用户名: 密码: 验证码:
促红细胞生成素预处理对缺血性急性肾衰竭的保护作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究重组人促红细胞生成素预处理对缺血性急性肾衰竭的保护作用并探讨其可能的作用机制。
     方法
     通过缺血再灌注损伤法建立在体大鼠缺血性急性肾衰竭模型,雄性成年SD大鼠48只随机分为4组,每组12只,缺血前及再灌注后各6只。假手术组大鼠单纯切除右肾,未行左肾缺血再灌注;缺血组大鼠行右肾切除,左肾缺血45 min再灌注24 h;促红素组大鼠亦单纯切除右肾,于术前24 h腹腔注射重组人促红细胞生成素3000 U/kg,但未行左肾缺血再灌注;促红素缺血组大鼠于缺血前24 h腹腔注射重组人促红细胞生成素3000 U/kg,行右肾切除,左肾缺血45 min再灌注24 h。假手术组及缺血组分别于术前24 h以生理盐水1.5 ml/kg腹腔注射。分别于缺血前及再灌注后测定血肌酐和尿素氮值,用HE染色及paller法肾小管评分观察肾组织损伤形态学改变,采用TUNEL法检测肾小管上皮细胞凋亡。分别于大鼠肾缺血前、缺血再灌注后取肾组织标本,采用Western blot法半定量分析促红细胞生成素对缺血性急性肾衰竭大鼠肾组织中抗凋亡因子Bcl-2及半胱天冬蛋白酶Caspase-3的蛋白表达的影响。
     结果
     肾功能结果:与假手术组(Scr 52.38±6.68,BUN 4.71±0.93)比较,再灌注后缺血组(Scr 353.20±34.34,BUN 41.25±4.10)、促红素缺血组(Scr 251.80±37.66,BUN 25.67±3.10)血肌酐、尿素氮明显升高(P﹤0.05);与缺血组(Scr 353.20±34.34,BUN 41.25±4.10)比较,促红素缺血组(Scr 251.80±37.66,BUN 25.67±3.10)血肌酐、尿素氮水平下降(P﹤0.05)。缺血前各组血肌酐、尿素氮差异无统计学意义。
     肾组织形态学结果:与假手术组(19.33±3.33)比较,缺血组(250.67±23.96)及促红素缺血组(135.33±11.69)肾小管损伤明显、肾小管paller评分升高(P﹤0.05);与缺血组(250.67±23.96)比较,促红素缺血组(135.33±11.69)肾小管损伤减轻、肾小管paller评分下降(P﹤0.05)。
     TUNEL染色结果:与假手术组[(1.17±0.48)%]比较,缺血组[(24.58±4.39)%]及促红素缺血组[(8.52±2.06)%] TUNEL凋亡指数增加(P﹤0.05);与缺血组[(24.58±4.39)%]比较,促红素缺血组[(8.52±2.06)%] TUNEL凋亡指数下降(P﹤0.05)。
     缺血前各组Western blot结果:与假手术组(55.17±7.76)比较,促红素组(135.00±9.89)及促红素缺血组(133.05±8.78) Bcl-2蛋白表达上调(P﹤0.05),各组Caspase-3蛋白表达在缺血前差异无统计学意义。
     再灌注后各组Western blot结果:与假手术组(Bcl-2,52.93±7.13,Caspase-3,18.53±1.86)比较,缺血组(28.12±6.49) Bcl-2蛋白表达下调(P﹤0.05),促红素组(133.08±8.92)、促红素缺血组(86.00±7.99) Bcl-2蛋白表达上调(P﹤0.05),缺血组(55.62±2.90)、促红素缺血组(45.77±2.08) Caspase-3蛋白表达上调(P﹤0.05);与缺血组(Bcl-2,28.12±6.49,Caspase-3,55.62±2.90)比较,促红素缺血组Bcl-2蛋白(86.00±7.99)表达上调,Caspase-3蛋白(45.77±2.08)表达下调(P﹤0.05)。
     各组缺血前与再灌注后Western blot结果:与缺血前比较,缺血组、促红素缺血组缺血再灌注后Bcl-2蛋白表达下调(P﹤0.05),假手术组、促红素组缺血再灌注前后Bcl-2蛋白表达差异无统计学意义;缺血组、促红素缺血组再灌注后Caspase-3蛋白表达上调(P﹤0.05),假手术组、促红素组缺血再灌注前后Caspase-3蛋白表达差异无统计学意义。
     结论
     促红细胞生成素预处理对缺血性急性肾衰竭具有保护作用,其作用机制可能同上调缺血前Bcl-2蛋白的表达,减弱由缺血再灌注引起Bcl-2蛋白表达的下调,降低再灌注后Caspase-3蛋白表达的上调幅度,减轻肾小管上皮细胞凋亡有关。
Objective
     To investigate the effect of preconditioning with recombinant human erythropoietin (rhEPO) on an in vivo rat model of ischemic acute renal failure and the possible mechanisms.
