用户名: 密码: 验证码:
苏云金芽孢杆菌Cry蛋白分离纯化及其增效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鳞翅目害虫棉铃虫(Helicoverpa armigera)、甜菜夜蛾(Spodoptera exigua)、玉米螟(Ostrina furnacalis)、大豆食心虫(Leguminivora glycintvorella)是农业上的重要害虫,近年来棉铃虫和甜菜夜蛾在田间对化学农药的抗药性上升较快,而玉米螟和大豆食心虫属钻蛀型害虫,使用传统的方法已难以达到良好的防治效果。用苏云金芽孢杆菌杀虫晶体蛋白(ICP)来防治棉铃虫、甜菜夜蛾、玉米螟已有许多报道,但主要都是选用Cry1Ac、Cry1Ab灿作为杀虫蛋白,种类单一,害虫易产生抗性;大豆食心虫是我国北方发生较为严重的害虫,它的为害,直接影响大豆的品质和产量,国内外尚未见对此类害虫有活性的Bt的正式报道,因此选用Bt来防治大豆食心虫将具有很大的市场潜力。本论文针对这些重要的害虫从Bt资源中筛选新的高效Cry蛋白及不同的Cry蛋白组合,对于构建高毒力、广谱、延缓害虫抗药性的新一带工程菌和转基因植物都将具有重要的理论和实践意义。
     本研究在分离纯化Bt Cry蛋白的基础上,研究了Cry1Ac、Cry1Ca7、Cry1Cb2、Cry1Ia8、Cry1Ie1和Cry2Ab4六种蛋白酶解情况和杀虫活性分析,包括各原毒素、毒素蛋白单独及两两正交组合,对棉铃虫、甜菜夜蛾、玉米螟、大豆食心虫的毒力,并寻找到对上述害虫高毒力的Bt Cry蛋白和协同增效蛋白组合。
     1.Bt Cry蛋白特性的研究
     分析比较了在E.coli表达的Cry1Ca7、Cry1Cb2、Cry1Ia8、Cry1Ie1、Cry2Ab4蛋白和标准菌株Cry1Ac(HD-73)蛋白的溶解性、trypsin的消化作用及各自受体菌的生长速率。
     通过SDS-PAGE分析发现Cry1Ca7、Cry1Cb2、Cry1Ia8、Cry1Ie1、Cry2Ab4和Cry1Ac原毒素及毒素在50mM Na_2CO_3(pH=10.0)中的溶解度大于在20mM乙醇胺(pH=10.0)中的溶解度。Cry蛋白溶解度的高低直接影响分离纯化的得率,以及最终的数据分析,从而影响Cry蛋白的毒力。
     Trypsin是昆虫体内存在的一种蛋白水解酶,它对Cry蛋白的作用结果关系到Cry蛋白毒性的发挥。本论文研究了Cry1Ca7、Cry1Cb2、Cry1Ia8、Cry1Iel、Cry2Ab4和Cry1Ac在50mM Na_2CO_3和20mM乙醇胺(pH=10.0)溶液中被trypsin消化的情况,结果表明只有在适当的浓度下Cry蛋白才会降解成毒素,若trypsin浓度过高,Cry蛋白有可能完全降解。在trypsin:Cry蛋白=1:50时,Cry1Ca7、Cry1Ia8经trypsin消化得到约55kDa大小的多肽。Cry1Cb2,Cry1Iel、Cry2Ab4蛋白酶解得到57kDa的片段,其中Cry1Ia8和Cry1Iel蛋白的trypsin酶解分析研究国内外尚无正式报道。而Cry1Ac经trypsin处理后约
    
     乐北衣业大学硕土论文 苏云金芽抱杆菌Cry蛋白分离纯化及其增效研究
    为6皿Da的多肽,与前人报追相符。这几种蛋白在50血MNZ*0。和20mM乙醇胺
    (pH—10、0)溶液中消化的结果相同,只是在20mM乙醇胺(pH=100)$液中梢化后的
    得率相对低一些。
     在LB液体培养基中,这儿株菌株的生长速率均较受体菌BLZI(DE3)慢,可能由于了
    外源基因的大量表达影响了受体菌的正常生长发育。在加入诱导剂 IPTG Zhrs后,这几株
    菌株先后进入对数生长期,其顺序为 CylCa7、CIy1CbZ、Cryllel、Cryllas,最迟进入
    对数生长期的是 CryZAb4,并分别于 12、16、16、16、20hrs进人稳定生长期。而 Bt菌
    株HD.刀是在生长4小时后进入对数生长期,!2小时后进入稳定生长期。
    2·*【Cr)、蛋白分离纯化的研究
     研究了 Bt菌株和在Ecoli中 Bt Cry蛋白的提取时机,先后分离纯化了印·ICa7。
    Crymm、*nlla巳*nnel、吐2汕4蛋白和标准菌株*ilAc(*D一刀)蛋白,研究
    表明在 ECCll中表达的蛋白均在培养 lershrs含量达到最高,CylAC晶体蛋白则是在培养
    28~32hrs达到最高c将这几种蛋白经 FPLC纯化并进行了活性分析表明 CylAc在 sedml
    处的洗脱峰活性较高,而在CO,基因ECOli中表达产物则是在IDellnd处有较高的活性。
    3、Bt Cr)蛋白对棉铃虫幼虫毒性的研究
     将上述 6种 Cy蛋白对棉铃虫进行初筛和两两正交组合的复筛.结果表明 CylAc和
    CnZAb4对棉铃虫的毒性较强,LC。。分别为刀.sug/thl和415ghl;Cy1Ac+Cn·ZAb4组
    合的LC。;;为48.7twml,两者的共毒系数(C。TC)为121,具有一定的增效作用。其余
    毒素对棉铃虫毒力的强弱依次是 Cryllel、Cryllas、CylCa7、CrylCbZ,这几种蛋白的
    组合对棉铃虫没有增效作用。
    4·Bt Cr3蛋白对玉米螟幼虫毒性的研究
     将上述 6种 Cy蛋白对玉米螟进行初筛和两两正交组合的复筛,结果表明q、IAC。
    Cn,Ilas。Cn,Ilel对玉米螟有很强的活性,将这三种蛋白进行正交组合对玉米螟进行生测,
    发现k,IAc与C口llel、Cfl,ilas分别有明显增效作用、相加作用,用校正死亡率进行
    SAS分析 C。IAc、C。·ilas、Cn,Ilel、CrvlAc+Cryllel、CrylAc+Cryllas的 LC。。分别
    为:0,134、0500、0二23、0046、of98wi。CylAc+Cry·Ilel和 CrvlAC+Cryllas蛋白组
    合有显著的增效作用,CTC.分别为 409和 106,在 LC。、LC。。水平 CylAC的毒力最
    高。这些研究结果说明了CrylAc、Cryrllel、Cry,IAdellel以及CrvlAc+Cryllas蛋白
    组合对玉米螟有很强的杀虫活性,它们完?
