用户名: 密码: 验证码:
GmDREB1基因转化苜蓿及三种转基因苜蓿种子耐盐生理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高盐是限制牧草生产的重要环境因素。我国的1亿公顷耕地中有667万公顷盐渍化土壤,另有0.3亿公顷盐碱荒地,其中吉林省西部地区是我国重要的牧草产区,也是我国土地盐碱化最严重的地区之一。近几十年来,由于气候变化和高强度的人类活动的影响,该区土地盐碱化面积不断扩展、程度不断加剧。相关资料显示,盐碱灾害使得吉林省西部某些地区豆科牧草几乎绝迹,而盐生植物却迅速发展。
     紫花苜蓿是重要的豆科牧草,其自身具中度耐盐性,更兼应用植物基因工程技术方法对紫花苜蓿进行特异性遗传改良,使其适应盐碱化的土地,对改良吉林省西部植被现状以及合理开发利用盐碱土地有着重要的现实意义。
     本研究主要分以下两个部分的实验:
     第一部分实验以含有pBIGmDREB1质粒(含目的基因GmDREB1)的根癌农杆菌LBA4404感染公农1号紫花苜蓿的初生真叶,并通过一系列植物组织培养操作,获得含有GmDREB1基因的耐盐性紫花苜蓿。经卡那霉素初步筛选和PCR检测,得到阳性转GmDREB1基因植株119株;对其中4个PCR阳性株系进行Southern Blot杂交显影检测,进一步证明目的基因已经成功转入苜蓿基因组中。同时,我们对转SsNHX1基因、转SsNHX1-PDH45基因双元载体基因和转GmDREB1基因的阳性成活植株进行田间移栽,并对转SsNHX1基因植株进行了扩繁。最终得到SsNHX1转基因阳性植株116株,SsNHX1-PDH45转基因阳性植株112株和转GmDREB1基因阳性植株75株,并获得三种转基因植株的T1代种子。
     第二部分实验以三种转基因苜蓿种子(转SsNHX1基因、转SsNHX1-PDH45双元基因和转GmDREB1基因)和公农1号紫花苜蓿种子为材料,研究了不同基因型对紫花苜蓿种子在5个不同盐浓度梯度(0mM, 100mM, 200mM, 300mM, 400mM)胁迫下发芽及幼苗素质的影响。结果表明,在200-400mM浓度范围内,转基因苜蓿种子的发芽势、发芽率、发芽指数、活力指数、根重和鲜重等指标均显著高于非转基因植株(p<0.05),而三种转基因种子之间并未出现显著差异。最终得出结论:三种外源基因在转基因苜蓿种子发芽期间进行了表达,转基因植株与对照相比表现出了显著的耐盐性。
     本研究通过将GmDREB1基因转入苜蓿,经PCR和Southern Blot检测得到转基因阳性植株;并将本实验室所获得的三种转基因苜蓿进行田间移栽和扩繁,最终获得大量的转基因苜蓿T1代种子。另外,T1代种子的发芽试验证实了三种转基因植株的耐盐性与对照相比有着显著的耐盐性。这为进一步为转基因苜蓿大面积种植与盐碱地的可行性提供了理论依据。
High salinity is one of the most important environmental limiting factors of forage growth and productivity. There is 100 million ha of arable land in China, of which 6.67 million ha is saline land, and another 0.3 million hectares of saline-alkali wasteland. Grassland in the western of Jilin Province is an important forage producing area, but also one of the most serious saline-alkali lands in China. In recent decades, with the impact of climate change and increasement of intensive human activities, the area of saline-alkali soil and the degree of saline-alkali have grown constantly. Relevant data shows that leguminous grass has almost completely disappeared in some of this region, while the halophytes have been developing rapidly.
     Alfalfa (Medicago sativa L.), an important leguminous forage plant, has a certain degree of salt tolerance. It is a highly significant way to improve vegetation of Western Jilin, develop and utilize saline-alkali land resources rationally by using plant genetic engineering technique to make specific genetic improvement of alfalfa and to adapt saline-alkali conditions.