     Methods
     The model of ischemic acute renal failure was established by in vivo rat ischemia/reperfusion (I/R) injury. 48 male Sprague–Dawley rats were randomly allocated into four groups (12 per group, 6 before ischemia and 6 after reperfusion). (I) sham group, in which rats were right nephrectomy without left renal ischemia/reperfusion; (II) I/R group, in which rats were right nephrectomy and clamping on the left renal pedicle for 45 min and reperfusion for 24 h; (III) EPO group, in which rats were also right nephrectomy without ischemia/reperfusion and administered EPO (3000 U/kg, i.p) 24 h prior to laparotomy. (IV) EPO + I/R group, in which rats were administered EPO (3000 U/kg, i.p.) 24 h prior to I/R, then right nephrectomy and clamping on the left renal pedicle for 45 min and reperfusion for 24 h. The sham and I/R group were administered saline (1.5 ml/kg, i.p) 24 h prior to laparotomy respectively. Before ischemia and after 24 h of reperfusion, the renal dysfunction and injury was assessed by measurement of serum biochemical markers (urea, creatinine) and histological grading (H E staining). Apoptosis was assessed by the TUNEL method and morphological criteria (paller score). Expression of Bcl-2 and Casepase-3 was also evaluated by Western blot.
     Results
     Renal function: High levels of serum creatinine and blood urea in I/R (Scr 353.20±34.34, BUN 41.25±4.10) and EPO + I/R (Scr 251.80±37.66, BUN 25.67±3.10) group were identified at 24 h after ischemia (P<0.05 versus sham Scr 52.38±6.68, BUN 4.71±0.93). The EPO + I/R (Scr 251.80±37.66, BUN 25.67±3.10) group had significantly lower serum creatinine and blood urea levels (P<0.05 versus I/R Scr 353.20±34.34, BUN 41.25±4.10). There was no significant difference between Groups before ischemia.
     Renal morphological: Compared with sham group (19.33±3.33), I/R (250.67±23.96) and EPO + I/R (135.33±11.69) group developed marked tubula structural damage and higher paller scores (P<0.05) whereas significantly less tubular damage and lower paller scores were observed in EPO + I/R (135.33±11.69) group compared with I/R (250.67±23.96) group (P<0.05).
     TUNEL assay: Compared with sham [(1.17±0.48)%] group, I/R [(24.58±4.39)%] and EPO+I/R [(8.52±2.06)%] group caused an increase in TUNEL-positive cells (P<0.05), compared with I/R [(24.58±4.39)%] group, EPO+I/R [(8.52±2.06)%] group TUNEL- positive cells were decressed (P<0.05).
     Before ischemia: Up-regulation of Bcl-2 in the tubular epithelial cells was observed in EPO (135.00±9.89) and EPO + I/R (133.05±8.78) group compared with sham (55.17±7.76) group (P<0.05). Casepase-3 was no significant difference between Groups before ischemia.
     After reperfusion: Diminished expression of Bcl-2 in I/R (28.12±6.49) group and up-regulation of Bcl-2 in EPO (133.08±8.92) and EPO + I/R (86.00±7.99) group were observed compared with sham (52.93±7.13) group (P<0.05), up-regulation of Casepase-3 in I/R (55.62±2.90) and EPO + I/R (45.77±2.08) group was observed compared with sham (18.53±1.86) group (P<0.05). Up-regulation of Bcl-2 and decreased expression of casepase-3 in EPO + I/R (Bcl-2, 86.00±7.99, Caspase-3, 45.77±2.08) group were observed compared with I/R (Bcl-2, 28.12±6.49, Caspase-3, 55.62±2.90) group (P<0.05).
     Compared with before ischemia, Bcl-2 decreased and Casepase-3 incresed in I/R and EPO + I/R group after reperfusion (P<0.05), there was no significant difference between sham and EPO Group.
