Proc.of IEEE IECON05,2005,1012-1017.
    [30]马皓,张涛,韩思亮.新型逆变器滑模控制方案研究.电工技术学报,2005,20(7):50-56.
    [31]Cáceres R O,Barbi I.A Boost DC-AC Converter:Analysis,Design,and Experimentation.IEEE Trans.on Power Electronics,1999,14(1):134-141.
    [32]Sanchis P,Ursaea A,Gubía E,et al.Boost DC-AC inverter:a new control strategy.IEEE Trans.on Power Electronics,2005,20(2):343-353.
    [33]Cortes D,Alvarez J,Vazquez N.Output Feedback Sliding-Mode Control for the Boost Inverter.in Proc.of IEEE IECON06,2006,1890-1895.
    [34]Cáceres R O,García W M,Camacho O E.ABuck-Boost DC-AC Converter:Operation,Analysis,and Control.inProc,of IEEE CIEP98,1998,126-131.
    [35]Chan F,Calleja H.Reliability:ANew Approach in Design oflnverters for PV Systems.in Proc.of IEEE CIEP06,2006,1-6.
    [36]谭光慧,陈溪,魏晓霞,等.基于改进SPWM控制的新型单级BUCK-BOOST逆变器.中国电机工程学报,2007,27(16):65-71.
    [37]Knight J,Shirsavar S,Holderbaum W.An improved reliability Cttk based solar inverter with sliding mode control.IEEE Trans.on Power Electronics,2006,21(4):1107-1115.
    [38]Nasiri A.Digital Control of Three-Phase Series-Parallel Uninterruptible Power Supply Systems.IEEE Trans.on Power Electronics,2007,22(4):1116-1127.
    [39]Yeh C C,Manjrekar M D.A Reconfigurable Uninterruptible Power Supply System for Multiple Power Quality Applications.IEEE Trans.on Power Electronics,2007,22(4):1361-1372.
    [40]Guerrero J M,Hang L,Uceda J.Control of Distributed Uninterruptible Power Supply Systems.IEEE Trans.on Industrial Electronics,2008,55(8):2845-2859.
    [41]Park J K,Kwon J M,Kim E H,et al.High-Performance Transformerless Online UPS.IEEE Trans.on Industrial Electronics,2008,55(8):2943-2953.
    [42]Vázquez N,Villegas-Saucillo J,Hernández C,et al.Two-Stage Uninterruptible Power Supply With High Power Factor.IEEE Trans.on Industrial Electronics,2008,55(8):2954-2962.
    [43] Peeran S M, Cascadden C W P. Application, Design, and Specification of Harmonic Filters for Variable Frequency Drives. IEEE Trans. on Industry Applications. 1995, 31(4):841-847.
    [44] Rastogi M, Hammond P W. Dual-Frequency Braking in AC Drives. IEEE Trans. on Power Electronics, 2002, 17(6): 1032-1040.
    [45] Swamy M M, Kume T, Yukihira Y, et al. A Novel Stopping Method for Induction Motors Operating From Variable Frequency Drives. IEEE Trans. on Power Electronics, 2004,19 (4):1100-1007.
    [46] Ben-Brahim L. Iterative Learning Control for Variable Frequency Drives. in Proc. of IEEE PESC08, 2008, 617-623.
    [47] Gerbex S, Cherkaoui R, Germond A J. Optimal Location of Multi-Type FACTS Devices in a Power System by Means of Genetic Algorithms. IEEE Trans. on Power Systems, 2001,16(3): 537-544.
    [48] Yan P, Sekar A. Steady-State Analysis of Power System Having Multiple FACTS Devices Using Line-Flow-Based Equations. IEE Proc. Generation, Transmission and Distribution,2005, 152(1): 31-39.
    
    [49] Haque M H. Evaluation of First Swing Stability of a Large Power System With Various FACTS Devices. IEEE Trans. on Power Systems, 2008, 23(3): 1144-1151.
    [50] Bina M T, Bhat A K S. Averaging Technique for the Modeling of STATCOM and Active Filters. IEEE Trans. on Power Electronics, 2008, 23(2): 723-734.
    [51] Molinas M, Suul J A, Undeland T. Low Voltage Ride Through of Wind Farms With Cage Generators - STATCOM Versus SVC. IEEE Trans. on Power Electronics, 2008, 23(3):1104-1117.
    [52] Fujita H, Akagi H, Watanabe Y. Dynamic Control and Performance of a Unified Power flow Controller for Stabilizing an AC Transmission System. IEEE Trans. on Power Electronics,2006, 21(4): 1013-1020.
    
    [53] Ray S, Venayagamoorthy G K. Wide-Area Signal-Based Optimal Neurocontroller for a UPFC. IEEE Trans. on Power Delivery, 2008, 23(3): 1597-1605.
    
    [54] Han B, Bae B, Baek S, ea al. New Configuration of UPQC for Medium-Voltage Application. IEEE Trans. on Power Delivery, 2006, 21(3): 1438-1444.
    
    [55] Kolhatkar Y Y, Das S P. Experimental Investigation of a Single-Phase UPQC With Minimum VA Loading. IEEE Trans. on Power Delivery, 2007, 22(1): 373-380.
    
    [56] Li H, Baldwin T L, Luongo C A, et al. A Multilevel Power Conditioning System for Superconductive Magnetic Energy Storage. IEEE Trans. on Applied Superconductivity,2005, 15(2): 1943-1946.
    [57] Chen L, Liu Y, Arsoy A B, et al. Detailed Modeling of Superconducting Magnetic Energy Storage (SMES) System. IEEE Trans. on Power Delivery, 2006, 21(2): 699-710.