Lepidoptera pests, such as cotton boll worm, beet army worm, and com borer worm, were very harmful to many crops and vegetables. Recently, resistance of cotton boll worm and beet army worm for chemicals was increasing quickly in the field, and it was very hard to control some pest by traditional methods. Leguminivora glycinivorella was the most important pest for soybean in north of China. But no formal report involved in the biocontrol using Bt
    Bt, the best microbial insecticide, has been reported for control of cotton boll worm, beet worm, but the narrow choice of cry genes, for instance only crylAb or cry1 Ac, may induce the pest resistance.
    In this study , different Cry protein expressed in E.coli. and the combinations between Cry proteins were screened against mentioned pests. It was very significant for construction of novel genetically engineered bacteria and transgenic plant for insect pest biocontrol.
    1. Biological characteristics of Bt Cry protein
    The solubility, digestion of Cry protein with trypsin and growth speed of E.coli. strain were researched respectively.
    The solubility of CrylCa7, CrylCb2, Crylla8, CrylIe1, Cry2Ab4 proteins, expressed in E.coli. strains, and CrylAc from HD-73 strain were demonstrated that they were more soluble in Na2CO3 than in Ethanoloanmine by SDS-PAGE analysis.
    Trypsin, the hydrdytic enzyme of insects, was crucial for digestion and toxicity of Cry protein. After reaction 6hrs, all the Cry protein were digested, and 55kDa proteins were obtain from CrylCa7 and Crylla8, 57kDa fragment were from CrylCb2, Cryllel and Cry2Ab4, but the 60kDa, peptide was maintained from CrylAc. If the concentration and reaction time were much more , all the Cry protein were degraded completely.
    It was the first report of the digestion of Cryllel and CrylIa8 in the LB broth, the growth speed of all the E.coli. strains harboring the recombinant plasmids inserted cry gene, were slower than their host BL21. The over expression of cry gene maybe affect on the growth and development of host cell.
    2. Purification of Bt Cry proteins
    Expression time of cry protein in Ecoli strain was investigated. After induction by IPTG, 4~6hrs, the accumulation of Cry protein was the most, but prodution of CrylAc from HD-73 strain was the most after 28~32hrs. The result of FPLC showed that all of protoxins and toxins activated by tryspin could be well purified using elutin buffer at pH9.5
    
    
    3. Bioassay of Cry protein against cotton boll worm larvae
    The bioassay result demonstrated that Cry 1 Ac and Cry2Ab4were higher toxicity than other four Cry proteins, and LC50 was 31.5ug/ml and 415ug/ml respectively. Furthermore, the co-toxicity coefficient of Cry lac and Cry2Ab4 combination was 121% according to the LC50 48.7ug/ml of protein combination. It was means that Cry 1 Ac and Cry2Ab4, but other four Cry toxin, could synergize each other.
    4. Bioassay of Cry protein against corn borer worm larvae
    The result of bioassay indicated that Cry1Ac, Crylla8 and CrylIe1 were high toxicity, and the combination between the three protein, illustrated that CrylIe1+CrylAc combination were synergistic against corn borer worm larvae. LC50 of Cry1Ac, CrylIa8, CrylIe1, CrylAc+CrylIe1 and CrylAc+CrylIa8 was 0.134, 0.500, 0.223, 0.046, and 0.198ug/g respectively. Cotoxicity coefficients of CrylIe1+CrylAc and Crylla8+CrylAc were 409 and 106 separately. Cry1Ac was the highest among the Cry protein on the level of LC90 and LC95. Those bioassay results showed that CrylAc+CrylIe1 combination could be used for construction of engineered bacteria and transgenic plant, and meanwhile Cry1Ac as an enhancer protein could be combinated with other Cry protein for Insecticidal research.
    5. Bioassay of Cry protein against beet army worm larvae
    The larvae could be inhibited by all the Cry protein, and Cry1Ac and CrylCa7 combination was more toxic.
    6. Bioassay of Cry protein against Leguminivora glycinivorella larvae
    The result of bioassay of Cry protein to Leguminivora glycinivorella larvae, by two time select
引文
1.郭三堆等.携带编码杀虫蛋白质融合基因的表达载体及其转基因植物.A01N63/02 CN 95113498.1A.