     Conclusion
     The results indicate that erythropoietin has protective effects on ischemic acute renal failure, the mechanisms seems to be associated with its amelioration of renal tubular epithelial cell apoptosis by up-regulation the anti-apoptosis protein Bcl-2 before ischemia which attenuated the diminished expression of Bcl-2 and decreased the up-regulation of protein Caspase-3 after ischemia/reperfusion.
引文
[1] Kellum J, Leblanc M, Venkataraman R. Acute renal failure. Am Fam Physician, 2007, 76(3):418-422.
    [2] Broden CC. Acute renal failure and mechanical ventilation: reality or myth? Crit Care Nurse, 2009, 29(2):62-75; quiz 76.
    [3] Singri N, Ahya SN, Levin ML. Acute renal failure. JAMA, 2003, 289(6):747-751.
    [4] Schrier RW, Wang W, Poole B, et al. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest, 2004, 114(1):5-14.
    [5] Busuioc M, Gusbeth-Tatomir P, Covic A. Acute renal failure--prezent and perspective. Rev Med Chir Soc Med Nat Iasi, 2009, 113(4):984-990.
    [6] Schiffl H, Lang SM, Fischer R. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med, 2002, 346(5):305-310.
    [7] Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis, 2002, 39(5):930-936.
    [8] Laake JH, Bugge JF. Acute renal failure in critically ill patients. Tidsskr Nor Laegeforen, 2010, 130(2):158-161.
    [9] Poch E, Riviello ED, Christopher K. Acute renal failure in the intensive care unit. Med Clin (Barc), 2008, 130(4):141-148.
    [10] Weisbord SD, Palevsky PM. Acute renal failure in the intensive care unit. Semin Respir Crit Care Med, 2006, 27(3):262-273.
    [11] Venkataraman R, Kellum JA. Prevention of acute renal failure. Chest, 2007, 131(1):300-308.
    [12] Beige J, Kreutz R, Rothermund L. Acute renal failure: pathophysiology and clinical management. Dtsch Med Wochenschr, 2007, 132(48):2569-2578.
    [13] Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol, 2003, 14(8):2199-2210.
    [14] Lameire N. The pathophysiology of acute renal failure. Crit Care Clin, 2005, 21(2):197-210.
    [15] Vannay A, Fekete A, Adori C, et al. Divergence of renal vascular endothelial growth factor mRNA expression and protein level in post-ischaemic rat kidneys.Exp Physiol, 2004, 89(4):435-444.
    [16] Vannay A, Fekete A, Muller V, et al. Effects of histamine and the h2 receptor antagonist ranitidine on ischemia-induced acute renal failure: involvement of IL-6 and vascular endothelial growth factor. Kidney Blood Press Res, 2004, 27(2):105-113.
    [17] Goto T, Fujigaki Y, Sun DF, et al. Plasma protein extravasation and vascular endothelial growth factor expression with endothelial nitric oxide synthase induction in gentamicin-induced acute renal failure in rats. Virchows Arch, 2004, 444(4):362-374.
    [18] Nagano T, Mori-Kudo I, Kawamura T, et al. Pre- or post-treatment with hepatocyte growth factor prevents glycerol-induced acute renal failure. Ren Fail, 2004, 26(1):5-11.
    [19] Fiaschi-Taesch NM, Santos S, Reddy V, et al. Prevention of acute ischemic renal failure by targeted delivery of growth factors to the proximal tubule in transgenic mice: the efficacy of parathyroid hormone-related protein and hepatocyte growth factor. J Am Soc Nephrol, 2004, 15(1):112-125.
    [20] Homsi E, Janino P, Amano M, et al. Endogenous hepatocyte growth factor attenuates inflammatory response in glycerol-induced acute kidney injury. Am J Nephrol, 2009, 29(4):283-291.
    [21] Homsi E, Janino P, Biswas SK, et al. Attenuation of glycerol-induced acute kidney injury by previous partial hepatectomy: role of hepatocyte growth factor/c-met axis in tubular protection. Nephron Exp Nephrol, 2007, 107(3):e95-106.
    [22] Medina A, Fernandez-Fuente M, Carbajo-Perez E, et al. Insulin-like growth factor I administration in young rats with acute renal failure. Pediatr Nephrol, 2002, 17(12):1005-1012.