     This study mainly consists of two parts as follows:
     Part one: The first true leaves of Alfalfa as recipient were infected by Agrobacterium tumefaciens strain LBA4404 which was transformed by pBI121 with GmDREB1 gene, Callus inducted from transgenic leaves were used for plant tissue culture operation with antibiotics (Kan) resistance including differentiation, rooting, and seedlings. Then PCR were used to analyze transgenic alfalfa plants, and the results showed that 119 individual plants were positive. Three kinds of transgenic plants harboring SsNHX1 gene, SsNHX1-PDH45 double gene and GmDREB1 gene were transplanted on Stud-farm, Changling Country, Jilin Province on May 1st, 2009. Among them, the transgenic plants harboring SsNHX1 gene were propagated by cutting and layering methods. In conclusion, 116 transformants with SsNHX1 gene, 112 transformants with SsNHX1-PDH45 double gene and 75 transformants with GmDREB1 gene were obtained, and the seeds were harvested.
     Part two: Seeds from three transgenic alfalfa transformants with SsNHX1 gene, SsNHX1-PDH45 double gene and transformants with GmDREB1 gene, and Gongnong-1 alfalfa seeds were used to investigate the effects of germination and growth under different gradient of NaCl conditions (0mM, 100mM, 200mM, 300mM and 400mM). By statistical analysis, results showed that the germinating potentiality, germinating rate, germination index, vigor index, root natural weight and nature fresh weight in three transgenic alfalfa seeds were significantly higher than these in Gongnong-1 seeds(p<0.05) with the concentration at 200-400 mM. The final conclusion was that: The integration and expression of stress-resistant genes gave salt resistance of transgenic alfalfa.
     This research transferred GmDREB1 gene into alfalfa tested by PCR and transgenic plants were obtained. Three transgenic alfalfa were transplanted in field and propagated by cutting and layering. Mass of T1 seeds from transformants were obtained. Salt tolerance assays of three transgenic alfalfa T1 seeds and Gongnong-1 seeds demonstrated that the salt tolerance of transgenic alfalfa T1 seed had an obvious progress compared with the control. It provides the theoretical basis for further research on feasibility of planting in large areas of saline-alkaline land.
引文
[1]李彬,王志春,孙志高等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究, 2005, 23(6): 154-158.
    [2]章光新,杨建锋,刘强.吉林西部农业生态环境问题及对策[J].生态环境2004, l3(2): 290-292.
    [3]田瑞娟,杨静慧,梁国鲁等.不同品种紫花苜蓿耐盐性研究[J].西南农业大学学报(自然科学版)2006, 28(6):933-936.
    [4]Rana Munns and Mark Tester. Mechanisms of Salinity Tolerance [J]. Annu.Rev.Plant Biol. 2008, 59: 651-681.
    [5]朱玉贤,李毅.现代分子生物学(第二版)[M].北京:高等教育出版社, 2002.
    [6]王福兰.拟南芥rd29A启动子驱动的BADH基因植物表达载体的构建及其转化烟草的研究[D].兰州:甘肃农业大学, 2008.
    [7]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径[J].中国生物工程杂志, 2003, 23(1): 1-5.
    [8]K.Kálai, A.Mészáros, F.Dénes, et al. Comparative study of constitutive and inducible promoters in tobacco[J]. South African Journal of Botany, 2008, 74: 313–319.
    [9]T.J.V.Higgins, Donald Spencer. The expression of a chimeric cauliflower mosaic virus (CaMV-35S)-pea vicilin gene in tobacco[J]. Plant Science, 1991, 74(1): 89-98.
    [10]Iván Stefanova, Sándor Feketeb, LászlóB?gre, et al. Differential activity of the mannopine synthase and the CaMV 35S promoters during development of transgenic rapeseed plants[J]. Plant Science, 1994, 95(2): 175-186.