    2.黄大昉、林敏等,农业微生物基因工程.863生物高技术丛书.科学出版社,2001
    3.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯 著 金冬雁 等译.分子克隆实验指南,1992,第二版,科学出版社.
    4.R.M.坎普,B.威特曼-利伯德,T.乔里-帕帕多普洛 著,施蕴渝 等译.蛋白质结构分析、制备、鉴定与微量测序,2000,第二版,科学出版社。
    5.喻子牛 主编,苏云金杆菌,1990,科学出版社。
    6.章士美,赵泳祥.中国农林昆虫地理分布.北京.农业出片社.1996.260-161
    7.左雅慧等,几种Bt培养基的筛选和晶体蛋白纯化方法初探,植物保护,1999,25(3),31-31。
    8.张杰.博士学位论文 中国农业科学院研究生院.2000.
    9. Agaisse, H., and D. Lereclus. How does Bacillus thuringiensis produce so much insecticidal crystal protein J. Bacteriol. 1995. 177:6027-6032.
    10. Algimantas P. Valaitis, Jeremy L. Jenkins, Mi Kyong Lee, Donald H. Dean, and Karen J. Garner. Isolation partial characterization of gypsy moth btr-270,an anionic brush border membrane glycoconjugate that binds bacillus thuringiensis Cry 1A toxins with high affinity. Archives of insect biochemistry and Physiology. 2001. 46:186-200
    11. Angsuthanasombat, C., N. Crickmore, and D. J. Ellar. Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol. Lett. 1992. 94:63-68.
    12. Aronson, A. I., E.-S, Han, W. McGaughey, and D. Johnson. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl. Environ. Microbiol. 1991. 57:981-986.
    13. Barloy, F., A. Dele'cluse, L. Nicolas, and M.-M. Lecadet. Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp, malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins. J, Bacteriol. 1996.178:3099-3105.
    14. Barloy, F.; Lecadet, M.M.; Delecluse,A. Cloning and sequencing of three new putative toxin genes from Clostridium bifermentans CH18. 1998. Gene. 211:293-295
    15. Barton, K. A., H. R. Whiteley, and N.-S. Yang. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 1987. 85:1103-1109.
    16. Baum, J. A., and T. Malvar, Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol. 1995.18:1-12.
    17. Beegle, C. C., and T. Yamamoto. History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 1992. 124:587-616.
    18. Bernhard, K. Studies on the delta-endotoxin of Bacillus thuringiensis var. tenebrionis. FEMS Microbiol. Lett. 1986.33:261-265.
    
    
    19. Bietlot, H. P., I. Vishnubhatla, P. R. Carey, M. Pozsgay, and H. Kaplan. Characterization of the cysteine residues and disulfide linkages in the protein crystal of Bacillus thuringiensis. Biochem. J. 1990. 267:309-316.
    20. Bradley, D., M, A. Harkey, M.-K. Kim, D. Biever, and L. S. Bauer. The insecticidal CryIB protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J. Invertebr. Pathol. 1995.65:162-173.
    21. Brizzard, B. L., and H. R. Whiteley. Nucleotide sequence of an additional crystal protein gene cloned from Bacillus thuringiensis subsp. thuringiensis. Nucleic Acids Res. 1988.16:2723-2724.
    22. Brown, K. L., and H. R. Whiteley. Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J. Bacteriol. 1990. 172:6682-6688.
    23. Brown, K. L., and H. R. Whiteley. Molecular characterization of two novel crystal protein genes from Bacillus thuringiensis subsp. thompsoni. J. Bacteriol. 1992. 174:549-557.
    24. Bulla L A, Kramer JJ, and Davidson L I. Caracterization of the entomocidal parasporal crystal off Bacillus thuringienssis [J]. J Bacteriol, 1977, 130:375-383.
    25. Calabrese D M, Nickerson K W, Lane L C. A Comparoson of protein crystal subunit sizes in Bacillus thuringiensis. Can J Microbiol. 1980.26:1006~1010
    26. Chakrabarti, S. K., Mandaokar, A., Kumar, P. A., Sharma, R. P. Efficacy of lepidopteran specific delta-endotoxins of Bacillus thuringiensis against helicoverpa armigera. J. Invertebr. Pathol. 1998. 72:336-337
    27. Chang, C., Y. M. Yu, S. M. Dai, S. K. Law, and S. S. Gill. High level cryIVD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl. Environ. Microbiol. 1993.59:815-821.
    28. Chilcott, C.N., and D. J. Ellar. Comparative study of Bacillus thuringiensis var. israelensis crystal protein in vivo and in vitro. J. Gen. Micro-biol. 1988. 134:2551-2558.
    29. Chen, X. J., M. K. Lee, and D. H. Dean. Site-directed mutations in a highly conserved region of Bacillus thuringiensis d-endotoxin affect inhibi-tion of short circuit current across Bombyx mori midguts. Proc. Natl. Acad. Sci. USA. 1993.90:9041-9045.
    30. Cheong, H., and S. S. Gill. Cloning and characterization of a cytolytic and mosquitocidal delta-endotoxin from Bacillus thuringiensis subsp, jegathesan. Appl. Environ. Microbiol. 1997. 63:3254-3260.
    31. Chestukhina, G. G., L. I. Kostina, A. L. Mikhailova, S. A. Tyurin, F. S. Klepikova, and V. M. Stepanov. The main features of Bacillus thu-ringtensis delta-endotoxin molecular structure. Arch. Microbiol. 1982. 132:159-162.