    [23] Kornhauser C, Dubey LA, Garay ME, et al. Serum and urinary insulin-like growth factor-1 and tumor necrosis factor in neonates with and without acute renal failure. Pediatr Nephrol, 2002, 17(5):332-336.
    [24] Guimaraes SM, Lima EQ, Cipullo JP, et al. Low insulin-like growth factor-1 and hypocholesterolemia as mortality predictors in acute kidney injury in the intensive care unit. Crit Care Med, 2008, 36(12):3165-3170.
    [25] Spurgeon KR, Donohoe DL, Basile DP. Transforming growth factor-beta in acuterenal failure: receptor expression, effects on proliferation, cellularity, and vascularization after recovery from injury. Am J Physiol Renal Physiol, 2005, 288(3):F568-577.
    [26] Zager RA, Johnson AC, Lund S. Uremia impacts renal inflammatory cytokine gene expression in the setting of experimental acute kidney injury. Am J Physiol Renal Physiol, 2009, 297(4):F961-970.
    [27] de Souza AL, Malaque CM, Sztajnbok J, et al. Loxosceles venom-induced cytokine activation, hemolysis, and acute kidney injury. Toxicon, 2008, 51(1):151-156.
    [28] Faubel S, Lewis EC, Reznikov L, et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther, 2007, 322(1):8-15.
    [29] Zager RA, Johnson AC, Hanson SY, et al. Acute nephrotoxic and obstructive injury primes the kidney to endotoxin-driven cytokine/chemokine production. Kidney Int, 2006, 69(7):1181-1188.
    [30] Reichel C, Gmeiner G. Erythropoietin and analogs. Handb Exp Pharmacol, 2010, (195):251-294.
    [31] Fried W. Erythropoietin and erythropoiesis. Exp Hematol, 2009, 37(9):1007-1015.
    [32] Imamura R, Isaka Y, Ichimaru N, et al. Carbamylated erythropoietin protects the kidneys from ischemia-reperfusion injury without stimulating erythropoiesis. Biochem Biophys Res Commun, 2007, 353(3):786-792.
    [33] Xu X, Cao Z, Cao B, et al. Carbamylated erythropoietin protects the myocardium from acute ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Surgery, 2009, 146(3):506-514.
    [34] Shan X, Xu X, Cao B, et al. Transcription factor GATA-4 is involved in erythropoietin-induced cardioprotection against myocardial ischemia/reperfusion injury. Int J Cardiol, 2009, 134(3):384-392.
    [35] Burger DE, Xiang FL, Hammoud L, et al. Erythropoietin protects the heart from ventricular arrhythmia during ischemia and reperfusion via neuronal nitric-oxide synthase. J Pharmacol Exp Ther, 2009, 329(3):900-907.
    [36] Doue T, Ohtsuki K, Ogawa K, et al. Cardioprotective effects of erythropoietin in rats subjected to ischemia-reperfusion injury: assessment of infarct size with 99mTc-annexin V. J Nucl Med, 2008, 49(10):1694-1700.
    [37] Nakamura R, Takahashi A, Yamada T, et al. Erythropoietin in patients with acute coronary syndrome and its cardioprotective action after percutaneous coronary intervention. Circ J, 2009, 73(10):1920-1926.
    [38] Bahcekapili N, Uzum G, Gokkusu C, et al. The relationship between erythropoietin pretreatment with blood-brain barrier and lipid peroxidation after ischemia/reperfusion in rats. Life Sci, 2007, 80(14):1245-1251.
    [39] Rabie T, Marti HH. Brain protection by erythropoietin: a manifold task. Physiology (Bethesda), 2008, 23263-274.
    [40] Shimoda M, Sawada T, Iwasaki Y, et al. Erythropoietin strongly protects the liver from ischemia-reperfusion injury in a pig model. Hepatogastroenterology, 2009, 56(90):470-475.
    [41] Luo YH, Li ZD, Liu LX, et al. Pretreatment with erythropoietin reduces hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int, 2009, 8(3):294-299.
    [42] Schmeding M, Hunold G, Ariyakhagorn V, et al. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats. Transpl Int, 2009, 22(7):738-746.
    [43] Wu H, Dong G, Liu H, et al. Erythropoietin attenuates ischemia-reperfusion induced lung injury by inhibiting tumor necrosis factor-alpha and matrix metalloproteinase-9 expression. Eur J Pharmacol, 2009, 602(2-3):406-412.