    [11]Yamaguchi S K and Shinozaki K. Charaeterization of the expression of a desiccation responsive Rd29A gene of ArabieloPsis thaliana Andanalysis of its Promoter in Transgenic Plants[J]. Molecular Gen Genet, 1993, 236(2-3): 331-340.
    [12]吴琼.农杆菌介导rd29A启动子驱动AVP1基因转化匍匐翦股颖的研究(硕士学位论文)[D].杭州:浙江大学, 2007.
    [13]Delauncy A J, Verma D P S. A soybean gene enconding△1 -pyrroline-5-carboxylatereductase gene was isolated by functional complementation in Escherichia coli and is found to be osmoregulated[J]. Mol Gen Genet, 1990, 221: 299-305.
    [14]Kazuo Shinozaki Kazuo, Yamagnchi-Shinozaki. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,orhigh-salt stress[J]. The Plant Cell, 1994, 6: 251-264.
    [15]李新玲,杨传平等. rd29A启动子的克隆及提高烟草抗逆性的研究[J].分子植物育种, 2007, 5(1): 37-42.
    [16]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报, 2000, 45(14): 1465-1474.
    [17]Yamaguchi-Shinozaki K.and Shinozaki K. Arabidopsis DNA encoding two desiccation-responsive rd29 genes[J]. Plant Physiol, 1993, 101: 1119-1120.
    [18]Liu Qiang, Li Jin, Zhang Gui you, et al. Isolation of cDNAs Enconding Two Distinct Transcription Factors Binding to DREcis-acting Element Involved in Cold-and drought-induced Expression of Arabidopsis rd29A Gene[J]. Tsinghua Science and Technology, 1999, 4(3): 256-260.
    [19]Zhao JS, Ren W, Zhi DY, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress[J]. Plant Cell Rep, 2007, 6(9): 1521–1528.
    [20]Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt and freezing tolerance by gene transferof a single stress-inducible transcription factor. Nat Biotechnol, 1999, 17: 287-291.
    [21]吕慧颖,李银心,孔凡江等.植物Na+/H+逆向转运蛋白研究进展[J].植物学通报, 2003, 20(3):363-369.
    [22]Brett C L, Donowitz M, Rao R. The evolutionary origins of eukaryotic sodium/proton exchangers[J].American Journal of Physiology-Cell Physiology, 2005, 288: C223-C239
    [23]Pardo J M, Cubero B, Leidi E O, et al. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance[J]. Journal of Experimental Botany, 2006, 57(5): 1181-1199.
    [24]刘佳,崔继哲,付畅.植物Na+/H+逆向转运蛋白NHX及其生物学功能[J].科技通报, 2008, 24(6): 785-791.
    [25]Timothy J. Flowers, Timothy D.Colmer. Salinity tolerance in halophytes[J]. New Phytologist, 2008: 945-963.
    [26]岳晓翔.不同表型盐地碱蓬叶片抗氧化系统的研究[D].济南:山东师范大学, 2008.
    [27]Zhang L., Ma XL.,Zhang Q, et al. Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library [J]. Gene, 2001, 267: 193-200.
    [28]Weihuan Li, et al. Salt Tolerance is Conferred in Arabidopsis by Overexpression of the Vacuolar Na (+)/H (+) Antiporter Gene SsNHX2, an Alternative Splicing Variant of SsNHX1, from Suaeda salsa[J]. Plant Biol, 2009, 52: 147–153.
    [29]Ma XL, Zhang Q, Shi HZ,et al. Molecular Cloning and Different Expression of a Vaculor Na+/H+ Antiporter Gene in Suaeda salsa Under Salt Stress[J]. Biologia Plantarum, 2004, 48: 219-225.
    [30]马秀灵.盐地碱蓬SsNHX1基因的克隆及转基因拟南芥的培育(博士毕业论文).山东师范大学, 2002.
    [31]初立业,邵宏波,李茂言.高等植物中的DNA解旋酶[J].重庆邮电学院学报(自然科学版), 2005, 17(4): 511-515.