    [58] Wu J C, Jou H L, Feng Y T, et al. Novel Circuit Topology for Three-Phase Active Power Filter. IEEE Trans. on Power Delivery, 2007, 22(1): 444-449.
    [59] Borisov K, Ginn H L, Trzynadlowski A M. Attenuation of Electromagnetic Interference in a Shunt Active Power Filter. IEEE Trans. on Power Electronics, 2007, 22(5): 1912-1918.
    [60] Herrera R S, Salmeron P, Kim H. Instantaneous Reactive Power Theory Applied to Active Power Filter Compensation : Different Approaches, Assessment, and Experimental Results. IEEE Trans. on Industrial Electronics, 2008, 55(1): 184-196.
    [61] Vodyakho O, Hackstein D, Steimel A, et al. Novel Direct Current-Space-Vector Controlfor Shunt Active Power Filters Basedon the Three-Level Inverter. IEEE Trans. on Power Electronics, 2008, 23(4): 1668-1678.
    [62] Asiminoaei L, Rodriguez P, Blaabjerg F. Application of Discontinuous PWM Modulation in Active Power Filters. IEEE Trans. on Power Electronics, 2008, 23(4): 1692-1706.
    [63] Alepuz S, Busquets-Monge S, Bordonau J, et al. Interfacing Renewable Energy Sources to the Utility Grid Using a Three-Level Inverter. IEEE Trans. on Industrial Electronics, 2006,53(5): 1504-1511.
    [64] Bialasiewicz J T. Renewable Energy Systems With Photovoltaic Power Generators:Operation and Modeling. IEEE Trans. on Industrial Electronics, 2008, 55(7): 2752-2758.
    [65] Arai J, Iba K, Funabashi T, et al. Power Electronics and Its Applications to Renewable Energy in Japan. IEEE Circuits and Systems Magazine, 2008, 8(3): 52-66.
    [66] Kojabadi H M, Chang L C, Boutot T. Development of a Novel Wind Turbine Simulator for Wind Energy Conversion Systems Using an Inverter-Controlled Induction Motor. IEEE Trans. on Energy Conversion, 2004, 19(3): 547-552.
    [67] Wang Z T, Chang L C. A DC Voltage Monitoring and Control Method for Three-Phase Grid-Connected Wind Turbine Inverters. IEEE Trans. on Power Electronics, 2008, 23(3):1118-1125.
    [68] Ng C H, Bumby J. Unbalanced-Grid-Fault Ride-Through Control for a Wind Turbine Inverter. IEEE Trans. on Industry Applications, 2008, 44(3): 845-856.
    [69] Gonzalez R, Lopez J, Sanchis P, et al. Transformerless Inverter for Single-Phase Photovoltaic Systems. IEEE Trans. on Power Electronics, 2007, 22(2): 693-697.
    [70] Chen Y M, Liu Y C, Hung S C, et al. Multi-Input Inverter for Grid-Connected Hybrid PV/Wind Power System. IEEE Trans. on Power Electronics, 2007, 22(3): 1070-1077.
    [71] Jain S, Agarwal V. A Single-Stage Grid Connected Inverter Topology for Solar PV Systems With Maximum Power Point Tracking. IEEE Trans. on Power Electronics, 2007, 22(5):1928-1940.
    [72] Sahan B, Vergara A N, Henze N, et al. A Single-Stage PV Module Integrated Converter Based on a Low-Power Current-Source Inverter. IEEE Trans. on Industrial Electronics,2008, 55(7): 2602-2609.
    [73] Wai R J, Duan R Y. High-Efficiency Power Conversion for Low Power Fuel Cell Generation System. IEEE Trans. on Power Electronics, 2005, 20(4): 847-856.
    [74] Yu X, Starke M R, Tolbert L M, et al. Fuel Cell Power Conditioning for Electric Power Applications: A Summary. IET Electrical Power Applications, 2007, 1(5): 643-656.
    [75] Park S Y, Chen C L, Lai J S, et al. Admittance Compensation in Current Loop Control for a Grid-Tie LCL Fuel Cell Inverter. IEEE Trans. on Power Electronics, 2008, 23(4):1716-1723.
    [76] Mohammadi S. Switching Mode Regulator With Parallel PID and Push-Pull Inverter. in Proc.of IEEE IAS93, 1993, 3: 2131-2136.
    [77] Uchihori Y, Kawamura Y, Tokiwa M, et al. New Induction Heated Fluid Energy Conversion Processing Appliance Incorporating Auto-Tuning PID Control-Based PWM Resonant IGBT Inverter With Sensorless Power Factor Correction. in Proc. of IEEE PESC95, 1995, 2:1191-1197.
    [78] Tsai W I, Sun Y Y, Lee J Y. Design of a High Performance Three-Phase UPS With Unity Input Power Factor and High DC-Voltage Conversion Ratio. in Proc. of IEEE PCCON9 3,1993, 105-110.
    [79] Abdel-Rahim N, Quaicoe J E. Multiple Feedback Loop Control Strategy for Single-Phase Voltage-Source UPS Inverter. in Proc.of IEEE PESC95, 1995, 2: 958-964.
    [80] Wasynczuk O, Sudhoff S D, Tran T D, et al. A Voltage Control Strategy for Current-Regulated PWM Inverters. IEEE Trans. on Power Electronics, 1996, 11(1): 7-15.
    [81] Ryan M J, Brumsickle WE, Lorenz R D. Control Topology Options for Single-Phase UPS Inverters. IEEE Trans. on Industry Applications, 1997, 33(2): 493-501.