    32. Cboe, S., M. J. Bennett, G. Fujii, P. M. G. Curmi, K. A. Kantardjieff, R. J Collier, and D. Eisenberg. The crystal structure of diphtheria toxin. Nature. 1992. 357:216-222.
    33. Choma, C. T., W. K. Surewicz, P. R. Carey, M. Pozsgay, and H. Kaplan. Secondary structure of the entomocidal toxin from Bacillus thuringiensis subsp, kurstaki HD-73. J. Protein Chem. 1990. 9:87-94.
    
    
    34. Crickmore, N., Zeigler, D.R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J, Bravo, A. and Dean, D.H. "Bacillus thuringiensis toxin nomenclature" (2001.5) http://www.biols.susx.ac.uk/Home/Neil_Crickmore/Bt/index.html(date site accessed)
    35. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D. H. Dean. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 1998.62:807-813.
    36. De Souza, M. T., M.-M. Lecadet, and D. Lereclus. Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. J. Bacteriol. 1993. 175:2952-2960.
    37. Deiécluse, A., M.-L. Rosso, and A. Ragni. Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein. Appl. Environ. Microbiol. 1995. 61:4230-4235.
    38. Donovan, W. P., C. C. Dankocsik, M. P. Gilbert, W. C. Gawron-Burke, R. R. Groat, and B. C. Carlton. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. J. Biol. Chem. 1988.263:561-567. (Author's correction, 263:4740.)
    39. Donovan, W. P., C. Dankocsik, and M. P. Gilbert. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp, israelensis. J. Bacteriol. 1988. 170:4732-4738.
    40. Donovan, W. P., Dankocsik, C.C, Gilbert, M. P., Gawron-Burke, M, C., Groat, R. G., Carlton, B. C. Amino acid sequence and entomocidal activity of the P2 crystal protein. An insect toxin from Bacillus thuringiensis var. kurstaki. J Biol Chem 1989. 264(8):4740-4740
    41. Douce G. K., Mepherson R. M. Summar. Summary of losses from insect damage and cost of control in Georgia, 1989. Ga. Agric. Exp. Stn. Spec, Publ. 1991.70,
    42. Du, C., P. A. W. Martin, and K. W. Nickerson. Comparison of disulfide contents and solubility at alkaline pH of insecticidal and nonin-secticidal Bacillus thuringiensis protein crystals. Appl. Environ. Microbiol. 1994. 60:3847-3853.
    43. Ellar D J. Pathogenicity deter minants of entompatha-genic bacteria. Proc 5th Int Colloquimon Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20-24 August.
    43a. English L Slatin S.L. Mode of action of delta-endotoxins from Bacillus thuringiensis: a comparison with otherbacterial toxins. Insect Biol., 1992.22(1): 1-7
    43b. Estada U, Ferre J. Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border membrane of the cabbage looper, Trichoplusiani (Hubnera) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins, Appl. Environ. Microbiol., 1994. 60(10): 3840~3846.
    44. Estrueh,J.J., Warren, G.W., Mullins,M.A., Nye,G.J., Craig,J.A., Koziel,M.G. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc.Natl. Acad. Sci,U.S.A 1996. 93(11): 5389-5394
    45. Faust, R. M., Abe, K., Held, G. A., Lizuka, T., Bulla, L. A., Jr., and Meyers, C. L., Evidence for plasmid-associated crystal toxin production in Bacillus thuringiensis subsp, israelensis, Plasmid, 1983. 9:98-103
    
    
    46. Feitelson, J. S, J. Payne., and L. Kim. Bacillus thuringiensis: insects and beyond. Bio/Technology. 1992. 10:271-275.
    47. Fischhoff, D. A., K. S. Bowdisch, F. J. Perlak, P. G. Marrone, S. H. Mc-Cormick, J. G. Niedermeyer, D. A. Dean, K. Kusano-Kretzmer, E. J. Mayer,D. E. Rochester, S. G, Rogers, and R. T. Fraley. Insect tolerant transgenic tomato plants Bio/Technology 1987.5:807-813
    48. Foncerrada, L., A.J. Sick, and J. M. Payne. August 1992. European Patent Office no. EP 0498537
    49. Fujimoto, H., K. Itoh, M. Yamamoto, J. Kyozuka, and K. Shimamoto. Insect resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Bio/Technology. 1993. 11:1151-1155.
    50. Ge, A. Z., R. M. Pfister, and D. H. Dean. Hyperexpression of a Bacillus thuringiensis deltaendotoxin-encoding gene in Escherichia coli: properties of the product Gene 1990. 93:49-54.
    51. Gerber, D., Shai, Y. Insertion and organization within membranes of the delta-endotoxin pore- forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J.Biol. Chem 2000. 275(31): 23602-23607.
    52a. Gill S S, Cowles E A, Pietrantonio P V, The mode of action of Bacillus thuringiensis δ-endotoxins. Annu. Entomol.,1992.37: 615~636.
    52. Glatron, M. F., and G. Rapoport. Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie. 1972.54:1291-1301.
    53. Gleave, A. P., Williams, R.; Hedges,R.J. Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cry V-like insecticidal protein genes and characterization of a cryV gene cloned from B. thuringiensis subsp, kurstaki. Appl. Environ. Microbiol. 1993.59:1683-1687.
    54. Gonza'lez, J. M., Jr., H. T. Dulmage, and B. C. Carlton. Correlation between specific plasmids and d-endotoxin production in Bacillus thurin-giensis. Plasmid. 1981.5:351-365.