    [44] Wu H, Ren B, Zhu J, et al. Pretreatment with recombined human erythropoietin attenuates ischemia-reperfusion-induced lung injury in rats. Eur J Cardiothorac Surg, 2006, 29(6):902-907.
    [45]王建明,宋艳萍,孙乃学,等.重组人促红细胞生成素对兔缺血再灌注损伤视网膜结构的保护作用[J].西安交通大学学报:医学版,2009,30(3):366-369.
    [46] Dreixler JC, Hagevik S, Hemmert JW, et al. Involvement of erythropoietin in retinal ischemic preconditioning. Anesthesiology, 2009, 110(4):774-780.
    [47] Burger D, Xiang F, Hammoud L, et al. Role of heme oxygenase-1 in the cardioprotective effects of erythropoietin during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol, 2009, 296(1):H84-93.
    [48] Liao ZB, Jiang GY, Tang ZH, et al. Erythropoietin can promote survival of cerebral cells by downregulating Bax gene after traumatic brain injury in rats. Neurol India, 2009, 57(6):722-728.
    [49] Stahel PF, Flierl MA. Erythropoietin in traumatic brain injury: the "golden bullet" on the horizon? Neurol India, 2009, 57(6):693-694.
    [50] Xiong Y, Mahmood A, Meng Y, et al. Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg, 2009.
    [51] Valable S, Francony G, Bouzat P, et al. The impact of erythropoietin on short-term changes in phosphorylation of brain protein kinases in a rat model of traumatic brain injury. J Cereb Blood Flow Metab, 2010, 30(2):361-369.
    [52] Moon C, Krawczyk M, Paik D, et al. Erythropoietin, modified to not stimulate red blood cell production, retains its cardioprotective properties. J Pharmacol Exp Ther, 2006, 316(3):999-1005.
    [53] Esposito C, Pertile E, Grosjean F, et al. The improvement of ischemia/reperfusion injury by erythropoetin is not mediated through bone marrow cell recruitment in rats. Transplant Proc, 2009, 41(4):1113-1115.
    [54] Feng Q. Beyond erythropoiesis: the anti-inflammatory effects of erythropoietin. Cardiovasc Res, 2006, 71(4):615-617.
    [55] Timmer SA, De Boer K, Knaapen P, et al. The potential role of erythropoietin in chronic heart failure: from the correction of anemia to improved perfusion and reduced apoptosis? J Card Fail, 2009, 15(4):353-361.
    [56] Sifringer M, Brait D, Weichelt U, et al. Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain. Brain Behav Immun, 2009.
    [57] Sharples EJ, Patel N, Brown P, et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol, 2004, 15(8):2115-2124.
    [58] Ates E, Yalcin AU, Yilmaz S, et al. Protective effect of erythropoietin on renal ischemia and reperfusion injury. ANZ J Surg, 2005, 75(12):1100-1105.
    [59] Kitamura H, Isaka Y, Takabatake Y, et al. Nonerythropoietic derivative of erythropoietin protects against tubulointerstitial injury in a unilateral ureteral obstruction model. Nephrol Dial Transplant, 2008, 23(5):1521-1528.
    [60] Imamura R, Okumi M, Isaka Y, et al. Carbamylated erythropoietin improvesangiogenesis and protects the kidneys from ischemia-reperfusion injury. Cell Transplant, 2008, 17(1-2):135-141.
    [61] Kiris I, Kapan S, Kilbas A, et al. The protective effect of erythropoietin on renal injury induced by abdominal aortic-ischemia-reperfusion in rats. J Surg Res, 2008, 149(2):206-213.
    [62] Krysko DV, Vanden Berghe T, D'Herde K, et al. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods, 2008, 44(3):205-221.
    [63] Kanduc D, Mittelman A, Serpico R, et al. Cell death: apoptosis versus necrosis (review). Int J Oncol, 2002, 21(1):165-170.
    [64] Srichai MB, Hao C, Davis L, et al. Apoptosis of the thick ascending limb results in acute kidney injury. J Am Soc Nephrol, 2008, 19(8):1538-1546.
    [65] Kim YS, Jung MH, Choi MY, et al. Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Crit Care Med, 2009, 37(6):2033-2044.
    [66] Terada Y, Inoshita S, Kuwana H, et al. Important role of apoptosis signal-regulating kinase 1 in ischemic acute kidney injury. Biochem Biophys Res Commun, 2007, 364(4):1043-1049.