    [82] Caceres R, Rojas R, Camacho O. Robust PID Control of a Buck-Boost DC-AC Converter. in Proc. of IEEE INTLEC00, 2000, 180-185.
    [83] Kazemi A, Tofighi A, Mahdian B. A Nonlinear Fuzzy PID Controller for CSI-STATCOM. in Proc.of IEEE PEDES06,2006,1-7.
    [84]Kawamura A,Hoff R.Instantaneous Feedback Controlled PWM Inverter with Adaptive Hysteresis.IEEE Trans.on Industry Applications,1984,IA-20(4):769-775.
    [85]Liu T H,Cheng C P.Adaptive Control for a Sensorless Permanent-Magnet Synchronous Motor Drive.IEEE Trans.on Aerospace and Electronic Systems,1994,30(3):900-909.
    [86]邹云屏,成功,丁凯.一种基于模型参考自适应控制的软开关逆变器.电力电子技术,2000,6(3):14-16.
    [87]Tzou Y Y,Jung S L,Yeh H C.Adaptive Repetitive Control ofPWM Inverters for Very Low THD AC-Voltage Regulation With Unknown Loads.IEEE Trans.on Power Electronics,1999,14(5):973-981.
    [88]王江,王家军,许镇琳.基于逆变器死区特性的永磁同步电动机系统的自适应变结构控制.中国电机工程学报,2001,21(8):37-41.
    [89]Patcharaprakiti N,Premrudeepreechacham S.Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid-Connected Photovoltaic System.in Proc.of IEEE PESW02,2002,372-377.
    [90]顾和荣,王德玉,邬伟扬.正弦波逆变电源的自适应模糊控制策略及实现.电工电能新技术,2006,25(1):30-34.
    [91]Zhang X Y,Pan Y M.Design Method of Direct Adaptive Fuzzy Sliding Mode Tracking Control and Application.in Proc,of IEEE WCICA08,2008,1266-1270.
    [92]Gokhale K P,Kawamura A,Hoff R G.Dead Beat Microprocessor Control of PWM Inverter for Sinusoidal Output Waveform Synthesis.IEEE Trans.on Industry Applications,1987,IA-23(5):901-910.
    [93]Hua C C.Two-Level Switching Pattern Deadbeat DSP Controlled PWM Inverter.IEEE Trans.on Power Electronics,1995,10(3):310-317.
    [94]Kükrer O,Komurcugil H.Deadbeat Control Method for Single-Phase UPS Inverters With Compensation of Computation Delay.IEE Proc.of Electrical Power Applications,1999,146(1):123-128.
    [95]Kükrer O.Deadbeat Control of a Three-Phase Inverter With an Output LC Filter.IEEE Trans.on Power Electronics,1996,11(1):16-23.
    [96]Kojima M,Hirabayashi K,Kawabata Y,et al.Novel Vector Control System Using Deadbeat-Controlled PWM Inverter With Output LC Filter.IEEE Trans.on Industry Applications,2004,40(1):162-169.
    [97]Yokoyama T,Kawamura A.Disturbance Observer Based Fully Digital Controlled PWM Inverter for CVCF Operation.IEEE Trans.on Power Electronics,1994,9(5):473-480.
    [98]Mattavelli P.An Improved Deadbeat Control for UPS Using Disturbance Observers.IEEE Trans.on Industrial Electronics,2005,52(1):206-212.
    [99]Tang J,Zou Y P,He Y J,et al.Novel Deadbeat Control for 3-Level Inverter Based 3-Phase 4-WireActive Power Filter.in Proc.of IEEE IECON07,2007,1857-1862.
    [100]He Y J,Liu J J,Tang J,et al.An Novel Deadbeat Control Method for Active Power Filters With Three-Level NPC Inverter.in Proc.of IEEE PESC08,2008,661-665.
    [101]万健如,裴玮,张国香.统一电能质量调节器同步无差拍控制方法研究.中国电机工程学报,2005,25(1 3):63-67.
    [102]Mohamed Y A I,El-Saadany E F.Adaptive Discrete-Time Grid-Voltage Sensorless Interfacing Scheme for Grid-Connected DG-Inverters Based on Neural-Network Identification and Deadbeat Current Regulation.IEEE Trans.on Power Electronics,2008,23(1):308-321.
    [103]Davison E J.The Output Control of Linear Time-Invariant Multivariable Systems with Unmeasurable Arbitrary Disturbances.IEEE Trans.on Automatic Control,1972,AC-17(5):621-630.
    [104]Shi J,Wu T J,Du S X.Delay-dependent robust H_∞ control for with parameter uncertainties and time delay,in Proc.of IEEE WCICA04,2004,2:951-955.
    [105]Montagner V F,Oliveira R C L F,Leite V J S,et al.LMI Approach for H_∞ Linear Parameter-Varying State Feedback Control IEE Proc.Control Theory and Applications,2005,152(2):195-201.
    [106]Yang F W,Wang Z D,Ho D W C,et al.Robust H_∞ Control With Missing Measurements and Time Delays.IEEE Trans.on Automatic Control,2007,52(9):1666-1672.
    [107]Ye Z M,Jain P K,Sen P C.Robust Controller Design for High Frequency Resonant Inverter System with Voltage Mode Control.in Proc.of IEEE IECON04,2004,41-46.
    [108]杨秀,王西田,陈陈.高压直流输电系统逆变站对次同步振荡的影响及鲁棒控制设计.上海交通大学学报,2005(增刊),39:31-35.
    [109]杨秀,王西田,陈陈.基于H_∞鲁棒控制理论的高压直流输电系统附加次同步振荡阻尼控制设计.电网技术,2006,30(9):57-61.