    55. Guerchicoff, A., R. U. Ugalde, and C. P. Rubinstein. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp, israelensis. Appl. Environ. Microbiol. 1997. 63:2716-2721.
    56. Gutierrez, P., Alzate,O., Orduz,S. A theoretical model of the tridimensional structure of Bacillus thuringiensis subsp, medellin Cry 11Bb toxin deduced by homology modeling. Mem. Inst. Oswaldo Cruz. 2001.96:357-364
    57. Herrnstadt, C., T. E. Gilroy, D. A. Sobieski, B. D. Bennett, and F. H. Gaertner. Nucleotide sequence and deduced amino acid sequence of a coleopteran-active delta-endotoxin gene from Bacillus thuringiensis subsp, san diego. Gene. 1987. 57:37-46.
    58. Hodgman, T. C., Y. Ziniu, J. Shen, and D. J. Ellar. Identification of a cryptic gene associated with an insertion sequence not previously identi-fied in Bacillus thuringiensis. FEMS Microbiol. Lett. 1993. 114:23-29.
    59. Hofmann, C., and P. Lu(?)thy. Binding and activity of Bacillus thuringiensis delta-endotoxin to invertebrate cells. Arch. Microbiol. 1986. 146:7-11.
    
    
    60. Hofmana, C., H. Vanderbruggen, H. H(?)fte, J. Van Rie, S. Jansens, and H. Van Mellaert. Specificity of Bacillus thuringiensis δ-endotoxins is cur-related with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA. 1988.85:7844-7848.
    61. Hofmann, C., P. Lu(?)thy, R. Hu(?)tter, and V. Pliska. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem 1988. 173:85-91.
    62. H(?)fte, H., and H. R. Whiteley. Insecticidal crystal proteins of Bacillus thuringiensis Microbiol. Rev. 1989.53:242-255.
    63. H(?)fte, H., P. Soetaert, S. Jansens, and M. Peferoen. Nucleotide sequence and deduced amino acid sequence of a new Lepidoptera-specific crystal protein gene from Bacillus thuringiensis. Nucleic Acids Res. 1990. 18:5545.
    64. Hunée, G., T. van der Salm, and B. Visser. Nuclcotide sequence of crystal protein gene isolated from B. thuringiensis subspecies entomocidus 60.5 coding for a toxin highly active against Spodoptera species. Nucleic Acids Res. 1988.16:6240.
    65. James,C. Global Status of Commercialized Transgcnic Crops: 2000. ISAAABriefs No.21. Ithaca, NY:ISAAA. 2000.
    66. Johnston, K. A., M. J. Lee, C. Brough, V. A. Hilder, A. M. R. Gatehouse, and J. A. Gatehouse. Protease activities in the larval midgut of Heliothis virescens: Evidence for trypsin and chymotrypsin-like enzymes. Insect Biochem Mol. Biol. 1995.25:375-383.
    67. Jurat-Fuentes, J. L.; Adang, M.d. Importance of Cry1 delta-endotoxin domain Ⅱ loops for binding specificity in Heliothis virescens (L.). Appl. Environ. Microbiol. 2001.67(1):323-329.
    68. Knowles B H, Blatt M R, Tester M, Horsnell J M, Carroll J, et al. Acytolytic δ-endotoxin from Bacillus thuringiensis var. is raelensis forms cation-selective channels in planarlipid bilayers. FEBS Lett, 1989. 244:259-62.
    69. Knowles B H, Ellar D J. Characterization and partial purification of a plasma membrne receptor for Bacillus thuringiensis var. kursttaki lepidopteran-specific δ-endotoxin. J Cell Sci, 1986.83:89-101.
    70. Koni, P. A., and D. J. Ellar. Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin. J. Mol. Biol. 1993. 229:319-327.
    71. Koziel, M. G., G. L. Beland, C. Bowman, N. B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPherson, M. R. Meghji, E. Merlin, R. Rhodes, G. W. Warren, M. Wright, and S. V, Evola. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology. 1993.11:194-200.
    72. Kuo, W.S.; Lin,J.H.; Tzeng,C.C.; Kao,S.S.; Chak, K. F. Cloning of two new cry genes from Bacillus thuringiensis subsp, wuhanensis strain. Curr. Microbiol. 2000.40: 227-232.
    73. Lambert, B., W. Theunis, R. Agouda, K. Van Audenhove, D. C., S. Jansens, J. Seurinek, and M. Peferoen. Nucleotide sequence of gene cryIIID encoding a novel coleopteran-active crystal protein from strain BTI109P of Bacillus thuringiensis subsp, kurstaki. Gene. 1992.110:131-132.
    
    
    74. Lecadet, M.-M., and R. Dedonder. Les prote 'ases de Pieris brassicae. I. Purification ct proprie 'te 's. Bull. Soc. Chim. Biol. 1966.48:631-660.
    75. Lee, C.-S., and A. I. Aronson. Cloning and analysis of delta-endotoxin genes from Bacillus thuringiensis subsp, alesti. J. Bacteriol. 1991. 173:6635-6638.
    76. Lereclus D., arantes O., Chaufaux J. and Lecadet M. M. Diversity of Bacillus thurmgiensis giensis toxin and genes. Bacillus thuringiensis, An Environmeatal Biopesticide: theory and practice [M]。Edited by P. F. Entwistle J.S. cory, M. J. Bailey and S. Higgs, 1993.