    [67] Lerolle N, Nochy D, Guerot E, et al. Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med, 2010, 36(3):471-478.
    [68] Joannes-Boyau O, Honore PM, Boer W, et al. Septic acute kidney injury and tubular apoptosis: never a Lone Ranger. Intensive Care Med, 2010, 36(3):385-388.
    [69] Sugiura H, Yoshida T, Mitobe M, et al. Klotho reduces apoptosis in experimental ischaemic acute kidney injury via HSP-70. Nephrol Dial Transplant, 2010, 25(1):60-68.
    [70] Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy, 2008, 4(5):600-606.
    [71] Wong WW, Puthalakath H. Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life, 2008, 60(6):390-397.
    [72] Roset R, Ortet L, Gil-Gomez G. Role of Bcl-2 family members on apoptosis: what we have learned from knock-out mice. Front Biosci, 2007, 124722-4730.
    [73] Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart.Am J Physiol Cell Physiol, 2007, 292(1):C45-51.
    [74] Cohen-Saidon C, Razin E. The involvement of Bcl-2 in mast cell apoptosis. Novartis Found Symp, 2005, 271191-195; discussion 195-199.
    [75] van Delft MF, Huang DC. How the Bcl-2 family of proteins interact to regulate apoptosis. Cell Res, 2006, 16(2):203-213.
    [76] Adams JM, Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol, 2007, 19(5):488-496.
    [77] Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai), 2005, 37(11):719-727.
    [78] Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol, 2004, 5(11):897-907.
    [79] Kaufmann SH, Lee SH, Meng XW, et al. Apoptosis-associated caspase activation assays. Methods, 2008, 44(3):262-272.
    [80] Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ, 1999, 6(2):99-104.
    [81] Mazumder S, Plesca D, Almasan A. Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol, 2008, 414:13-21.
    [82] Johnson DW, Pat B, Vesey DA, et al. Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure. Kidney Int, 2006, 69(10):1806-1813.
    [83] Patel NS, Sharples EJ, Cuzzocrea S, et al. Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney Int, 2004, 66(3):983-989.
    [84] Spandou E, Tsouchnikas I, Karkavelas G, et al. Erythropoietin attenuates renal injury in experimental acute renal failure ischaemic/reperfusion model. Nephrol Dial Transplant, 2006, 21(2):330-336.
    [85] Imamura R, Moriyama T, Isaka Y, et al. Erythropoietin protects the kidneys against ischemia reperfusion injury by activating hypoxia inducible factor-1alpha. Transplantation, 2007, 83(10):1371-1379.
    [86] Phillips CK, Hruby GW, Mirabile G, et al. Erythropoietin-induced optimization of renal function after warm ischemia. J Endourol, 2009, 23(3):359-365.
    [87] Yang CW, Li C, Jung JY, et al. Preconditioning with erythropoietin protects againstsubsequent ischemia-reperfusion injury in rat kidney. FASEB J, 2003, 17(12):1754-1755.
    [88] Rusai K, Prokai A, Szebeni B, et al. Role of serum and glucocorticoid-regulated kinase-1 in the protective effects of erythropoietin during renal ischemia/reperfusion injury. Biochem Pharmacol, 2010, 79(8):1173-1181.
    [89] Vesey DA, Cheung C, Pat B, et al. Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant, 2004, 19(2):348-355.
    [90] Wang W, Zhang J. Protective effect of erythropoietin against aristolochic acid-induced apoptosis in renal tubular epithelial cells. Eur J Pharmacol, 2008, 588(2-3):135-140.
    [91] Bagnis C, Beaufils H, Jacquiaud C, et al. Erythropoietin enhances recovery after cisplatin-induced acute renal failure in the rat. Nephrol Dial Transplant, 2001, 16(5):932-938.
    [92] Lee DW, Kwak IS, Lee SB, et al. Post-treatment effects of erythropoietin and nordihydroguaiaretic acid on recovery from cisplatin-induced acute renal failure in the rat. J Korean Med Sci, 2009, 24 SupplS170-175.
    [93] Goldfarb M, Rosenberger C, Ahuva S, et al. A role for erythropoietin in the attenuation of radiocontrast-induced acute renal failure in rats. Ren Fail, 2006, 28(4):345-350.