    [110]Rathi M R,Jose P P,Mohan N.A novel H_∞ based controller for wind turbine applications operating under unbalanced voltage conditions,in Proc.of IEEE ISAP05,2005,355-360.
    [111]Zhong Q C,Liang J,Weiss G,et al.H_∞ Control of the Neutral Point in Four-Wire Three-Phase DC-AC Converters.IEEE Trans.on Industrial Electronics,2006,53(5): 1594-1602.
    [112]Wang L X.A Supervisory Controller for Fuzzy Control Systems that Guarantees Stability.IEEE Trans.on Automatic Control,1994,39(9):1845-1947.
    [113]Phan P A,Gale T.Two-Mode Adaptive Fuzzy Control With Approximation Error Estimator.IEEE Trans.on Fuzzy Systems,2006,15(5):943-955.
    [114]Yuan K,Li H X,Gao J D.Robust Stabilization of the Distributed Parameter System With Time Delay via Fuzzy Control.IEEE Trans.on Fuzzy Systems,2006,16(3):567-584.
    [115]Jiang X F,Han Q L.On Designing Fuzzy Controllers for a Class of Nonlinear Networked Control Systems.IEEE Trans.onFuzzy Systems,2006,16(4):1050-1060.
    [116]Hilloowala R M,SharafA M.A Rule-Based Fuzzy Logic Controller for a PWM Inverter in a Stand Alone Wind Energy Conversion Scheme.IEEE Trans.on Industry Applications,1996,32(1):57-65.
    [117]陆华才,徐月同,杨伟民,等.永磁直线同步电机进给系统模糊PID控制.电工技术学报,2007,22(4):59-63.
    [118]Uddin M N,Rahman M A.High-Speed Control oflPMSM Drives Using Improved Fuzzy Logic Algorithms.IEEE Trans.on Industrial Electronics,2007,54(1):190-199.
    [119]吴忠强,王子洋,邬伟扬.基于模糊自整定PI控制和重复控制的单相正弦脉宽调制逆变电源复合控制方案.电网技术,2005,29(14):30-34.
    [120]Ferreira A A,Pomilio J A,Spiazzi G,et al.Energy Management Fuzzy Logic Supervisory for Electric Vehicle Power Supplies System.IEEE Trans.on Power Electronics,2008,23(1):107-115.
    [121]Nan Y R,Yu L,Chen Z Y,et al.Study on Repetitive Controller for the Position Servo System of Electrical Injection Molding Machine.in Proc.of IEEE WCICA06,2006,8246-8250.
    [122]Kasac J,Novakovic B,Majetic D,et al.Passive Finite-Dimensional Repetitive Control of Robot Manipulators.IEEE Trans.on Control Systems Technology,2008,16(3):570-576.
    [123]Broberg H L,Molyet R G.Correction of Periodic Errors in a Weather Satellite Servo Using Repetitive Control.inProc,of IEEECCA92,1992,2:682-683.
    [124]Wu Q,Saif M.Repetitive Learning Observer Based Actuator Fault Detection,Isolation,and Estimation with Application to a Satellite Attitude Control System.in Proc.of IEEE ACC07,2007,WeAl3.2:414-419.
    [125]Doh T Y,Ryoo J R,Chung M J.Design of a Repetitive Controller:an Application to the Track-Following Servo System of Optical Disk Drives.IEE Proc.Control Theory and Applications,2006,153(3):323-330.
    [126]Chang K,Shim I,Park G.Adaptive Repetitive Control for an Eccentricity Compensation of Optical Disk Drivers.IEEE Trans.on Consumer Electronics,2006,52(2):445-450.
    [127]Haneyoshi T,Kawamura A,Hoft R G.Waveform Compensation of PWM Inverter with Cyclic Fluctuating Loads.IEEE Trans.on Industry Applications,1988,24(4):582-589.
    [128]Kawamura A,Yokoyama T.Comparison of Five Different Approaches for Real Time Digital Feedback Control of PWM Inverters.in Proc.ofIEEE IAS90,1990,2:1005-1011.
    [129]Tzou Y Y,Jung S L,Yeh H C.Adaptive Repetitive Control ofPWM Inverters for Very Low THD AC-Voltage Regulation with Unknown Loads.IEEE Trans.on Power Electronics,1999,14(5):973-981.
    [130]Zhang K,Kang Y,Xiong J,et al.Direct Repetitive Control of SPWM Inverter for UPS Purpose.IEEE Trans.on Power Electronics,2003,18(3):784-792.
    [131]胡兴柳.一种用于逆变电源的新型重复控制器设计.电力电子技术,2008,42(2):12-14.
    [132]Zhou K L,Wang D W,Xu G Y.Repetitive Controlled Three-Phase Reversible PWM Rectifier.in Proc.ofIEEEACC00,2000,125-129.
    [133]Wei W,Panda S K,Xu J X.Control of High Performance DC-AC Inverters Using Frequency Domain Based Repetitive Control.in Proc.ofIEEE PEDS05,2005,442-447.
    [134]强文,黄西平,王鑫.基于重复控制和无差拍控制的逆变电源数字控制技术研究.通讯电源技术,2007,24(4):14-17.
    [135]张凯,彭力,熊健,等.基于状态反馈与重复控制的逆变器控制技术.中国电机工程学报,2006,26(10):56-62.
    [136]刘新民,邹旭东,康勇,等.带状态观测器的逆变器增广状态反馈控制和重复控制.电工技术学报,2007,22(1):91-95.
    [137]高为炳.变结构控制的理论及设计方法.北京:科学出版社,1998.
    [138]姚琼荟,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997.