    77. Lereclus, D., H. Agaisse, M. Gominet, and J. Chaufaux. Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spOA mutant. Bio/Technology. 1995.13:67-71.
    78. Li, J., J. Carroll, and D. J. Ellar. Crystal structure of insecticide δ-endotoxin from Bacillus thuringiensis at 2.5 (?)resolution. Nature 1991. 353:815-821.
    79. Li, J., P. A. Koni, and D. J. Ellar. Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implica-tions for membrane pore formation, J. Mol. Biol. 1996. 257:129-152.
    80. Lu, H., F. Rajamohan, and D. H. Dean. Identification of amino acid residues of Bacillus thuringiensis δ-endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori. J. Bacteriol. 1994 176:5554-5559.
    81. Luo, K.; Banks, D.; Adang, M.J. Toxicity, binding, md permeability analyses of four bacillus thuringiensis cry1 delta-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl. Environ. Microbiol. 1999.65:457-464
    82. MacIntosh,S.C.; Stone,T.B.; Sims,S.R.; Hunst,P.L.; Greenplate,J.T.: Marrone,P.G.; Perlak, F.J.; Fischhoff, D.A.; Fuchs,R.L. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J.Invertebr. Pathol. 1990.56:258-266
    83. MacKinnon, R., and C. Miller. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking peptide inhibitor. Science. 1989. 245:1382-1385.
    84. Malvar, T., and J. A. Baum. Tn5401 disruption of the spoOF gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J. Bactedol. 1994. 176:4750-4753.
    85. Malvar, T., C. Gawron-Burke, and J. A. Baum. Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homolog, bypasses early Spo 2 mutations that result in CryIIIA overproduction. J. Bacteriol. 1994. 176:4742-4749.
    85a. Manker D C, Lidster W D, Strarnes R L, et al. Internatinal Patent Applicatin, 1994.WO94/09630.
    86. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau,R., Schwartz, J. L. Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel 1999. 274(45): 31996-32000.
    87. Michaels, T. E., K. E. Narva, and L. Foncerrada. August World Intellectual Property Organization patent 1993. WO 93/15206.
    88. Moar, W. J., M. Pusztai-Carey, H. van Faassen, D. Bosch, R. Frutos, C. Rang, K. Luo, and M. J. Adang. Development of Bacillus thuringtensis CryIC resistance by Spodoptera exigua (Hu(?)bner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 1995.61:2086-2092.
    
    
    89. Moran, C. P. RNA polymerase and transcription factors,. In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washing-ton, D.C. 1993. p. 653-667
    90. Miyasono, M., S. inagaki, M. Yamamoto, K. Ohba, T. Ishiguro, R. Takeda, and Y. Hayashi. Enhancement of d-endotoxin activity by toxin-free spore of Bacillus thuringiensis against the Diamondback Moth, Plutella xylostella. J. Invertebr. Pathol. 1994.63:111-112
    91. Ojcius, D. M., and J. D. E. Young. Cytolytic pore-forming proteins and peptides—is there a common structural motif Trends Biochem. Sci. 1991.16:225-229.
    92. Osman et al. 1998. unpublished observation.
    93. Park, H. W.; Bideshi, D.K.; Federici, B.A. Molecular genetic manipulation of truncated CryIC protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl. Environ. Microbiol. 2000.66(10): 4449-4455.
    94. Patel et al. 1999. unpublished observation.
    95. Payne J., Cummings D.A., Cannon R.J.C., Narva K.E., Stelman S.J. 1998. Bacillus thuringiensis genes encoding lepidopteran-active toxins. USP 5723758
    96. Payne, J. M., and A. J. Sick. April 1993. U.S. patent 5,206,166.
    97. Perlak, F. J., R. W. Denton, T. A. Armstrong, R. L. Fuchs, S. R. Sims, J. T. Greenplate, and D. A. Fischhoff. Insect resistant cotton plants. Bio/Technology. 1990. 8:939-943.
    98. Perlak, F. J., T. B. Stone, Y. M. Muskopf, L. J. Petersen, G. B. Parker, S. A, McPherson, J. Wyman, S. Love, G. Reed, D. Biever, and D. A. Fischhoff. Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 1993.22:313-321.
    99. Poncet, S., A. Delécluse, G. Anello, A. Klier, and G. Rapoport. Transfer and expression of the cryIVB and cryIVD genes of Bacillus thuringiensis subsp. Israelensis in Bacillus sphaericus 2297. FEMS Microbiol. Lett. 1994. 117:91-96.
    100. Rajamohan, F., E. Alcantara, M. K. Lee, X. J. Chen, A. Curtiss, and D. H. Dean. Single amino acid changes in domain Ⅱ of Bacillus thuringiensis CryIAb δ-endotoxin affect irreversible binding to Manduca sexta midgut membrane vesicles. J. Bacteriol. 1995. 177:2276-2282.
    101. Rezso hazy, R., B. Hallet, J. Mahillon, and J. Delcour. IS231V and W from Bacilluus thuringiensis subsp. Israaelensis, two distant members of the IS231 family of insertion sequences. Plasmid 1993. 30:141-149.
    102. Rajamohan, F., O. Alzate, J. A. Cotrill, A. Curtiss, and D. H. Dean. Protein engineering of Bacillus thuringiensis d-endotoxin: mutations at domain Ⅱ of Cry1Ab enhance receptor affinity and toxicity towards gypsy moth larvae. Proc. Natl. Acad. Sci. USA. 1996. 93:14338-14343.
