用户名: 密码: 验证码:
电力系统中的间谐波频谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电能是现代社会最重要的二次能源,无论是工农业生产,还是人们的日常生活都离不开电能。因此,电网的稳定安全和电能质量水平都直接影响国民经济。随着我国经济的快速发展,各种用电负荷大量涌入电网,其中很多是非线性负载和冲击性负载,产生了很多新的电能质量问题。这些问题不仅威胁电网的安全运行也影响用户的正常使用。谐波问题是电网中常见的电能质量问题,供电部门和用户对谐波都已有充分的认识,但电网中除了整数次谐波外还存在非整数次谐波——间谐波。间谐波除了造成与谐波相同的危害外还会引起照明设备闪变、干扰甚至损坏无功补偿或滤波装置等特有的危害。因此,间谐波问题也必须引起足够重视。
     治理电力系统中的间谐波,前提是要准确的分析间谐波的频谱。目前IEC标准中关于间谐波分析的主要有IEC 61000-4-15中的闪变仪和IEC 61000-4-7与IEC 61000-4-30中的基于离散傅立叶变换的谐波、间谐波分族的方法。除此之外,AR模型、神经网络、支持向量机和小波分析等也都应用于间谐波分析。但这些方法存在分析范围窄、时间窗长、易受噪声干扰或频谱泄漏混叠等问题,为此,本文提出了一种基于空间谱分析的超分辨率方法。本文主要内容如下:
     (1)本文综述了对间谐波的认识,其中包括定义、危害和限值等,并结合实际经验,详细介绍了每一种间谐波源:变频装置、感应电机、电弧炉、轧钢机和音频控制信号。针对间谐波与闪变的关系进行了深入研究,建立IEC闪变仪的仿真模型测试其对间谐波的检测能力及测量范围,建模分析了间谐波引起电压有效值波动和峰值波动的机理及对不同照明设备的影响。
     (2)结合实例指出了IEC间谐波的分族方法在间谐波频率确定、相邻间谐波识别、同步采样、矩形窗和处理时变信号等方面存在的不足。即使通过先将采样数据补零获得更光滑的频谱曲线估计谱峰,再应用加窗插值进一步校正间谐波频率的改进方法,仍存在所需数据长度过长、临近谱峰难以区分等问题。AR模型虽然可以突破频率分辨率的限制,但其受阶数和噪声的严重影响;自适应神经网络在训练权值前,神经元的初始设定是以插值傅立叶变换结果为基础;支持向量机分析间谐波时需要做高维的线性回归,并且频谱泄漏严重;小波分析在时间轴上滑动不同通带的滤波器获得间谐波谱峰,但小波分析在各频段混叠严重,频率分辨率不高。解决上述方法的困难,需要事先估计间谐波参数模型正弦成分数,因此本文将空间谱分析引入到间谐波的分析中。
     (3)介绍了空间谱分析的数学模型,证明了间谐波信号经欧拉公式或希尔伯特变换后可以转变为空间线性阵列接收的空域信号,正弦成分数对应空域信号源数,正弦成分频率对应空域信号频率。由于间谐波信号等效的空域阵列接收数据也满足阵列模型的统计特性,并且其变换后的空域信号之间互不相干,可以应用空间谱理论分析间谐波。
     (4)应用空间谱分析中的信号源数估计方法来确定间谐波参数模型中的正弦成分数。这些算法有信息论方法、盖氏圆盘方法和典型相关方法。信息论方法提出了基于最大似然的判别信号源数的AIC、MDL和HQ准则;盖氏圆盘方法通过酉阵变换将协方差矩阵中对应信号和噪声的盖氏圆盘互相分开,并且噪声盖氏圆盘半径远小于信号的盖氏圆盘半径;典型相关方法是通过判断两个空间不同线阵接收数据的典型相关系数来获得信号源数。经仿真测试说明信息论中的MDL准则、盖氏圆盘方法和典型相关方法都适用于间谐波参数模型的正弦成分数估计。
     (5)信号源数的准确估计可以使子空间类算法准确地划分信号子空间和噪声子空间,利用信号子空间和噪声子空间互相正交或利用信号子空间旋转不变性质估计正弦成分(间谐波)的频率。分析时主要应用子空间类算法中的Root-MUSIC算法和TLS-ESPRIT算法,其中Root-MUSIC算法不像MUSIC算法那样需要进行谱峰搜索,可以直接求解正弦成分的频率。通过计算多级维纳滤波器可以直接获得信号子空间的信息,无需对协方差矩阵做特征值分解,使ESPRIT算法计算量显著减少,然后通过总体最小二乘法考虑总体扰动就可以求出正弦成分的频率。仿真试验说明了Root-MUSIC算法和TLS-ESPRIT算法分析正弦成分频率的性能。
     (6)最后,在幅值和相位信息估计后,本文提出了完整的间谐波分析算法。间谐波参数模型的正弦成分数和频率由空间谱分析获得,在低信噪比时使用支持向量机或遗传算法估计幅值和相位信息。IEC改进方法未能给出准确频谱的间谐波信号时,基于空间谱估计的方法均可以给出准确的分析结果。对实际间谐波数据进行分析,结果表明基于空间谱估计的间谐波方法优于IEC方法、支持向量机和Prony算法。
Nowadays electric energy is most important secondary energy. Electric power plays an important role in industry production and human lives. The stability of power system and the quality of electric power directly affect national economy. Along with the rapid development of economy, all kinds of loads are rushing into electric power system, some of which are nonlinear or impact loads. So new problems about power quality appear which threaten not only the safe operation of power system but also normal production of users. Harmonic is a common power quality event, and the utilities and users have paid much attention to it. Besides harmonic whose frequency is integer multiples of basic frequency, there is also interharmonic whose frequency is not integer multiples. Interharmonic can cause flicker and disturb reactive power compensation devices or filters besides the same hazards of harmonic, so we should also pay attention to interharmonic.
     The precondition of repressing interharmonic is accurately analyzing the spectrum of interharmonic. IEC has provided two methods to evaluate interharmonic, IEC flickermeter proposed in IEC 61000-4-15 and grouping method based on Fourier transform in IEC 61000-4-7 and IEC 61000-4-30. Besides the aforementioned methods AR model, neural network, SVMs(Support Vector Machines) and wavelet analysis are also applied to analyze interharmonic. However these methods have shortcomings of narrow analyzing range, long time window, easily being influenced by the noise, spectrum leakage and aliasing. So a stepwise parametric method based on spatial spectrum analysis is presented in this paper. The main contents of this paper are shown as follows.