    [139]田宏奇.滑模控制理论及其应用.武汉:武汉出版社,1995.
    [140]Xu J X,Pan Y J,Lee T H.Sliding Mode Control With Closed-Loop Filtering Architecture for a Class of Nonlinear Systems.IEEE Trans.on Circuits and Systems-Ⅱ,2004,51(4):168-173.
    [141]Poznyak A,Fridman L,Bejarano F J.Mini-Max Integral Sliding-Mode Control for Multimodel Linear Uncertain Systems.IEEE Trans.on Automatic Control,2004,49(1):97-102.
    [142]Da F P.Sliding Mode Predictive Control for Long Delay Time Systems.Physics Letters A,2006,348(3-6):228-232.
    [143]Roh Y H,Oh J H.Robust Stabilization of Uncertain Input-Delay Systems by Sliding Mode ControlWith Delay Compensation.Automatica,1999,35(11):1861-1865.
    [144]Shyu K K,Liu W J,Hsu K C.Design of Large-Scale Time-Delayed Systems With Dead-Zone Input Via Variable Structure Control.Automatica,2005,41(7):1239-1246.
    [145]Lin W S,Chen C S.Robust Adaptive Sliding Mode Control Using Fuzzy Modelling for a Class of Uncertain MIMO Nonlinear Systems.IEE Proc.Control Theory and Applications,2002,149(3):193-201.
    [146]Yan M,Shi Y.Robust Discrete-Time Sliding Mode Control for Uncertain Systems With Time-Varying State Delay.IET Control Theory and Applications,2008,2(8):662-674.
    [147]Guan C,Pan S X.Adaptive Sliding Mode Control of Electro-Hydraulic System With Nonlinear Unknown Parameters.Control Engineering Practice,2008,16(11):1275-1284.
    [148]Jezernik K,Zadravec D.Sliding Mode Controller for a Single Phase Inverter.in Proc.IEEEAPEC90,1990,1:185-190.
    [149]Pinheiro H,Martins A S,Pinheiro J R.A Sliding Mode Controller in Single Phase Voltage Source Inverters.inProc,of IEEE IECON94,1994,1:394-398.
    [150]Chiang S J,Tai T L,Lee T S.Variable structure control of UPS inverters,IEE Proc.Power Applications,1998,145(6):559-567.
    [151]Chen J F,Kuo Y C,Liang T J.Voltage and Current Hybrid Controlled PWM Inverters Using Variable Structure Control.in Proc.ofIEEE PEDS99,1999,2:1010-1014.
    [152]López M,Garcíia de Vicuna J L,Castilla M,et al.Control Design for Parallel-Connected DC-AC Inverters Using Sliding Mode Control.in Proc.ofIEE PEVSD00,2000,457-460.
    [153]Zhang L,Qiu S S.Analysis and Implementation of Sliding Mode Control for Full Bridge Inverter.in Proc.ofIEEE ICCCAS05,2005,2:27-30.
    [154]张黎,丘水生.滑模控制逆变器的分析与实验研究.中国电机工程学报,2006,26(3):59-63.
    [155]Ma H,Han S L.Analysis and Design of Sliding Mode Control for AC Signal Power Amplifier.in Proc,of IEEE IECON04,2004,2:1652-1657.
    [156]马皓,韩思亮.新型功率放大器时变滑模控制方案研究.中国电机工程学报,2005,25(11):55-59.
    [157]Ma H,Zhang T.Analysis and Design for Sliding Mode Controlled Buck Inverter Based on Reference Sliding Surface and State Variables Surface.in Proc.of IEEE APEC05,2005, 1472-1477.
    [158]Chung S K,Lee J H,Park J W,et al.Current Control of Voltage-Fed PWM Inverter for AC Machine Drives Using Integral Variable Structure Control.in Proc.of IEEE IECON95,1995,1:668-673.
    [159]Barambones O,Garrido A J.A Sensorless Variable Structure Control of Induction Motor Drives.Electric Power Systems Research,2004,72(1):21-32.
    [160]Chian H K,Tseng C H.Design and Implementation of a Grey Sliding Mode Controller for Synchronous Reluctance Motor Drive.Control Engineering Practice,2004,12(2):155-163.
    [161]Fu T J,Xie W F.ANovel Sliding-Mode Control of Induction Motor Using Space Vector Modulation Technique.ISA Transactions,2005,44(4):481-490.
    [162]贾洪平,贺益康.永磁同步电机滑模变结构直接转矩控制.电工技术学报,2006,21(1):1-6.
    [163]贾洪平,孙丹,贺益康.基于滑模变结构的永磁同步电机直接转矩控制.中国电机工程学报,2006,26(20):134-138.
    [164]Matas J,Castilla M,Guerrero J M,et al.Feedback Linearization Of Direct-Drive Synchronous Wind-Turbines Via a Sliding Mode Approach.IEEE Trans.on Power Electronics,2008,23(3):1093-1103.
    [165]Beltran B,Ahmed-Ali T,Benbouzid M E H.Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Systems.IEEE Trans.on Energy Conversion,2008,23(2):551-558.
    [166]Valenciaga F,Puleston P F.High-Order Sliding Control for a Wind Energy Conversion System Based on a Permanent Magnet Synchronous Generator.IEEE Trans.on Energy Conversion,2008,23(2):860-867.
    [167]Munteanu I,Bacha S,BratcuA I,et al.Energy-Reliability Optimization of Wind Energy Conversion Systems by Sliding Mode Control.IEEE Trans.on Energy Conversion,2008,23(3):975-985.