    103. Rajamohan, F., S.-R. A. Hussain, J. A. Cotrill, F. Gould, and D. H. Dean. Mutations in domain Ⅱ, loop 3 of Bacillus thuringiensis CryIAa and CryIAb d-endotoxins suggest loop 3 is involved in initial binding to lepidopteran midguts. J. Biol. Chem. 1996. 271:25220-25226.
    
    
    104. Salamitou, S., H. Agaisse, A. Bravo, and D. Lereclus. Genetic analysis of cryIIIA gene expression in Bacillus thuringiensis. Microbiology. 1996. 142:2049-2055.
    105. Sanehis, V. et al. Bacillus thuringiertsis: a biotechnology model. J. Soc. Biol., 1999. 193(6):532.
    105a. Sangadala S, Walters F S, English L H et al. A mixture of Manduca Sexta aminopetidase and phosphatase enhances Bacillus thuringiensis insecticidal Cry1Ac toxin binding and 86Rb+ -K+ efflux in vitro. J. Biol. Chem., 1994. 269(13): 10058~10092.
    106. Sankaranarayanan, R., K. Sekar, R. Banerjee, V. Sharma, A. Surolia, and M. Vijayan. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nat. Struct. Biol. 1996, 3:596-603.
    107. Schnepf, E. et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev., 1998.62(3):775.
    108. Schnepf, E., N. Crickmore, J. Van Rie Lereclus, D. Baum, J., Feitelson, J., Zeigler, D. R., Dean. D. H. Bacillus thuringiensis and Its Pesticidal Crystal Protein. Microbiol. And Molecular Biology Review. 1998.62: 775-806.
    109. Schnepf, H. E., and H. R. Whiteley. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA. 1981.78:2893-2897.
    110. Schnepf, H. E., G. E. Schwab, J. M. Payne, K. E. Narva, and L. Foncerrada. November World Intellectual Property Organization patent 1992.WO 92/19739.
    111. Schnepf, H. E., H. C. Wong, and H. R. Whiteley. The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. Biol. Chem. 1985.260:6264-6272.
    112. Schnepf, H. E., K. Tomczak, J. P. Ortega, and H. R. Whiteley. Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis. J. Biol. Chem. 1990. 265:20923-20930
    113. Schuler, T. H., Poppy, M. G., Kerry, B. R. and Denholm, L.. Insect-resistant transgenic plants. Trends Biotechnol. 1998. 16:168-175.
    114. Schwartz, J. L., L. Potvin, X. J. Chen, R. Brousseau, R. Laprade, and D. H. Dean. Single-site mutations in the conserved alternating-arginine region affect ionic channels formed by CryIAa, a Bacillus thuringiensis toxin. Appl. Environ. Microbiol. 1997.63:3978-3984.
    115. Schwartz, J. L., M. Juteau, P. Grochulski, M. Cygler, G. Pre'fontaine, R. Brousseau, and L. Masson. Restriction of intramolecular movements within the CrylAa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 1997. 410:397-402.
    116. Sekar, V. The insecticidal crystal protein gene is expressed in vege-tative cells of Bacillus thuringiensis var. tenebrionis, Curr. Microbiol. 1988. 17:347-349.
    117. Sekar, V., Held,B., Tippett,J., Amirhusin,B., Robeff, P., Wang,K., Wilson,H.M. Biochemical and molecular characterization of the insecticidal fragment of CryV. Appl. Environ.Micmbiol. 1997..63(7): 2798-2801.
    118. Shevelev, A. B., M. A. Svarinsky, A. I. Karasin, Y. N. Kogan, G. G. Chestukhina, and V. M. Stepanov. Primary structure of cryX, the novel delta-endotoxin-related gene from Bacillus thuringiensis spp, galleriae. FEBS Lett. 1993. 336:79-82.
    
    
    119. Shimizu, T., and K. Morikawa. The β-prism: a new folding motif. Trends Biochem. Sci. 1996. 21:3-6.
    120. Shin,B.S.; Park, S.H.; Choi,S.K.; Koo,B.T,; Lee,S.T.; Kim,J.I. Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type genes from Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp, entomocidus. Appl. Environ. Microbiol, 1995. 61(6): 2402-2407.
    121. Shivakumar, A. G., G. J. Gundling, T. A. Benson, D. Casuto, M. F. Miller, and B. B. Spear. Vegetative expression of the d-endotoxin genes of Bacillus thuringiensis subsp, kurstaki in Bacillus subtilis. J. Bacteriol. 1986, 166: 194-204.
    122. Sick, A. J., G. E. Schwab, and J. M. Payne. January 1994. U.S. patent 05281530.
    123. Sick, A., F. Gaertner, and A. Wong. 1990. Nucleotide sequence of a coleopteran-active toxin gene from a new isolate of Bacillus thuringiensis subsp, tolworthi. Nucleic Acids Res. 18:1305.
    124. Sims, S. R., and J. E. Ream. Soil inactivation of the Bacillus thuringiensis subsp, kurstaki CryIIA insecticidal protein within transgenic cotton tissue: laboratory microcosm and field studies. J. Agric. Food Chem. 1997. 45: 1502-1505.
    125. Smith, G. P., and D. J. Ellar. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC delta-endotoxin affects insecticidal specificity. Biochem. J. 1994. 302:611-616.
    126. Smulevitch, S. V., A. L. Osterman, A. B. Shevelev, S. V. Kaluger, A. I. Karasin, R. M. Kadyrov, O. P. Zagnitko, G. G. Chestukhina, and V. M. Stepanov. Nucleotide sequence of a novel delta-endotoxin gene cryIG of Bacillus thuringiensis ssp. galleriae. FEBS Lett. 1991. 293:25-28.