     (1) Firstly, this paper introduced the basic concepts about interharmonic, including definitions, hazards and limited values. Then main interharmonic sources were shown, such as converter devices, inductive motors, arc furnaces, rolling mills and ripple control signals. In order to investigate the relationship between interharmonic and flicker, a simulation model of IEC flickermeter was built up, and numerous simulations tested the performance that IEC flickermeter evaluated interharmonic. Furthermore the mechanism that interharmonic incured R.M.S. and peak fluctuation was discussed and the influence of interharmonic to lighting devices were also shown.
     (2) Actual instances showed the measuring method of interharmonic in IEC had flaws on estimating interharmonic frequency, estimating the number of interharmonics, synchronized sampling, the use of rectangular window, handling time-varying interharmonic and so on. Though the modified method of IEC padded zeroes at the end of sampling data to smooth the Fourier spectrum and Hanning window and interpolation were performed to correct the interharmonic information from DFT, it still cannot solve the problems at long sampling data and close interharmonic recognition. The methods based on AR model can break through the restriction from frequency resolution, but its performance was easily influenced by the order of AR model and the noise. It's not reliable that the number of neurons and its original value was estimated from the results of interpolation DFT of interharmonic signals before a self-adapting neural network trained weight parameters. When analyzing interharmonic, SVMs need carry out a higher dimensional linear regression, and had severe spectrum leakage. The wavelet analysis obtains interharmonic frequency by sliding the filters with different pass band on time axis, but easily influenced by wavelet aliasing. In order to solve the mention above problems, we need a method which can accurately estimate the number of sinusoidal components in interharmonic parametric model at first.
     (3) After the mathematic model of spatial spectrum analysis was introduced, interharmonic signals can be transformed to spatial signals received by linear sensor array through Euler's formula or Hilbert transform. The number of sinusoidal components of the interharmonic parametric model was corresponding to the source number of transformed spatial signals, and the frequencies of sinusoidal components were corresponding to that of transformed spatial signals. The transformed received data also had the same statistic character with sensor array model and the transformed spatial signals were not coherent each other, so the methods of spatial spectrum analysis can be applied to evaluate the spectrum of interharmonic signals.
     (4) The source number estimating methods were applied to estimate the number of sinusoidal components of the interharmonic parametric model, which were information theory, Gerschgorin's Disk and Canonical Correlation method. Based on maximum likelihood estimation AIC, MDL and HQ criterions from information theory were present to estimate the source number. The unitary transform of covariance matrix made the Gerschgorin's disks of signals and that of noise separated on complex plane, and Gerschgorin's radiis of signals are obviously greater than that of noise. Canonical Correlation method estimated source number by surveying the canonical correlation coefficients of the received data matrices form two space-separated linear sensor array. Numerous simulations proved that MDL of information theory, Gerschgorin's Disk and Canonical Correlation method had well performance on estimating the number of sinusoidal components.