    [94]徐艺,何永成,栾韶东,等.促红细胞生成素在急性肾功能衰竭患者中的临床应用观察[J].中国医药导报,2009(14):19-21.
    [95] Endre ZH, Walker RJ, Pickering JW, et al. Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int, 2010. [Epub ahead of print].
    [1] Carnot LHS. Les volontaires de la C?te-d'Or; origines historiques, formations de 1789 et 1791, veillée des armes. Paris,: L. Venot, 1906.
    [2] Bonsdorff E. On the presence of erythropoietins in the plasma from sheep foetuses during the latter half of gestation. Acta Physiol Scand, 1949, 18(1):51-62.
    [3] Reissmann KR. Studies on the mechanism of erythropoietic stimulation in parabiotic rats during hypoxia. Blood, 1950, 5(4):372-380.
    [4] Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem, 1977, 252(15):5558-5564.
    [5] Lin FK, Suggs S, Lin CH, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A, 1985, 82(22):7580-7584.
    [6] Jacobson LO, Goldwasser E, Fried W, et al. Studies on erythropoiesis. VII. The role of the kidney in the production of erythropoietin. Trans Assoc Am Physicians, 1957, 70305-317.
    [7] Fisher JW, Schofield R, Porteous DD. Effects of Renal Hypoxia on Erythropoietin Production. Br J Haematol, 1965, 11382-388.
    [8] Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood, 1988, 71(2):524-527.
    [9] Sawyer ST, Krantz SB, Luna J. Identification of the receptor for erythropoietin by cross-linking to Friend virus-infected erythroid cells. Proc Natl Acad Sci U S A, 1987, 84(11):3690-3694.
    [10] D'Andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell, 1989, 57(2):277-285.
    [11] Kuramochi S, Ikawa Y, Todokoro K. Characterization of murine erythropoietin receptor genes. J Mol Biol, 1990, 216(3):567-575.
    [12] Johnson DL, Farrell FX, Barbone FP, et al. Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of EMP1. Biochemistry, 1998, 37(11):3699-3710.
    [13] Livnah O, Stura EA, Middleton SA, et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science, 1999, 283(5404):987-990.
    [14] Middleton SA, Barbone FP, Johnson DL, et al. Shared and unique determinants of the erythropoietin (EPO) receptor are important for binding EPO and EPO mimetic peptide. J Biol Chem, 1999, 274(20):14163-14169.
    [15] Siren AL, Knerlich F, Poser W, et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol, 2001, 101(3):271-276.
    [16] Li Y, Lu Z, Keogh CL, et al. Erythropoietin-induced neurovascular protection, angiogenesis, and cerebral blood flow restoration after focal ischemia in mice. J Cereb Blood Flow Metab, 2007, 27(5):1043-1054.
    [17] Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A, 2000, 97(19):10526-10531.
    [18] Bernaudin M, Marti HH, Roussel S, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab, 1999, 19(6):643-651.
    [19] Sakanaka M, Wen TC, Matsuda S, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A, 1998, 95(8):4635-4640.
    [20] Kumral A, Uysal N, Tugyan K, et al. Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats. Behav Brain Res, 2004, 153(1):77-86.
    [21] Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med, 2003, 198(6):971-975.
    [22] Hirata A, Minamino T, Asanuma H, et al. Erythropoietin just before reperfusion reduces both lethal arrhythmias and infarct size via the phosphatidylinositol-3 kinase-dependent pathway in canine hearts. Cardiovasc Drugs Ther, 2005, 19(1):33-40.
    [23] Parsa CJ, Matsumoto A, Kim J, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest, 2003, 112(7):999-1007.
    [24] Tramontano AF, Muniyappa R, Black AD, et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway.Biochem Biophys Res Commun, 2003, 308(4):990-994.
    [25] Suzuki N, Ohneda O, Takahashi S, et al. Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality. Blood, 2002, 100(7):2279-2288.
    [26] Sharples EJ, Patel N, Brown P, et al. Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol, 2004, 15(8):2115-2124.
    [27] Daemen MA, van 't Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest, 1999, 104(5):541-549.
    [28] Yang CW, Li C, Jung JY, et al. Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J, 2003, 17(12):1754-1755.
    [29] Vesey DA, Cheung C, Pat B, et al. Erythropoietin protects against ischaemic acute renal injury. Nephrol Dial Transplant, 2004, 19(2):348-355.