    127. Stone, T. B., Sims, and P. G. Marrone. Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the delta-endotoxin of Bacillus thuringiensis subsp. Kurstaki. J. Invertebr. Pathol.1989.53:228-234.
    128. Thiery, I., A. Delécluse, M. C. Tamayo, and S. Orduz. Identification of a gene for CytlA-like hemolysin from Bacillus thuringiensis subsp, medellin and expression in a crystal-negative B. thuringiensis strain. Appl. Environ. Microbiol. 1997.63:468-473.
    129. Thorne, L., F. Garduno, T. Thompson, D. Decker, M. Z, ounes, M. Wild, A. M. Walfield, and T. J. Pollock. Structural similarity between the Lepidoptera- and Diptera-specific insecticidal endotoxin genes of Bacillus thuringiensis subsp. "kurstaki" and "israelensis." J. Bacteriol. 1986. 166:801-811.
    130. Tojo, A., and K. Aizawa. Dissolution and degradation of Bacillus thuringiensis δ-endotoxin by gut juice protease of the silkworm Bombyx mori. Appl. Environ. Microbiol. 1983.45:576-580.
    131. Vaeck, M., A. Reynaerts, H. Ho(?)fte, S. Jansens, M. De Beukeleer, C. Dean, M. Zabeau, M. Van Montagu, and J. Leemans. Transgenic plants protected from insect attack. Nature. 1987. 328:33-37.
    132. Van Aarssen, R., P. Soetaert, M. Stam, J. Dockx, V. Gossele, J. Seurinck, A. Reynaerts, and M. Cornelissen. cryIA(b) transcript formation in to-bacco is inefficient. Plant Mol. Biol. 1995.28:513-524.
    133. Van der Salm, T., D. Bosch, G. Hone'e, L. Feng E. Munsterman, P. Bakker, W. J. Stiekema, and B. Visser, Insect resistance of transgenic plants that express modified Bacillus thuringiensis crylA(b) and cryIC genes: a resistance management strategy. Plant Mol. Biol. 1994.26:51-59.
    
    
    134. Van Rie, J., S. Jansens, H. H(?)fte, D. Degheele, and H. Van Mellaert. Specificity of Bacillus thuringiensis δ-endotoxin: importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur. J. Biochem. 1989. 186:239-247.
    135. Visser, B., E. Munsterman, A. Stoker, and W. G. Dirkse. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 1990. 172:6783-6788.
    136. Von Tersch, M. A., and J. M. Gonzalez. October 1994. U.S. patent 5,356.623.
    137. Waalwijk, C., A. M. Dullemans, M. E.S. vanWorkum, and B. Visser. Molecular cloning and the nucleotide sequence of the Mr28,000 crystal protein gene of Bacillus thuringiensis subsp, israelensis. Nucleic Acids Res. 1985.13:8207-8217.
    138. Wang C Z, Zhang S F, Zhang JH et al. Influence of tannic acid on the effectiveness of Bacillus thuringiensis var. kurstaki against Helicoverpa armigera (Hubner). Entomologia Sinica, 1997. 4: 74-81.
    139. Whiteley, H. R. And Schnepf, H.E., The molecular biology of parasporal crystal body formation in B thuringiensis, Annu. Rev. Microbiol., 1986, 40:549
    140. Widner, W. R., and H. R. Whiteley. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp, kurstaki possess different host range specificities. J. Bacteriol. 1989. 171:965-974.
    141. Wolfersberger, M. G., X. J. Chen, and D. H. Dean. Site-directed mutations in the third domain of Bacillus thuringiensis d-endotoxin CryIAa affect its ability to increase the permeability of Bornbyx mori midgut brush border membrane vesicles. Appl. Environ. Microbiol. 1996.62:279-282.
    142. Wu, D., and A. I. Aronson. Localized mutagenesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity. J. Biol. Chem. 1992.267:2311-2317.
    142a. Wu D, Chang F N, Synergism in mosqitocidal activity of 26 and 25kDa a proteins from Bscillus thuringiensis subsp, Israelensis crastal. FEBS Lett. 1985. 190: 232-236.
    142.b Wu D, Johnson J J, Federici B A, Synergism of mosquitocidal toxicity between CytA and CryIVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol. Microbiol. 13(6): 965-972.
    143. Wu, S. J., and D. H. Dean. Functional significance of loops in thereceptor binding domain of Bacillus thuringiensis CryIIIA d-endotoxin. J. Mol. Biol. 1996. 255:628-640.
    144. Yool, A. J. Block of the inactivating potassium channel by clofilium and hydroxylamine depends on the sequence of the pore region. Mol. Pharmacol. 1994.46:970-976.
    145. Yoshisue, H., T. Fukada, K.-I. Yoshida, K. Sen, S.-I. Kurosawa, H. Sakai, and T. Komano. Transcriptional regulation of Bacillus thuringiensis subsp, israelensis mosquito larvicidal crystal protein gene cryIVA. J. Bacte-riol. 1993. 175:2750-2753.
    146. Zhong, C., Ellar,D.J., Bishop, A., Johnson,C., Lin,S, Hart, E.R. Characterization of a Bacillus thuringiensis delta-endotoxin which is toxic to insects in three orders. J.Invertebr. Pathol. 2000. 76:131-139.
    147. Zhao, J. et al. Development and charaterization of diamondback moth resistance to transgenic broccoli expressing high levels of CryIC. Appl. Environ. Microbiol., 1996.36(5): 2000. 66(9):3784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700