     (5) The estimated source number made it possible to accurately separate signal subspace from noise subspace. Using the orthogonality between signal subspace and noise subspace or the invariance of rotating signal subspace the frequencies of every sinusoidal component can be figured out. Root-MUSIC and TLS-ESPRIT algorithm belonging to subspace methods were used to analyze the frequency information of interharmonic signal. Root-MUSIC can directly obtain the frequencies through calculation roots of a polynomial, while MUSIC need searching the spectrum peaks. ESPRIT avoided eigenvalve decomposition of covariavance matrix after multi-stage Wiener filters were obtained to form signal subspace through forward recursive algorithm, so the calculation load significantly cut off. Based on the signal subspace the total least square method can get frequencies. Numerous simulations tested the performance of Root-MUSIC and TLS-ESPRIT.
     (6) Finally, after the information of amplitudes and angle phases were obtained, we proposed an integrated method to analyze interharmonic spectrum. The number of sinusoidal components and their frequencies were obtained by the spatial spectrum analysis, and SVMs or GA can calculate amplitudes and angle phases when SNR was low. The proposed method succeeded in analyzing the simulated interharmonic signal while IEC modified method failed. Sampling data from actual interharmonic sources, inductive motor and rolling mill, were applied to test the proposed method, and the results showed that it performed better than IEC modified method, SVMs and Prony algorithm.
引文
[1]IEEE1159.IEEE Recommended Practice for Monitoring Electric Power Quality[S].1159.
    [2]IEC 61000-2-1.Electromagnetic compatibility(EMC)-Part 2:Environment-Section 1:Description of the environment-Electromagnetic environment for low-frequency conducted disturbances and signalling in public power supply systems[S].1990.
    [3]IEC 61000-2-2.Electromagnetic compatibility(EMC)-Part 2-2:Environment -Compatibility levels for low-frequency conducted isturbances and signalling in public lowvoltage power supply systems-Basic EMC publication[S].2002.
    [4]林海雪.电力系统中间谐波问题[J].供用电,2001,18(3):6-9.
    [5]Gunther E W.Interharmonics-Recommended Updates to IEEE 519.IEEE Power Engineering Society Summer Meeting.Chicago,2002:950-954.
    [6]何立.焊接与切割设备的使用和维修(二)[J].电焊机,2002,32(2):31-38.
    [7]黄华,蔡继明.现代电炉炼钢技术发展趋势[J].特钢技术,2006,12(49):58-62.
    [8]李士琦,孙彦辉,刘冰等.现代电弧炉炼钢技术发展[J].特殊钢,2002,23(2):1-7.
    [9]翁利民,田智萍.电弧炉的电压闪变及其抑制对策[J].冶金动力,2002,(89):1-3.
    [10]高崇.直流电弧炉技术特性述评[J].特殊钢,2000,21(1):30-32.
    [11]Tang L,Mueller D,Hall D,et al.Analysis of DC arc funace operation and flicker caused by 187 Hz voltage distortion[J].IEEE Transaction on Power Delivery,1994,9(2):1098-1107.
    [12]程志彦.轧钢机和轧钢技术的发展[J].科技情报开方与经济,2005,15(13):119-120.
    [13]郝江涛,刘念,幸晋渝等.电力系统中间谐波的来源及危害[J].四川电力技术,2005,(2):11-14.
    [14]游海燕,齐国强.纹波控制技术——一种有效的负荷管理[J].电机电器技术,2002,(4):18-21.
    [15]陈宝录.CBL-IG电力负荷控制管理系统[J].北京节能,1999,(3):30-32.
    [16]Koster M,Jaeger E,Vancoetsem W.Light Flicker Caused by Interharmonics.[Online]Available:http://grouper.ieee.org/groups/harmonic/iharm/docs/ihflicker.pdf.
    [17]乐叶青,徐政.电力系统间谐波及其检测方法综合分析[J].电气应用,2006,25(12):110-113.
    [18]Gallo D,Langella R,Testa A.On the Processing of Harmonics and Interharmonics in Electrical Power Systems..Proceedings of the IEEE PES Winter Meeting.2000:1581-1586.
    [19] 龚雪丽.浅谈电力负荷控制管理系统[J].华北电力技术, 2004,(10): 45-47.
    