    [32]Tanner NK, Cordin O, Banroques J, et al. The Q motif: a newly identified motif in DEAD-box helicases may regulate ATP binding and hydrolysis[J]. Mol Cell, 2003, 11: 127-138.
    [33]Vashisht A, Tuteja N. Stressresponsive DEAD-boxheli- cases: a new pathway to engineer plant stress tolerance[J]. Journal of Photochemistry and Photobiology B, 2006, 84: 150-60.
    [34]AA Vashisht, A Pradhan, R Tuteja, et al. Cold and salinity stress-induced pea bipolar pea DNA helicase 47 is involved in protein synthesis and stimulatedby phosphorylation with protein kinase C[J]. The Plant Journal, 2005, 44: 76-87.
    [35]Sanan-Mishra N, Pham XH, Sopory SK, et al. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance with out affecting yield[J]. Proc Natl Acad Sci USA, 2005, 102: 509-14.
    [36]刘琦,武晓东,郭金良等. DREB转录因子及其在大豆中的应用[J].大豆科技, 2008, 04: 23-25.
    [37]王平荣,邓晓建,高晓玲等. DREB转录因子研究进展[J].遗传,2006 ,28 (3): 369-374.
    [38]Stockinger EJ, Gilmour SJ, Thomashow MF (1997). Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNAregulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 94: 1035–1040.
    [39]李洁.植物转录因子与基因调控[J].生物学通报, 2004, 39(3): 9-11.
    [40]Li XP, Tian AG, Luo GZ, et al. Soybean DRE-binding transcription factors that are responsive to abiotic stress. Thero Appl Genet, 2005, 110: 1355–1362.
    [41]Chen M, Wang QY, Cheng XG, et al. GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun, 2007, 353: 299–305.
    [42]Chen M, Xu ZS, Xia LQ, et al. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). J Exp Bot 2009, 60: 121–135.
    [43]王忠.植物生理学[M].北京:中国农业出版社, 2000.
    [44]王丽萍,崔美香,孟艳玲. NaCl胁迫对黄瓜幼苗生长及抗氧化系统的影响[J].西北农业学报, 2007, 16 (4): 170-173.
    [45]潘瑞炽.植物生理学(第四版) [M].北京:高等教育出版社, 2001.
    [46]武维华.植物生理学[M].北京:科学出版社, 2003.
    [47]Mano Y, Takahashi H, Sato K, et a1.Mapping genes for growth and shoot regeneration in barley(Hordeum vulgare L.). Breeding Science, 1996, 46: 137-142.
    [48]H.Greenway and R.Munns. Mechanisms of salt tolerance in non-halophytes[I]. Ann.Rev. Plant Physia1, 1980, 31: 149-190.
    [49]辛惠卿,霍俊伟.环境胁迫对果树光合作用的影响[J].东北农业大学学报, 2008, 39(9): 130-135.
    [50]郭艳茹,詹亚光.植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学, 2006(1): 66-70.
    [51]Hanson AD, Rath inasabapathi B, Rivoal J, et al. Osmoprotective compounds in the Plumbaginaceae:a natural experiment inmetabolic engineering of stress tolerance[J]. Proc Natl Acad Sci USA, 1994, 91: 306-310.
    [52]赵可夫,李法曾.中国盐生植物[M].北京:科学技术出版社, 1999, 48-62.
    [53]张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998, 40(1): 56-57.
    [54]卢青.植物耐盐性的分子生物学研究进展[J].生物学杂志, 2000, 17(4): 9-11.
    [55]Kishor PBK, Hong Z , Mian GH. Overexpression of△’- pyrroline- 5 - carboxylate synthetase increases proline production and confers osmotolerance in trangeic plants[J]. Plant Physiol, 1995, 108: 1387-1394.
    [56]郝治安,吕有军.植物耐盐机制研究进展[J].河南农业科学, 2004, 11: 30-33.
    [57]李妍,张秀玲,郑世英等.植物耐盐基因工程及前景[J].现代农业科技, 2007(3): 99-101.