    [168]Eldery MA,El-Saadany E F,Salama M MA.Sliding Mode Controller For Pulse Width Modulation Based DSTATCOM.in Proc.ofIEEE CCECE06,2006,2216-2219.
    [169]Singh B,Al-Haddad K,Chandra A.Active Power Filter With Sliding Mode Control.IEE Proc.Generation Transmission and Distribution,1997,144(6):564-568.
    [170]Mabrouk N,Fnaiech F,Al-Haddad K,et al.Sliding Mode Control of a 3-Phase-Shunt Active Power Filter.inProc,of IEEEICIT03,2003,1:597-601.
    [171]Gous M G F,Beukes H J.Sliding Mode Control for a Three-phase Shunt Active Power Filter Utilizing a Four-Leg Voltage Source Inverter.in Proc.of IEEE PESC04,2004,4609-4615.
    [172]Xing H Y.Discrete Variable Structure Control Systems.International Journal of Systems Science,1993,24(2):373-386.
    [173]Dote Y,Holt R G.Microprocessor Based Sliding Mode Controller for DC Motor Drives.Industrial Applications Society Annual Meeting,1980.
    [174]Sarpturk S Z,Istefanopulos Y,Kaynak O.On the Stability of Discrete-Time Sliding Mode Control Systems.IEEE Trans.on Automatic Control,1987,AC-32(10):930-932.
    [175]Furuta K.Sliding Mode Control of a Discrete System.Systems & Control Letters,1990,14(2):145-152.
    [176]Gao W B,Wang Y F,Homaifa A.Discrete-Time Variable Structure Control Systems.IEEE Trans.on Industrial Electronics,1995,42(2):117-122.
    [177]高为炳.离散时间系统的变结构控制.自动化学报,1995,21(2):154-161.
    [178]Bartolini G,Ferrara A,Utkin V I.Adaptive Sliding Mode Control in Discrete-Time Systems.Automatica,1995,31(5):769-773.
    [179]Chan C Y.Discrete Adaptive Sliding-Mode Tracking Controller.Automatica,1997,33(5):999-1002.
    [180]Corradini L M,Orlando G.Variable Structure Control of Discretized Continuous-Time Systems.IEEE Trans.on Automatic Control,1998,43(9):1329-1334.
    [181]Chen X K,Fukuda S.Robust Adaptive Quasi-Sliding Mode Controller for Discrete-Time Systems.Systems & Control Letters,1998,35(3):165-173.
    [182]Young K D,Utkin V I,(O|¨)zgüner(U|¨).A Control Engineer's Guide to Sliding Mode Control.IEEE Trans.on Control Systems Technology,1999,7(3):328-342.
    [183]李少远,席裕庚.模糊滑动模态控制系统的性质分析.控制理论与应用,2000,17(1):14-18.
    [184]翟长连,王智铭.一种离散时间系统的变结构控制方法.上海交通大学学报,2000,34(5):719-722.
    [185]Kim J H,Oh S H,Cho D I,et al.Robust Discrete-Time Variable Structure Control Methods.Transactions of the ASME,2000,(122):766-775.
    [186]Golo G,Milosavljevic C.Robust Discrete-Time Chattering Free Sliding Mode Control.Systems & Control Letters,2000,41(1):19-28.
    [187]Bartolini G,Pisano A,Usai E.Digital Second-Order Sliding Mode Control for Uncertain Nonlinear Systems.Automatica,2001,37(9):1371-1377.
    [188]张昌凡,王耀南.滑模变结构的智能控制及其应用.中国电机工程学报,2001,21(3):27-29.
    [189]Bandyopadhyay B,Saaj C M.Algorithm on Robust Sliding Mode Control for Discrete-Time System Using Fast Output Sampling Feedback.IEE Proc.Control Theory and Applications,2002,149(6):497-503.
    [190]姚琼荟,宋立忠,鄢圣茂.离散变结构控制理论研究现状与展望.海军工程大学学报,2004,16(6):23-29.
    [191]瞿少成,王永骥.离散变结构控制的一种扰动在线补偿趋近律.系统工程与电子技术,2004,26(4):505-507.
    [192]Yu W C,Wang G J,Chang C C.Discrete Sliding Mode Control with Forgetting Dynamic Sliding Surface.Mechatronics,2004,14(7):737-755.
    [193]周靖林,姜会霞,雷飞.离散变结构控制系统的广义变速趋近律.电机与控制学报,2005,9(6):625-629.
    [194]Chen X K.Adaptive Sliding Mode Control for Discrete-Time Multi-Input Multi-Output Systems.Automatica,2006,42(3):427-435.
    [195]Janardhanan S,Bandyopadhyay B.Multirate Output Feedback Based Robust Quasi-Sliding Mode Control of Discrete-Time Systems.IEEE Trans.on Automatic Control,2007,52(3):499-503.
    [196]Janardhanan S,Kariwala V.Multirate-Output-Feedback-Based LQ-Optimal Discrete-Time Sliding Mode Control.IEEE Trans.on Automatic Control,2007,53(1):367-373.
    [197]Wang W H,Hou Z S.New Adaptive Quasi-Sliding Mode Control for Nonlinear Discrete-Time Systems.Journal of Systems Engineering and Electronics,2008,19(1):154-160.
    [198]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展.控制理论与应用,2008,24(3):407-418.
    [199]Jung S L,Tzou Y Y.Sliding Mode Control of a Closed-Loop Regulated PWM Inverter under Large Load Variations.in Proc.of IEEE PESC93,1993,616-622.
    [200]Jung S L,Tzou Y Y.Discrete Feedforward Sliding Mode Control of a PWM Inverter for Sinusoidal Output Waveform Synthesis.in Proc.of IEEE PESC94,1994,1:552-559.