    [20]GB/T 14549. 电能质量——公用电网谐波[S]. 1993.
    
    [21]IEC 61000-3-6. Assessment of emission limits or distorting loads in M V and HV power systems[S]. 1996.
    
    [22]Delaney E J, Morrison R E. The Calculation Of Harmonic And Interharmonic Distortion In Current Source Converter Systems. Harmonics in Power Systems.,ICHPS V International Conference on 1992: 251-255.
    
    [23]Kusmierek Z, Korczynski M J. Active electrical power of harmonics and interharmonics induced by frequency converters. Proceedings of the 1999 16th IEEE Instrumentation and Measurement Technology Conference, IMTC/99 - Measurements for the new Millenium. Venice, 1999: 1130-1133.
    
    [24]Syam P, Bandyopadhyay G, Nandi P K, et al. Simulation and Experimental Study of Interharmonic Performance of a Cycloconverter-FedSynchronous Motor Drive[J].IEEE Transactions on Power Delivery, 2004,19 (2): 325-332.
    
    [25]Rifai M B, Ortmeyer T H, McQuillan W J. Evaluation of current interharmonics from ac drives[J]. IEEE Transactions on Power Delivery, 2000,15 (3): 1094-1098.
    
    [26]Carbone R, De Rosa F, Langella R, et al. A new approach for the computation of harmonics and interharmonics produced by line-commutated AC/DC/AC converters[J]. IEEE Transactions on Power Delivery, 2005,20 (3): 2227-2234.
    
    [27]Carbone R, Menniti D, Morrison R E, et al. Harmonic and Interharmonic Distortion in Current Type Inverter Drives[J]. IEEE Transaction on Power Delivery,1995,10(3): 1576-1583.
    
    [28]Del Pizzo A, Marino P, Visciano N. Harmonic and interharmonic impact of DTC-based induction motor drives on 3-wire network. Industrial Electronics, 2002.ISIE 2002. Proceedings of the 2002 IEEE International Symposium on 2002: 1201 -1206.
    
    [29]Chu R F, Burns J J. Impact of cycloconverter harmonics[J]. IEEE Transactions on Industry Applications, 1989, 25 (3): 427-435.
    
    [30]De Rosa F, Langella R, Sollazzo A, et al. On the interharmonic components generated by adjustable speed drives[J]. IEEE Transactions on Power Delivery, 2005,20 (4): 2535-2543.
    