    [30]凌厉,朱本章. EPO对早期糖尿病大鼠肾脏的保护作用.西安交通大学学报:医学版, 2008, 29(6):659-662.
    [31]燕鹏,寇忠爱,李红霞,等.促红细胞生成素对2型糖尿病大鼠肾损伤的保护作用[J].实用心脑肺血管病杂志,2009,17(5):360-361.
    [32] Hochhauser E, Pappo O, Ribakovsky E, et al. Recombinant human erythropoietin attenuates hepatic injury induced by ischemia/reperfusion in an isolated mouse liver model. Apoptosis, 2008, 13(1):77-86.
    [33]陈海云,商中华,钱惠岗,等.rhEPO预处理对大鼠肝脏缺血再灌注损伤的作用[J].山西医科大学学报,2007,38(11):981-984,1056.
    [34] Luo YH, Li ZD, Liu LX, et al. Pretreatment with erythropoietin reduces hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int, 2009, 8(3):294-299.
    [35] Schmeding M, Hunold G, Ariyakhagorn V, et al. Erythropoietin reduces ischemia-reperfusion injury after liver transplantation in rats. Transpl Int, 2009, 22(7):738-746.
    [36] Junk AK, Mammis A, Savitz SI, et al. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci U S A, 2002, 99(16):10659-10664.
    [37]乔淑红,迟焕芳.促红细胞生成素对视网膜缺血再灌注神经元凋亡和caspase-2表达的影响[J].神经解剖学杂志,2005,21(5):521-525.
    [38]梁淑欣,谢汉平,曾玉晓,等.重组人促红细胞生成素对大鼠视网膜缺血再灌注损伤的保护作用[J].第三军医大学学报,2006,28(17):1775-1777.
    [39] Kretz A, Happold CJ, Marticke JK, et al. Erythropoietin promotes regeneration of adult CNS neurons via Jak2/Stat3 and PI3K/AKT pathway activation. Mol Cell Neurosci, 2005, 29(4):569-579.
    [40]王建明,宋艳萍,孙乃学,等.重组人促红细胞生成素对兔缺血再灌注损伤视网膜结构的保护作用[J].西安交通大学学报:医学版,2009,30(3):366-369.
    [41] Wu H, Ren B, Zhu J, et al. Pretreatment with recombined human erythropoietin attenuates ischemia-reperfusion-induced lung injury in rats. Eur J Cardiothorac Surg, 2006, 29(6):902-907.
    [42] Wu H, Dong G, Liu H, et al. Erythropoietin attenuates ischemia-reperfusion induced lung injury by inhibiting tumor necrosis factor-alpha and matrix metalloproteinase-9 expression. Eur J Pharmacol, 2009, 602(2-3):406-412.
    [43]王晓蕾,薛辛东.重组人促红细胞生成素对新生鼠慢性高氧肺损伤防治的作用[J].实用儿科临床杂志,2007,22(2):93-95.
    [44] Guneli E, Cavdar Z, Islekel H, et al. Erythropoietin protects the intestine against ischemia/ reperfusion injury in rats. Mol Med, 2007, 13(9-10):509-517.
    [45] Mori S, Sawada T, Okada T, et al. Erythropoietin and its derivative protect the intestine from severe ischemia/reperfusion injury in the rat. Surgery, 2008, 143(4):556-565.
    [46] Sayan H, Ozacmak VH, Sen F, et al. Pharmacological preconditioning with erythropoietin reduces ischemia-reperfusion injury in the small intestine of rats. Life Sci, 2009, 84(11-12):364-371.
    [47]冯亚高,邓素雅,胡敏,等.促红细胞生成素预处理对肢体缺血再灌注损伤的影响[J].中国临床康复,2006,10(32):78-80,i0002.
    [48]刘亚,蔡锦方,李振贵.重组人促红细胞生成素对骨骼肌缺血再灌注损伤的保护作用[J].中国矫形外科杂志,2005,13(21):1656-1658.
    [49] Ergur BU, Kiray M, Pekcetin C, et al. Protective effect of erythropoietinpretreatment in testicular ischemia-reperfusion injury in rats. J Pediatr Surg, 2008, 43(4):722-728.
    [50] Karaca M, Odabasoglu F, Kumtepe Y, et al. Protective effects of erythropoietin on ischemia/reperfusion injury of rat ovary. Eur J Obstet Gynecol Reprod Biol, 2009, 144(2):157-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700