    [201]Jung S L,Huang H S,Tzou Y Y.Self-Tuning Discrete Sliding Mode Control of a Closed-Loop Regulated PWM Inverter with Optimal Sliding Surface.in Proc.of IEEE PESC96,1996,2:1506-1512.
    [202]Jung S L,Tzou Y Y.Discrete Sliding-Mode Control ofa PWM Inverter for Sinusoidal Output Waveform Synthesis with Optimal Sliding Curve.IEEE Trans.on Power Electronics,1996,11(4):567-577.
    [203]Muthu S,Kim J M S.Discrete-Time Robust Sliding Mode Control for Switching Power Converters.inProc,ofIEEE PESC97,1997,1:210-216.
    [204]Wong L K,Leung F H F,Tam P K S.Control of PWM Inverter using a Discrete-time Sliding Mode Controller.in Proc.ofIEEE PEDS99,1999,2:947-950.
    [205]Chern T L,Chang J,Chen C H,et al.Microprocessor-Based Modified Discrete Integral Variable-Structure Control for UPS.IEEE Trans.on Industrial Electronics,1999,46(2):340-348.
    [206]Phakamach P,Akkaraphong C.Microcontroller-Based Discrete Feedforward Integral Variable Structure Control for an Uninterruptible Power System(UPS).in Proc.of IEEE PEDS03,2003,2:1422-1427.
    [207]Biel D,Fossas E,Guinjoan F,et al.Application of Sliding-Mode Control to the Design of a Buck-Based Sinusoidal Generator.IEEE Trans.on Industrial Electronics,2001,48(3):563-571.
    [208]Tai T L,Chen J S.UPS Inverter Design Using Discrete-Time Sliding-Mode Control Scheme.IEEE Trans.on Industrial Electronics,2002,49(1):67-75.
    [209]郑雪生,李春文,汤洪海,等.三相PWM电压型逆变器的积分滑模控制.电工技术学报,2007,22(12):105-109.
    [210]Matas J,de Vicuna L G,Guerrero J M,et al.A Discrete Sliding Mode Control of a Buck-Boost Inverter.in Proc,of IEEE IECON02,2002,1:140-145.
    [211]龚臣,谢运祥,邓衍平,等.基于Buck-Boost逆变器的离散滑模控制仿真研究.通讯电源技术,2005,22(2):9-13.
    [212]王江,王家军,许镇琳.基于逆变器死区特性的永磁同步电动机系统的自适应变结构控制.中国电机工程学报,2001,21(8):37-41.
    [213]王家军,许镇琳,王豪,等.基于逆变器死区特性的永磁同步电动机系统的μ-修整变结构控制.中国电机工程学报,2003,23(4):148-152.
    [214]Ge B M,Zhan N.DSP-based Discrete-Time Reaching Law Control of Switched Reluctance Motor.in Proc,of IEEE IPEMC06,2006,2:1-5.
    [215]杨文强,蔡旭,姜建国.矢量控制系统的积分型滑模变结构电流控制.上海交通大学学报,2004,38(8):1265-1268.
    [216]Valenciaga F,Puleston P F,Battaiotto P E.Power Control of a Photovoltaic Array in a Hybrid Electric Generation System Using Sliding Mode Techniques.IEE Proc.Control Theory and Applications,2001,148(6):448-455.
    [217]Kim I S.Sliding Mode Controller for the Single-Phase Grid-Connected Photovoltaic System.Applied Energy,2006,83(10):1101-1115.
    [218]Kim I S.Robust Maximum Power Point Tracker Using Sliding Mode Controller for the Three-PhaseGrid-ConnectedPhotovoltaicSystem.Solar Energy,2007,81(3):405-414.
    [219]宋立忠,陈少昌,姚琼荟.自适应离散变结构控制及其在电力系统中的应用.中国电机工程学报,2002,22(12):9 7-100.
    [220]贾嘉斌,袁佳歆,姜芳芳,等.基于离散滑模控制的DSTATCOM的研究.高电压技术,2004,30(8):50-52.
    [221]荣飞,罗安,涂春鸣,等.变结构空间矢量控制技术在STATCOM中的应用.电工技术学报,2007,22(12):128-133.
    [222]Zhou W P,Liu D M,Wu Z G,et al.The Optimization-Sliding Mode Control For Three-Phase Three-Wire DSP-based Active Power Filter.in Proc.of IEEE IPEMC06,2006,3:1-5.
    [223]Mendalek N,Al-Haddad K,Kanaan H Y,et al.Sliding Mode Control of Three-Phase Four-Leg Shunt Active Power Filter.in Proc.of IEEE PESC08,2008,4362-4367.
    [224]张涛.电力电子变换器中滑模变结构控制技术研究.浙江大学硕士学位论文,2006.
    [225]Sira-Ramirez H,Perez-Moreno RA,Otega R,et al.Passivity-Based Controllers for the Stabilization of DC-to-DC Power Converters.Automatica,1997,33(4):499-513.
    [226]Valderranma G E,Stankovic A M,Mattavelli P.Dissipativity-Based Adaptive and Robust Control of UPS in Unbalanced Operation.IEEE Trans.on Power Electronics,2003,18(4):1056-1062.
    [227]Valenciaga F,Puleston P F,Battaiotto P E.Power control of a solar/wind generation system without wind measurement:a passivity/sliding mode approach.IEEE Trans.on Energy Conversion,2003,18(4):501-507.
    [228]乔树通,姜建国.三相Boost型PWM整流器输出误差无源性控制.电工技术学报,2007,22(2):68-73.