    [31]Carbone R, Menniti D, Sorrentino N, et al. Iterative harmonic and interharmonic analysis in multiconverter industrial systems. Harmonics And Quality of Power, 1998.Proceedings. 8th International Conference on. 1998: 432 - 438.
    
    [32]Loskarn M, Tost K D, Unger C, et al. Mitigation of interharmonics due to large cycloconverter-fed mill drives. Harmonics And Quality of Power, 1998. Proceedings.8th International Conference on, 1998: 14-16.
    
    [33]Dugan R C, Conrad L E. Impact of induction furnace interharmonics on distribution systems. Proceedings of the 1999 IEEE/PES Transmission and Distribution Conference-A Vision Into the 21st Century.New Orleans,1999:791-796.
    [34]Beites L F,Mayordomo J G,Hernandez A,et al.Harmonics,Interharmonics and Unbalances of Arc Furnaces:A New Frequency Domain Approach[J].IEEE Transactions on Power Delivery,2001,16(4):661-668.
    [35]Mattavelli P,Felin L,Bordignon P,et al.Analysis of interharmonics in DC arc furnace installations.Harmonics And Quality of Power,1998.Proceedings.8th International Conference on Athens 1998:1092-1099
    [36]Hu L,Ran L.Direct method for calculation of AC side harmonics and interharmonics in an HVDC system[J].IEE Proceedings:Generation,Transmission and Distribution,2000,147(6):329-335.
    [37]Hu L,Yacamini R.Calculation of harmonics and interharmonics in HVDC schemes with low DC side impedance[J],IEE Proceedings,Part C:Generation,Transmission and Distribution,1993,140(6):469-476.
    [38]Hume D J,Wood A R,Osauskas C M.Frequency-domain modelling of interharmonics in HVDC systems[J],IEE Proceedings:Generation,Transmission and Distribution,2003,150(1):41-48.
    [39]Keppler T,Watson N R,Arrillaga J,et al.Theoretical Assessment of Light Flicker Caused by Sub-and Interharmonic Frequencies[J].IEEE Transactions on Power Delivery,2003,18(1):329-333.
    [40]IE C61000-4-30.Power Quality Measurement Methods,Testing and Measurement Techniques[S].2002.
    [41]IEC 61000-4-7 Second edition.Electromagnetic compatibility(EMC)-Part 4-7:Testing and measurement techniques-General guide on harmonic and interharmonic measurements and instrumentation,for power supply systems and equipment connected thereto[S].2002.
    [42]Testa A,Gallo D,Langella R.Interharmonic Measurements in IEC standard Framework.Power Engineering Society Summer Meeting.Chicago,2002:935-940.
    [43]Gallo D,Langella R,Testa A.Desynchronized Processing Technique for Harmonic and Interharmonic Analysis[J].IEEE Transactions on Power Delivery,2004,19(3):993-1001.
    [44]祁才君,陈隆道,王小海.应用插值FFT算法精确估计电网谐波参数[J].浙江大学学报(工学版),2003,37(1):112-116.
    [45]钱昊,赵荣祥.基于插值FFT算法的间谐波分析[J].中国电机工程学报,2005,25(21):87-91.
    [46]石敏,吴正国,尹为民.基于多信号分类法和普罗尼法的间谐波参数估计[J].电网技术,2005,29(15):82-85.
    [47]丁屹峰,程浩忠,吕干云等.基于Prony算法的谐波和间谐波频谱估计[J].电 工技术学报,2005,20(10):94-97.
    [48]丁屹峰,程浩忠,孙毅斌等.基于小波变换和Prony算法的间谐波参数辨识[J].上海交通大学学报,2005,39(12):2083-2087.
    [49]武艳华,黄纯,邢耀广等.基于AR模型的间谐波检测算法的研究[J].继电器,2006,34(2):41-46.