    [58]Liang Z, Ma D, Tang L, et al. Expression of the spinach betaine aldehdye dehdyrogenase (BADH) gene in transgenic tobacco plants.Chin J Biotechnol, 1997, 13 (3): 153-159.
    [59]D Xu, X Duan, B Wang, et al. Expreesion of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiol, 1987, 85: 529-536.
    [60]Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells[J]. Biochim Biophys Acta, 2000, 1465: 140-151.
    [61]Xiang Y, Huang YM, Xiong L Z. Characterization of stress-responsive CIPK genes in rice for stress tolerance imp rovement[J]. Plant Physiology, 2007, 144: 1416-1428.
    [62]Taicheng Jin, Qing Chang, Wangfeng Li, et al. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa[J]. Plant Cell Tiss Organ Cult, 2010, 100: 219-227.
    [63]殷东旭. SsNHXI和PDH45基因在苜蓿中的表达及耐盐性研究(硕士学位论文)[D].长春:东北师范大学,2009.
    [64]常青.转录因子DREB1基因的克隆及其在大豆和苜蓿中的表达(硕士学位论文)[D].长春:东北师范大学, 2007.
    [65]王建伟,贾文庆.盐分胁迫下紫花苜蓿种子发芽特性的研究[J].浙江农业科学, 2008, 2: 178-180.
    [66]国际种子检验协会(ISTA).国际种子检验规程[M].北京:中国农业出版社, 1999.
    [67]Pegah Moradi Dezfuli, Farzad Sharif-zadeh and Mohsen Janmohammadi. Influence of priming technique on seed germination behavior of maize inbred lines [J]. ARPN Journal of Agricultural and Biological Science, 2008, 3(3): 22-25.
    [68]Shahin E A, Spielmann A, Sukhapinda K. Transformation of cultivated alfalfa using disarmed Agrobacterium-tumefaciens[J]. Crop Sci, 1986, 26: 1235-1239.
    [69]李望丰,金太成,常青等.根癌农杆菌介导的苜蓿遗传转化体系的建立[J].牧草与饲料, 2008, 2(1): 29-32.
    [70]申玉华.苜蓿转化体系的建立方法研究[J].赤峰学院学报(自然科学版), 2007, 23(1): 56-57.
    [71]毛雅妮,孙娟,张德罡等.苜蓿组织培养研究进展[J].草业科学, 2009, 26(9): 146-155.
    [72]王永,李全红,司志国.组培苗采用一步练苗法定植试验[J].河南林业科技, 2003, 23(4): 4 .
    [73]王玉民,刘艳芝,王中伟等.我国苜蓿耐盐性研究现状及评述[J].吉林农业科学, 2005, 30(6): 47-49.
    [74]耿华珠,李聪,李茂森.苜蓿耐盐性鉴定初报[J].中国草地, 1990, 2: 69.
    [75]韩清芳,李崇巍,贾志宽.不同苜蓿品种种子萌发期耐盐性的研究[J].西北植物学报, 2003, 23(4): 597-602.
    [76]王榕楷,丁小球.三种草坪草的耐寒性及其与超氧化物歧化酶作用关系初步研究[J].中国草地, 2001, 23(1): 46-49.
    [77]龚明,刘友良,丁念诚等.大麦不同生育期的耐盐性差异[J].西北植物学报, 1994, l4(1): 1-7.
    [78]田吉林,杨玉爱,何玉科.转HAL1基因番茄的耐盐性[J].植物生理与分子生物学学报, 2003, 29(5): 409-414.
    [79]刘勤燕,王征兵.科学认识农业转基因技术和传统育种技术[J].河北农业科学, 2008, 12(2):82-85.
    [80]Budar F, Thia Toong L, Van Montagu M, et al. Agrobacterium mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single mendielian factor[J]. Genetics, 1986, 114: 303-313.
    [81]燕丽萍,夏阳,梁慧敏.卡那霉素叶片涂抹法田间筛选转基因苜蓿的研究[J].中国农学通报, 2009, 14: 22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700