    [229]王涛,肖建,李冀昆.感应电机无源性分析及自适应控制.中国电机工程学报,2007,27(6):31-34.
    [230]薛花,姜建国.并联型有源滤波器的自适应无源性控制方法研究.中国电机工程学报,2007,27(25):114-118.
    [231]张振环,刘会金,李琼林,等.基于欧拉-拉格朗日模型的单相有源电力滤波器无源性控制新方法.中国电机工程学报,2008,28(9):37-44.
    [232] Escobar G, Ortega R, Sira-Ramirez H, et al. An Experimental Comparison of Several Nonlinear Controllers for Power Converters. IEEE Control Systems Magzine, 1999, (19):66-82.
    [233] Escobar G, Chevreau D, Ortega R, et al. An Adaptive Passivity-Based Controller for a Unity Power Factor Rectifier. IEEE Trans. on Control Systems Techology, 2001, 9 (4):637-644.
    [234] CecatiC, Dell'Aquila A, Liserre M, etal. A Passivity-Based Multilevel Active Rectifier With Adaptive Compensation for Traction Applications. IEEE Trans. on Industry Applications, 2003,39(5):1404-1413.
    [235] Scherpen J M A, Ortega R. On Nonlinear Control of Euler-Lagrange Systems: Disturbance Attenuation Properties. System & Control Letters, 1997, 30(1): 49-56.
    [236] Jeltsema D, Scherpen J M A, Klaassens J B. Energy Control of Multi-Switch Power Supplies; An Application to the Three-phase Buck type Rectifier with Input Filter. in Proc. of IEEE PESC01, 2001, 1831-1836.
    [237] Jeltsema D, Scherpen J M A. Tuning of Passivity-Preserving Controllers for Switched-Mode Power Converters. IEEE Trans. on Automatic Control, 2003, 49(8):1333-1344.
    [238] Rodriguez H, Ortega R, Escobar G, et al. A Robustly Stable Output Feedback Saturated Controller for the Boost DC-to-DC Converter. System & Control Letters, 2000, 40 (1):1-8.
    [239] Ortega R, van der Schaft A, Maschke B, et al. Interconnection and Damping Assignment Passivity-Based Control of Port-Controlled Hamiltonian Systems. Automatica, 2002, 38 (4):585-596.
    [240] He B, Zhang X B, Zhao X Y. Transient Stabilization of Structure Preserving Power Systems With Excitation Control Via Energy-Shaping. International Journal of Electrical Power & Energy Systems, 2007, 29(10): 822-830.
    [241] Chan C Y. Robust Discrete Quasi-Sliding Mode Tracking Controller. Automatica, 1995,31(10): 1509-1511.
    [242] Hwang C L. Robust Discrete Variable Structure Control With Finite-Time Approach to Switching Surface. Automatica, 2002, 38(1): 167-175.
    [243] Weiss G, Zhong Q C, Green T C, et al. H_∞ repetitive control of DC-AC converters in microgrids. IEEE Trans. on Power Electronics, 2004, 19(1): 219-230.
    [244] Hui S, Zak S H. On Discrete-Time Variable Structure Sliding Mode Control. Systems & Control Letters,1999,38(4-5):283-288.
    [245]da Silva J F A,Pires V F,Pinto S F,et al.Advanced Control Methods for Power Electronics Systems.Mathematics and Computers in Simulation,2003,63(3-5):281-295.
    [246]Garcia J P F,Ribeiro J M S,Silva J J F,et al.Continuous-Time and Discrete-Time Sliding Mode Control Accomplished Using a Computer.IEE Proc.Control Theory and Applications,2005,152(2):220-228.
    [247]Lee J U,Yoo J Y,Park G T.Current Control ofa PWM Inverter Using Sliding Mode Control and Adaptive Parameter Estimation.in Proc.of IEEE IECON94,1994,1:372-377.
    [248]Beghi A,Nardo L,Stevanato M.Observer-Based Discrete-Time Sliding Mode Throttle Control for Drive-by-Wire Operation of a Racing Motorcycle Engine.IEEE Trans.on Control Systems Technology,2006,14(4):767-775.
    [249]Tang Z Y,Huang S S,Wang Z M.Adaptive Sliding Mode Control for Fuel Cell Power Plant Output Waveform.in Proc.of IEEE ICCA07,2007,1587-1590.
    [250]Ayad M Y,BecherifM,DjerdirA,et al.Sliding Mode Control for Energy Management of DC Hybrid Power Sources Using Fuel Cell,Batteries and Supercapacitors.in Proc.of IEEE ICCEP07,2007,500-505.
    [251]Demirtas M.DSP-Based Sliding Mode Speed Control of Induction Motor Using Neuro-Genetic Structure.Expert Systems with Applications,2008,1-8.
    [252]Wojciak P F,Torrey D A.The Design and Implementation of Active Power Filters Based on Variable Structure System Concepts.in Proc.of IEEE IAS92,1992,1:850-857.
    [253]张小平,唐华平,朱建林,等.Boost矩阵变换器的离散滑模控制策略.电机与控制学报,2007,11(6):568-572.
    [254]Jian X X,Abidi K.Discrete-time Output Integral Sliding Mode Control for a Piezo-Motor Driven Linear Motion Stage.International Workshop on Variable Structure Systems,2008,124-129.
    [255]王端明,蒋静坪.双模糊神经网络的滑模控制感应电动机伺服驱动研究.电工电能新技术,2008,27(2):26-30.
    [256]Huang S S,Tang Z Y,Wang Z M,et al.Design of Power Conditioning System for Fuel Cell Power Plant.Journal of South China University of Technology(Natural Science Edition),2007,35(10):20-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700