    [50]王波,杨洪耕.基于AR谱估计和插值FFT的间谐波检测方法[J].继电器,2006,34(4):49-53.
    [51]马秉伟,刘会金,周莉,等一种基于自回归模型的间谐波谱估计的改进算法[J].中国电机工程学报,2005,25(15):79-83.
    [52]马秉伟,周莉,刁均伟.基于现代谱估计方法的间谐波检测[J].继电器,2005,33(3):25-27.
    [53]Keaochantranond T,Boonseng C.Harmonics and interharmonics estimation using wavelet transform.Transmission and Distribution Conference and Exhibition 2002:Asia Pacific.IEEE/PES 2002:775-779
    [54]向东阳,王公宝,马伟明等.基于FFT和神经网络的非整数次谐波检测方法[J].中国电机工程学报,2005,25(9):35-39.
    [55]Cichocki A,Lobos T.Neural networks for real-time estimation of the basic waveforms of voltages and currents encountered in power systems[J].International Journal of Electronics,74(2):307-318
    [56]刘开培,周莉,马秉伟.基于支持向量机的间谐波检测及其在LabV1 EW平台的实现[J].电网技术,2006,30(5):76-80.
    [57]占勇,丁屹峰,程浩忠等.电力系统谐波分析的稳健支持向量机方法研究[J].中国电机工程学报,2004,24(12):43-47.
    [58]Lobos T,Kozina T,Koglin H-J.Power system harmonics estimation using linear least squares method and SVD[J].IEE Proceedings:Generation,Transmission and Distribution,2001,148(6):567-572.
    [59]牛卢璐.基于ESPRIT的谐波和间谐波参数估计方法[J].继电器,2007,35(9)37-41.
    [60]李晶,裴亮,郁道银等.超分辨率谱估计理论在电力系统谐波间谐波分析中的应用[J].传感技术学报,2006,19(6):2643-2646.
    [61]陈隆道,陈云.间谐波频率分量的频域奇异值算法[J].浙江大学学报(工学版),2004,38(4):470-473.
    [62]沈睿佼,杨洪耕.基于特征空间求根法的非整数次谐波估计方法[J].中国电机工程学报,2006,26(24):72-76.
    [63]沈睿佼,杨洪耕,昊吴.基于奇异值总体最小二乘法的间谐波估计算法[J].电网技术,2006,30(23):45-49.
    [64]王志群,朱守真,周双喜.基于Pisarenko谐波分解的间谐波估算方法[J].电网技术,2004,28(15):72-78.
    [65]Lobos T,Leonowicz Z,Rezmer J.Harmonics and interharmonics estimation using advanced signal processing methods.Harmonics and Quality of Power,2000.Proceedings.Ninth International Conference on 2000:335-340.
    [66]Lobos T,Leonowicz Z,Szymanda J,et al.Application of higher-order spectra for signal processing in electrical power engineering[C].[J].COMPEL,1998,17(5):602-611.
    [67]林海雪.电力系统的电压波动和闪变[J].供用电,1993,(3):48-52.
    [68]Tayjasnant T,Wang W,Li C,et al.Interharmonic-flicker curves[J].IEEE Transaction on Power Delivery,2005,20(2):1017-1024.
    [69]GB 12326.电能质量——电压波动和闪变[S].2000.
    [70]IEC 61000-4-15.Electromagnetic Compatibility(EMC)-Part 4:Testing and Measurement Techniques-Section 15:Flickermeter-Functional and Design Specifications[S].2003.
    [71]胡广军.数字信号处理理论、算法与实现[M].北京:清华大学出版社,2004.
    [72]Jain V K,Collins W L,Davis D C.High-accuracy analog measurements via interpolated FFT[J].IEEE Transaction on Instrumentation and Measurement,1979,28(2):113-122.
    [73]Grandke T.Interpolation algorithms for discrete Fourier transforms of wighted signals[J].IEEE Transaction on Instrumentation and Measurement,1983,32(2):350-355.
    [74]祁才君,王小海.基于插值FFT算法的间谐波参数估计[J].电工技术学报,2003,18(1):92-95.
    [75]周俊,王小海,祁才君.基于Blackman窗函数的插值FFT在电网谐波信号分析中的应用[J].浙江大学学报(理学版),2006,33(6):650-653.
    [76]曹维,翁斌伟,陈陈.电力系统暂态变量的Prony分析[J].电工技术学报,2000,15(6):56-60.
    [77]虞和济,陈长征,张省等.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002.
    [78]柴旭峥,文习山,关根志.一种高精度的电力系统谐波分析算法[J].中国电机工程学报,2003,23(9):67-70.
    [79]杨行峻,郑君里.人工神经网络与盲信号处理[M].北京:清华大学出版社,2002.
    [80]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2006.
    [81]Cristianini N,Shawe-Taylor J.支持向量机导论[M].北京:电子工业出版社,2004.
    [82]Rojo-Alvarez J L,Martinez-Ramon M,Figueiras-Vidal A R,et al.A Robust Support Vector Algorithm for Nonparametric Spectral Analysis[J].IEEE Signal Processing Letters,2003,10(11):320-323.
    [83]杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2000.
    [84]薛蕙,杨仁刚.基于连续小波变换的非整数次谐波测量方法[J].电力系统自动化,2003,27(5):49-53.
    [85]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [86]于斌,宋铮.空间谱估计技术综述[J].中国雷达,2004,(4):21-25.
    [87]Schmidt R O.Multiple Emitter Location and Signal Parameter Estimation[J].IEEE Transaction on Antennas and Propagation,1986,AP-34(3):276-280.
    [88]Akaike H.A new look at the statistical model identification[J].IEEE Transaction On Automatic Control,1974,AC-19(6):716-723.
    [89]Wax M,Kailath T.Detection of singals by information theoretic criteria[J].IEEE Transaction on Acoustics,Speech,and Signal Processing,1985,ASSP-33(2):387-392.
    [90]Zhang Q T,Wong K M,Yip P C,et al.Statistical Analysis of the Performance of Information Theoretic Criteria in the Detection of the Number of Signals in Array Processing[J].IEEE Transaction on Acoustics,Speech,and Signal Processing,1989,37(40):1557-1567.
    [91]Zhao L C,Krishnaiah P T,Bai Z D.Remarks on Certain Criteria for Detection of Signals[J].IEEE Transaction on Acoustics,Speech,and Signal Processing,1987,ASSP-35(2):129-132.
    [92]Wu H T,Yang J F,Chen F K.Source Number Estimators Using Transformed Gerschgorin Radii[J].IEEE Transaction on Signal Processing,1995,43(6):1325-1333.
    [93]Wilkinson J H.The Algebraic Eigenvalue Problem[M].UK:Clarendon,1965.
    [94]Chen W,Reilly J P,Wong K M.Detection of the number of signals in noise with banded covariance matrices[J].IEE Proceedings:Radar,Sonar and Navigation,1996,143(5):289-294.
    [95]孙文爽,陈兰详.多元统计分析[M].北京:高等教育出版社,1994.
    [96]Chen W,Reilly J R,Kong K M.Detection of the Number of Signals in Noise with Banded Covariance Matrices[J].IEEE Proc.-Radar,1996,143(5):289-294.
    [97]Mahata K.Spectrum Estimation,Notch Filters,and MUSIC[J].IEEE Transaction on Signal Processing,2005,53(10):3727-3737.
    [98]Rao D B,Hari K V S.Performance Analysis of Root-Music[J].IEEE Transaction on Acoustics,Speech,and Signal Processing,1989,37(12):1939-1948.
    [99]Roy R,Kailath T.ESPRIT-Estimation of Signal Parameters Via Rotational Invariance Techniques[J].IEEE Transaction on Acoustics,Speech,and Signal Processing,1989,37(7):984-995.
    [100]Weiss A J,Gavish M.Direction Finding Using ESPRIT with Interpolated Arrays[J].IEEE Transaction on Signal Processing,1991,39(6):1473-1478.
    [101]黄磊,吴顺君,张林让.没有协方差矩阵估计及其特征值分解的ESPRIT方法[J].自然科学进展,2005,15(7):863-868.
    [102]丁前军,王永良,张永顺.一种多级维纳滤波器的快速实现——迭代相关相减算法[J].通信学报,2005,26(12):1-7.
    [103]潘正君,康立山,陈毓屏.演化计算[M].北京:清华大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700